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Czechoslovak Mathematical Journal, 26 (101) 1976, Praha 

GENERIC PROPERTIES OF PARAMETRIZED VECTORFIELDS II 

MILAN MEDVED, Bratislava 

(Received February 26, 1974) 

In [l] we have studied the generic properties of critical points of vectorfields, 
depending on a parameter. This paper is concerned with generic properties of closed 
orbits of vectorfields depending on a parameter. 

Since this paper is a direct continuation of [1], we shall refer to [1] for definitions 
and results. We assume that Л is a 1-dimensional C"*"̂  compact manifold and X 
is an n-dimensional C^^ compact manifold (r ^ 0). Denote by G\A,X) the set 
of all parametrized С vectorfields on Л x X, endowed with the С topology defined 
in [1]. 

1. J-TR ANS VERSAL CLOSED ORBITS 

Let cp be the parametrized flow of a ^eG\A,X). We shall use the following 
notation: 

(1) For ae A the mapping (p^^:X x R -^ X is given by cpa{x, t) = q){a, x, i) for 
{x,t)eX X R. 

(2) For xeX the mapping cp^: A x R -^ X is given by <?)̂ .(Ö, i) = (p{a, x, t) for 
(a, t)EA X R. 

(3) For ^ e jR, ae A the mapping ф(̂ ,,) \X -^ X is given by (P(^t,a){^) = ф(̂ > ^, 0 
for X e X. 

Let Ç e G'{A, X), a e A and let 7 be a closed orbit of the vectorfield ^^ through x 
(Ça{x) = ^{a, x) for X e X) of a prime period т. Then у is called a ^-transversal 
closed orbit, if Ф(0 ^(a,x.x) ̂ ^ where A = {(x, t, y) e X x R^ x X \ x = y}, 
i?+ = (0, + 00), Ф : G%A, X) -> CiA x X x R^,X x R^ x X) is given by Ф{^) = 
= Ф^ for ^ e G^A, X), Ф^{а, x, t) = (x, t, (p%a, x, t)) for {a,x,t)eA x X x R^, 
cp^ is the parametrized flow of ^, 

Denote by G'J^A, X) the set of all ^ e G\A, X) such that if a G Л, then all closed 
orbits of the vectorfield ^^ ^re zl-transversal. 

Choose a metric Jr(x)» ^x on T(X), X respectively. Let L be a positive number. 
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Denote by G]^(Ä, X) the set of all ^ G С(А, X) such that for arbitrary [a, Xj), (a, X2) ^ 
e A X X, <̂ г(Х)(<̂ (̂ > ^i)? ^(^» ^2)) < L^dx{xi, X2) where L^ < L. Obviously, the set 
Gl{A, X) is open in G\A, X). 

Lemma 1. If ^ e G2(yl, X), a e A, then every closed orbit of the vectorfield ^a 
has a prime period ^4/L. 

This lemma follows from [9, Theorem 4]. 

Lemma 2. Let £, e G''{A, X), a G A, let y be a closed orbit of the vectorfield ^a 
of a prime period т, x ey, x e T^X and let cp be the parametrized flow of ^. Then 
there is a parametrized vectorfield rj e G''(A,X) such that (d/ds) {(pl{a, х)}^=о — ^ 
(cp^ is the parametrized flow of ^^ = ^ -}- srj, s e R). 

Proof. Let the mapping ф : X x R -^ X ho given by ф^х, t) = (p(a, x, t) for 
(x, t)eA X jR. By [4, Theorem 3L7] there is a ? e Г{тх) such that (d/ds) {^'(x)},^o = 
= X, where \l/\ s e R is the flow of *̂ = ^̂  + s^. It suffices to choose rj e G''(A, X) 
such that rj[a, x) = | (x). 

Lemma 3. Assume ^eG^A^X) and (а,х,т)еАхХх R^ such that there 
is a closed orbit of the vectorfield ^^ through x of a prime period т. Then eVф n^^^ ^̂ /d. 

