Czechoslovak Mathematical Journal

Ján Jakubík Cardinal sums of linearly ordered groups

Czechoslovak Mathematical Journal, Vol. 25 (1975), No. 4, 568-575

Persistent URL: http://dml.cz/dmlcz/101353

Terms of use:

© Institute of Mathematics AS CR, 1975

Institute of Mathematics of the Czech Academy of Sciences provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these *Terms of use*.

This document has been digitized, optimized for electronic delivery and stamped with digital signature within the project *DML-GZ: The Czech Digital Mathematics Library* http://dml.cz

CARDINAL SUMS OF LINEARLY ORDERED GROUPS

JÁN JAKUBÍK, Košice (Received June 14, 1974)

A lattice ordered group will be said to have the property (s) if each l-subgroup of G is a cardinal sum of linearly ordered groups. MARTINEZ [5] proposed the problem whether each cardinal product of linearly ordered groups has the property (s).

In this note the following theorem will be proved:

Theorem. Let $G = \sum A_i$ ($i \in I$) be a cardinal sum of linearly ordered groups A_i .

- (i) If at most one l-group A_i is non-archimedean, then G has the property (s).
- (ii) If there exist two distinct elements j, $k \in I$ such that A_j and A_k are not archimedean, then there exists an infinite set $\{H_t\}$ of l-subgroups of G such that no H_t is a cardinal sum of linearly ordered groups; thus G has not the property (s).

For the terminology, cf. BIRKHOFF [1], Chap. XIV, and FUCHS [2]. The group operation in a lattice ordered group will be written additively, though it is not assumed to be commutative. Let us recall the following notions.

Let $\{A_i\}$ $(i \in I)$ be a system of *l*-subgroups of a lattice ordered group G such that

- (i) the group G is a direct sum of its subgroups A_i ;
- (ii) if $0 \le g \in G$, $g = a_{i(1)} + ... + a_{i(n)}$, $a_{i(j)} \in A_{i(j)}$ with $i(j) \ne i(k)$ for $j \ne k$ (j, k = 1, ..., n), then $a_{i(j)} \ge 0$ for j = 1, ..., n.

Under these assumptions G is said to be a cardinal sum of its l-subgroups A_i ($i \in I$) and in such case we write

(1)
$$G = \sum A_i \ (i \in I).$$

Each *l*-subgroup A_i will be called a cardinal summand of G. If $I = \{1, ..., n\}$, then we write also $G = A_1 \oplus ... \oplus A_n$.

Let (1) be valid and let $0 \neq g \in G$. Then there are uniquelly determined distinct elements $i(1), ..., i(n) \in I$ and uniquelly determined elements $a_1 \in A_{i(1)}, ..., a_n \in A_{i(n)}$ such that $a_j \neq 0$ for j = 1, ..., n and

$$(2) g = a_1 + \ldots + a_n.$$

The element a_j is said to be the projection of g into $A_{i(j)}$ and it will be denoted by $g(A_{i(j)})$; if $i \in I$ and $i \neq i(j)$ for j = 1, ..., n, then we put $g(A_i) = 0$.

Let G be a lattice ordered group. If A is a cardinal summand of G and $0 \le g \in G$, then g(A) is the greatest element of the set $\{a \in A : 0 \le a \le g\}$. If A, B are cardinal summands of G with $A \subseteq B$ and $g \in G$, then g(A) = (g(B))(A).

Let $X \subseteq G$. We put

$$X^{\delta} = \left\{ y \in G : |y| \land |x| = 0 \text{ for each } x \in X \right\}.$$

The set X^{δ} is called a polar of G; each polar of G is a closed convex l-subgroup of G. (Cf. Σ_{K} [6].) If A is a cardinal summand of G, then

$$G=A\oplus A^{\delta}$$
.

G is said to be archimedean if there does not exist any pair of strictly positive elements $x, y \in G$ such that $nx \leq y$ for each positive integer n.

Let (1) be valid and suppose that each A_i is linearly ordered and $A_i \neq \{0\}$. For $g \in G$ we put $S(g) = \{i \in I : g(A_i) \neq 0\}$. Let H be an l-subgroup of G and let M be the set of all $0 < g \in H$ such that $S(g_1) = S(g)$ for each $0 < g_1 \leq g$, $g_1 \in H$. Obviously $g_1, g \in H$, $0 < g_1 \leq g$ implies $S(g_1) \subseteq S(g)$. Thus for each $0 < g \in H$ there exists $g_1 \in H$ with $0 < g_1 \leq g$ such that $g_1 \in M$.

For $a, b \in H$, $a \le b$ we denote by [a, b] the set $\{h \in H : a \le h \le b\}$.

Lemma 1. Let $g \in M$. Then [0, g] is a chain.

Proof. Suppose that [0, g] fails to be a chain. Then there are elements $g_1, g_2 \in [0, g]$ such that $g_1 > 0$, $g_2 > 0$ and

$$g_1 \wedge g_2 = 0.$$

From (3) it follows

$$S(g_1) \cap S(g_2) = \emptyset.$$

Because $\emptyset \neq S(g_i) \subseteq S(g)$ (i = 1, 2), both $S(g_1)$ and $S(g_2)$ are proper subsets of S(g), which is a contradiction.

For $X \subseteq H$ we denote by X^{σ} the polar of X with respect to the lattice ordered group H; i.e.,

$$X^{\sigma} = \left\{ y \in H : \left| y \right| \, \wedge \, \left| x \right| = 0 \text{ for each } x \in X \right\}.$$

If $g \in M$, we put

$$B(g) = \{g\}^{\sigma\sigma}.$$

Each B(g) is a convex *l*-subgroup of H. Let M_1 be the set of all *l*-subgroups B(g) $(g \in M)$.

Lemma 2. Each l-subgroup $B(g) \in M_1$ is linearly ordered.

Proof. Let $g \in M$. For each $0 < z \in B(g)$ we have $g \wedge z > 0$. Suppose that B(g) is not a chain. Hence there are elements $x, y \in B(g)$ with $x > 0, y > 0, x \wedge y = 0$. Then $x \wedge g = x_1 > 0, y \wedge g = y_1 > 0$ and according to Lemma 1, $x_1 \wedge y_1 = \min\{x_1, y_1\} > 0$. Thus $x \wedge y > 0$, which is a contradiction.

Assume that at most one lattice ordered group A_i fails to be archimedean; if such A_i does exist, then it will be denoted by A_{i0} .

Lemma 3. Let $g \in M$. Then B(g) is not upper bounded in H.

Proof. Let $0 < h \in H$. It suffices to show that there is $g' \in B(g)$ such that g' non $\leq h$.

At first suppose that B(g) is not a subset of A_{i_0} . Then there is $g_1 \in B(g)$ and $i \in I$, $i \neq i_0$ such that $g_1(A_i) \neq 0$. Since A_i is archimedean, there exists a positive integer n with

$$n(g(A_i)) \text{ non } \leq h(A_i)$$

and hence $g' = ng_1 \in H$, g' non $\leq h$.

Assume that $B(g) \subseteq A_{i_0}$. Thus, in particular, $g \in A_{i_0}$. Hence $g_2(A_{i_0}) = 0$ for each $g_2 \in \{g\}^{\sigma}$. The element h can be expressed as

$$h = h(A_{i0}) + h(A_{i(1)}) + ... + h(A_{i(n)}),$$

where i_0 , i(1), ..., i(n) are distinct elements of I, $n \ge 0$, $h(A_{i(j)}) > 0$ for j = 1, ..., n. Suppose that h is an upper bound for B(g) and let n be the least non-negative integer with this property.