Proof, evф : G\A, X) x A x X x R"- ^ X x R"- x X, ev^{^, a, x, t) = 
= Ф^{а, X, t) for ^ E G^A, X), {a,x,t)eA X X X R'^. Since G\A, X) is a Banach 
space, we can identify T^ G''[A, X) and G''(A, X). By virtue of Lemma 2 it is easy 
to show that the condition of transversahty is satisfied. 

Let {Li}fL 1 be an increasing sequence of positive numbers such that Hm L̂ - = + 00. 
i->oo 

Denote fe^ = 4/Lf. If (̂  e GL.{A, X), a e A, then by Lemma 1 all closed orbits of 
the vectorfield ^^ have prime periods ^bf. Let p : A x X x R^ -^ A x X he the 
projection and Z cz A x X x R^. Denote B{Z, a) = {(a, x, t) e A x X x 
X R^ I d{Z, (a, X, t)) < cr], where a > 0 and J is a metric on A x X x R^, Denote 
Bp{Z, a) = p[B{Z, cr)] and iV(Z, a) = A x X - B^{Z, a). For ^ e G%A, X), denote 
Уо(^) = {(̂ » x)eA X X \ ^{a, x) = 0^}, where 0^ is the zero in T^X, the set of 
critical points. Let ^ be a natural number and let {ej j^ j be a sequence of positive 
numbers such that Si = s^q'^ < ift^. For ^GG^A.X), Q positive number, define 

к 
the following mappings: Ф,,^(^) : N{ U YX^), Q) X R"- -^ X X R"- X X, Ф.^^) = 

к ' ^^^ 

= Ф(0 /М и Y,(^), Q) X R \ where У/О = {[ФJ-l,a-^{0'' i^)) n [A x X x 

X (0, {j + 1) bi), j = 1, 2, ..., k. Now, define the following sets: G^^ = 
= {̂  e Gl{A,X) I 0j^-Xi) ^ ^ onthesctN{\JY,{^),2q-') x [jb, - Ô,,{j + l)b,-

k = 0 

- ôi]}, where ij,q = 1,2,. . . 
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Lemma 4. The set G\j^ {i,j\ q = 1,2,...) /5 open and dense in G^.^A, X). 

Proof. Density. Let ^Q e G^ii^, X). From [5, Theorem 3] it follows that there 
is a 5 > 0 and an open neighborhood iV,7̂ ((̂ o) of ^0 ^^ ^ L X ^ ' ^) ^^^^ ^^^^ fo^ 

^eN,j^{Q, N{\JY,{^),q-')czN{\JY,{Q, q-' - Ö). Define the mapping Ф: 
k^O k=0 

: N^j^iQ ^ СЩ и Y,{Q, q - i - ^) X (0, (7 + 1) b,), X x R"- x X), ${^) = Ф^, 
k = 0 

where Ф̂  = Ф(с)М U >;(c^o), ^~ ' - ^) x (0, 0' + 0 ^/)- ^У Lemma 3 еиф n z1. 
k = 0 

Denote M,-,.̂  = {̂  еЯ,у^(^о) | ЧС) n J } . From [4, Theorem 19.1] it follows that 
the set Mijq is dense in Nijq(^o)' Therefore, there is a (̂  G N^7.̂ (̂ 0) close enough 

to ^0 such that Ф(|) n A, Since Ф(^)/М U >;(l), 2q-') x [jb,- - (5,, (7 + 1) b, -

- ^.l = Ф л - i f â / M и Î ; ( I ) , 2 « - ' ) X [jb, - ô.„ {j + l)b, - Ô;], so I 6 G^, and 

the density is proved. 

From [4, Theorem 18.2] it follows that the set M^j^ = (cf бАГ,.у (̂̂ о) | ^(c) n A 

on the set N{ \J У,(|), 2q-') x [jb^ - ^,., (7 + 1) fe^ - ^J} is open in N^JX^O) 
k = 0 

and therefore in Gl.{A,X), too. Since the set G^. is open in G''{A,X), the set M.-ŷ  
is open in G^A^X). 