We have $g \in B(g)$, hence $B(g) \neq \{0\}$ and thus B(g) has no maximal element. Therefore $h \notin B(g)$. This implies that $h \land g_2 = x > 0$ for some $g_2 \in \{g\}^{\sigma}$. Then $x \in \{g\}^{\sigma}$, hence $x(A_{i_0}) = 0$. Since $0 < x \le h$, we get $0 \le x(A_i) \le h(A_i)$ for each $i \in I$. Therefore without loss of generality we can suppose that

$$x = x(A_{i(1)}) + ... + x(A_{i(k)}),$$

 $1 \le k \le n$, $x(A_{i(j)}) > 0$ for j = 1, ..., k. Because $A_{i(1)}, ..., A_{i(k)}$ are archimedean, there is a positive integer n such that

$$n \ x(A_{i(j)}) > h(A_{i(j)})$$

is valid for j = 1, ..., k. Thus $h_1 = h \land nx \in H$ and

$$h_1 = h(A_{i(i)}) + \ldots + h(A_{i(k)}).$$

Then $h_2 = h - h_1 \in H$ and

$$h_2 = h(A_{i_0}) + h(A_{i(k+1)}) + \dots + h(A_{i(n)}).$$

Let $g' \in B(g)$. Since $g' \leq h$ and $B(g) \subseteq A_{i_0}$, we infer that $g' \leq h(A_{i_0})$ and hence $g' \leq h_2$. Since the number of elements $h(A_{i(k+1)}), \ldots, h(A_{i(n)})$ is less then n we have a contradiction.

Lemma 4. The l-subgroup B(g) is a cardinal summand of H for each $g \in M$. If $g_1, g_2 \in M$, $B(g_1) + B(g_2)$, then $B(g_1) \cap B(g_2) = \{0\}$.

This follows from Lemma 3 and [3], 17.1.

Proof of the Theorem:

$$B(g) \cap [0, h] \neq \{0\}$$
.

This is equivalent with

$$h(B(g)) = \max \{g_1 \in B(g) : 0 \le g_1 \le h\} > 0.$$

The set \overline{M}_1 is nonempty, because there is $g \in M$ with $g \leq h$ and then B(g) belongs to \overline{M}_1 .

Let $B(g) \in \overline{M}_1$. Because $h(B(g)) \neq 0$, we have $S(h(B(g))) \neq \emptyset$. Let $i \in S(h(B(g)))$. From $h(B(g)) \leq h$ we get

(5)
$$h(A_i) \ge (h(B(g)))(A_i) > 0$$
.

If $B(g_1)$, $B(g_2) \in \overline{M}_1$ and $B(g_1) \neq B(g_2)$, then according to Lemma 4,

(6)
$$h(B(g_1)) \wedge h(B(g_2)) = 0$$

and hence

(7)
$$S(h(B(g_1))) \cap S(h(B(g_2))) = \emptyset.$$

Because the set S(h) is finite, from (5) and (7) it follows that the set \overline{M}_1 is finite as well. Put

$$h_1 = \bigvee h\big(B\big(g\big)\big) \, \big(B\big(g\big) \in \overline{M}_1\big) \; .$$

We have $0 \le h_1 \le h$. Denote $h_2 = h - h_1$. According to (6),

(8)
$$h_1 = h(B(g_1)) + \ldots + h(B(g_n)),$$

where $\overline{M}_1 = \{B(g_1), ..., B(g_n)\}$. If $B(g_j), B(g_k)$ are distinct elements of \overline{M}_1 , then by (6),

 $(h(B(g_j)))(B(g_k))=0,$

and clearly

$$(h(B(g_j)))(B(g_j)) = h(B(g_j)).$$

Thus we get from (8)

(9)
$$h_1(B(g_j)) = h(B(g_j))$$

for each $B(g_i) \in \overline{M}_1$.

Suppose that $h_2 \neq 0$. Then $h_2 > 0$ and hence there exists $g \in M$ such that $g \leq h_2$. Therefore

$$(10) h_2(B(g)) \geq g > 0.$$

Since $h \ge h_2$,

$$h(B(g)) \ge h_2(B(g)) > 0$$

and thus $B(g) \in \overline{M}_1$. But then it follows from (9) that

$$h_2(B(g))=0$$

and this is a contradiction. Hence $h_2 = 0$ and therefore by (8),

(11)
$$h = h(B(g_1)) + \ldots + h(B(g_n)).$$

Because for each $h' \in H$ there are h'', $h''' \in H$ with $h'' \ge 0$, $h''' \ge 0$, h' = h'' - h''', it follows from (11) that the group H is generated by the set $\bigcup B(g_i) (B(g_i) \in \overline{M}_1)$.

Let $B(g_i)$ be a fixed element of \overline{M}_1 and let H_1 be the subgroup of H generated by the union of all $B(g_i) \in \overline{M}_1$, $B(g_i) \neq B(g_i)$. By Lemma 4 we have

$$B(g_i) \subseteq (B(g_i))^{\sigma}$$

and since $(B(g_i))^{\sigma}$ is a subgroup of H, $H_1 \subseteq (B(g_i))^{\sigma}$. Hence $B(g_i) \cap H_1 = \{0\}$. Because $B(g_i)$ is a cardinal summand of H, it is a normal subgroup of the group H. Therefore the group G is a direct sum of its subgroups $B(g_i) \in M_1$.

For each $0 \neq h \in H$ the representation of h as a sum of elements $0 \neq a_i \in B(g_i)$ is unique; thus from (11) it follows that if h > 0, then $a_i > 0$. Hence the lattice ordered group H is a cardinal sum of its linearly ordered l-subgroups $B(g_i) \in M_1$.

(ii) Assume that i, j are distinct elements of I, and that A_i and A_j are not archimedean. There exist elements a_1 , $a_2 \in A_i$, b_1 , $b_2 \in A_j$ such that

$$0 < na_1 \le a_2$$
, $0 < nb_1 \le b_2$

holds for each positive integer n. Let C be the set of all elements $x \in A_i$ such that

 $n|x| < a_2$ for each positive integer n. Then C is an l-subgroup of A_i . Analogously we define the set D with B_i and b_2 instead of A_i and a_2 . For $x \in C$ we have

$$n(-a_2 + x + a_2) = -a_2 + nx + a_2 < a_2$$

for each positive integer n, hence $-a_2 + x + a_2 \in C$. From this it follows that the set C_k consisting of all elements of A_i that can be written as

$$c + nka_2$$

where c runs over the set C, n is any integer and k is a fixed positive integer, is a subgroup of A_i . Because A_i is linearly ordered, C_k is an l-subgroup of A_i . Similarly, the set D_k consisting of all elements

$$d + mkb_2$$
 $(m = 0, \pm 1, \pm 2, ...)$

with $d \in D$ is an *l*-subgroup of A_i . Hence the set E_k of all elements

$$c + d + nk(a_2 + b_2)$$

is a subgroup of the group G. We shall show that E_k is an l-subgroup of G. It suffices to verify that, for each $e \in E_k$, the element $e \vee 0$ belongs to E_k . Let $e = c + d + nk(a_2 + b_2)$. Obviously $e = (c + nka_2) + (d + nkb_2)$ and

$$e \vee 0 = ((c + nka_2) \vee 0) + ((d + nkb_2) \vee 0).$$

If $n \neq 0$, then $e \vee 0 = e$ for n > 0 and $e \vee 0 = 0$ for n < 0. Let n = 0; then $c \vee 0 \in \{c, 0\} \subseteq C$, $d \vee 0 \in \{d, 0\} \subseteq D$. Therefore $e \vee 0 = (c + d) \vee 0 = (c \vee d) \vee 0 = (c \vee 0) \vee (d \vee 0) = (c \vee 0) + (d \vee 0) \in E_k$.

If $e = c + d + nk(a_2 + b_2) \in E_k$ and n > 0, then $e > c_1$ and $e > d_1$ for each $c_1 \in C$ and each $d_1 \in D$, thus the interval [0, e] of the *l*-group E_k fails to be a chain.

Suppose that E_k is a direct sum of linearly ordered groups. Then each $0 < e \in E_k$ can be written as

$$e = e_1 + \ldots + e_m$$

such that each $0 < e_i$ and the interval $[0, e_i]$ of E_k is a chain for i = 1, ..., m. Hence

$$e_i = c_i + d_i \quad (c_i \in C, \ d_i \in D)$$

and therefore

$$e = c + d \quad (c \in C, d \in D).$$

If we choose $e \in E_k$ such that $e = nk(a_2 + b_2)$, n > 0, then we have c + d < e for each $c \in C$ and each $d \in D$, which is a contradiction. Hence E_k is not a direct sum of linearly ordered groups.

If k, k' are positive integers with k < k', then $k(a_2 + b_2) \in E_k$ and $k(a_2 + b_2)$ non $\in E_{k'}$, thus $E_k \neq E_{k'}$. The proof is complete.

An *l*-subgroup H of a lattice ordered group G is said to be convex if from $h \in H$, $g \in G$, $0 \le g \le h$ it follows $g \in H$. By investigating cardinal summands of G it suffices to consider only convex l-subgroups of G, since each cardinal summand is convex. A lattice ordered group B will be called strictly cyclic, if, for each $0 \ne b \in B$, the convex l-subgroup of B generated by the element b equals B. A lattice ordered group will be called cyclic if it is generated by one element. The following two statements are analogous to the well-known Kulikov's theorem on subgroups of direct sums cyclic groups (cf. $\lceil 3 \rceil$, Thm. 18.1).

Proposition 1. Each l-subgroup of a cardinal sum of strictly cyclic l-groups is again a cardinal sum of strictly cyclic l-groups.

Proof. Let B be a strictly cyclic l-group, $B \neq \{0\}$. For each $b \in B$ we denote by [b] the convex l-subgroup of B generated by b. Suppose that B is not linearly ordered. Then there are $b_1, b_2 \in B$ with $0 < b_1, 0 < b_2, b_1 \land b_2 = 0$. Hence $[b_1] \neq [b_2]$, which is a contradiction. Thus B is linearly ordered. If B is not archimedean, then there are $b_1, b_2 \in B$ with $0 < nb_1 < b_2$ for each positive integer n; in this case we would have $b_2 \notin [b_1]$, a contradiction. Therefore B is archimedean. Conversely, each archimedean linearly ordered group is strictly cyclic. Now the assertion immediately follows from the Theorem.

Proposition 2. Let H be an l-subgroup of a cardinal sum of cyclic lattice ordered groups. Then H is again a cardinal sum of cyclic lattice ordered groups.

Proof. Let us denote by Z and R the additive group of all integers or all reals, respectively, with the natural linear order. Let G_0 be the free lattice ordered group with one free generator. Then G_0 is isomorphic to $Z \oplus Z$ (cf. [1], p. 297, Ex. 6). Each cyclic l-group is a homomorphic image of G_0 . Hence a lattice ordered group is cyclic if and only if it is isomorphic to some of the following l-groups: $\{0\}$, Z, $Z \oplus Z$. Therefore each l-group $G \neq \{0\}$ that is a cardinal sum of cyclic groups is a cardinal sum of l-groups isomorphic to Z.

Let $H \neq \{0\}$ be an *l*-subgroup of G. Since Z is linearly ordered and archimedean, we have

$$H = \sum H_i \quad (i \in I)$$

where each H_i is linearly ordered and $H_i \neq \{0\}$. Because G is archimedean, each H_i is archimedean and hence H_i is isomorphic to an I-subgroup of R. Obviously G^+ fulfils the descending chain condition and thus H_i^+ fulfils the descending chain condition as well. Therefore there exists $e_i \in H_i$ such that e_i covers 0 in H_i . From this we immediately obtain (cf. [1], Chap. XIII, Thm. 10) that H_i is a cyclic group generated by e_i .

References

- [1] G. Birkhoff: Lattice theory, Providence 1968.
- [2] Л. Фукс: Частично упорядоченные алгебраические системы, Москва 1965.
- [3] L. Fuchs: Infinite abelian groups, Vol. I, New York—London 1970.
- [4] J. Jakubik: Konvexe Ketten in l-Gruppen. Čas. pěst. mat. 84 (1959), 53—63.
- [5] J. Martinez: Torsion theory for lattice ordered groups. Czechoslovak Math. J. 25(1975), 284-299.
- [6] Φ . Шик: К теории структурно упорядоченных групп, Чех. мат. ж. 6 (1956), 1—25.

Author's address: 040 01 Košice, Švermova 5, ČSSR (Vysoké učení technické).