Proposition 1. The set G'^{A,X) (r ^ 1) is residual in G''{A,X). 
к oo 

Proof. Define the sets Нщ = f) Ĝ ĝ, К}^^ = \J Нц,^. The set К,,^ is open in 
00 00 00 

G''(X, X). Since G''(^, J^) = и G2,(^, X), so K,, z. U Я , , , = U G^^^, ^ ) = 

= G\A,X), i.e. the set iC;̂ ^ is dense in G'{A,X). Therefore the set G'^{A,X) = 
00 

= П Kj^q is residual in G\A, X). 
k,q=l 

2. POINCARÉ MAPPING 

Let с e G\A, X), aQE A, XQGX and let 7 be a closed orbit of Cao through XQ of 
a prime period TQ. Let (U x F, a x j5) be a chart on Л x X at («o, XQ) such that 
if (Ja X ̂  is the local representation of ^ with respect to this chart, then ^^ ̂  (̂O, 0) = 
= (1, 0), where a(ao) = 0, ß{xQ) = 0. The existence of such a chart follows from 
[4, Theorem 21.6]. 

Let I" c: X be an (n — l)-dimensional submanifold of X such that ß{V n Z) = 
= {{Уи У2,..., Уп) e ß{V) I J i = 0}. Then p^ о jS о ср\(а x jß)" ̂  (0, 0), То] = О, where 
Pi : R X R"~^ -> Я is the projection. The implicit function theorem implies that 
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there is an open neighborhood W = V^ x V2 of {UQ, XQ) in A x X and a С function 
T : Fl X F2 -> i^ such that p^o ßo cp\a, x, т(л, x)) = 0 for all x e V^ x V2 and 
т(ао» ^o) = T̂o- Define the mapping L:V^ x F2 -^ Z, L{a, x) = (p%a, x, т{а, x)) for 
(a, x ) e F i X F2. Let H = LJV^ x (F2 n l ) . We shall denote this mapping by 
Я[(^, ÜQ, Xo, 7, Fl X (F2 n I ) ] , too. The mapping Я is called the Poincaré mapping. 

Now, define the mapping Ä : Fi x (F2 n Г) -> I x Г by Й{а, x) = (x, Я(а, x)) 
for (a, x) e Fl x (F2 n I ) . Obviously, A{l) = {(x, у) e Z x Z | x = j } is a closed 
submanifold of Г x Г of dimension n — L 

Lemma 5. / / ^ e G^,, (^o, Xo, to) G N ( U П ( ^ ) , 2^ '^) X [7b, - (5,, (y + 1) b, -
k = 0 

- ôi], then Й ГЛ^ао,хо) ^ ( ^ ) -

Proof. Since с e G'y ,̂ so Фjq-l{C) n J . Let Я(ао, XQ) e zl(2;) and let ((7 x F, a x jS) 
be a chart on Л x X at (^o, XQ), a(ao) = 0, i9(xo) = 0 such that if ĉ ax̂  is the local 
representation of <J, then ^«x^^» 0) = (1, O). Using the condition for the transversality 
of the mapping ^y^-i(^) in this coordinates, it is easy to prove the assertion of Lemma 5. 

Corollary. Let ^ e G]j^, (^o, Xo, To) EN{ U П ( ^ ) , 2q-') x [jb, - Ö,, {j + 1) b, -
k = 0 

— (5;] ^nJ /e^ ^/lere ex/5^ a closed orbit of ^„o through XQ of a prime period TQ. Then 
Й~^(А{1)) is a closed 1-dimensional submanifold of V^ x (F2 n I) for V^ x V2 
sufficiently small neighborhood of {a^, XQ). 

3. CONSTRUCTION OF A VECTORFIELD TO A GIVEN PERTURBATION 
OF POINCARÉ MAPPING 

Lemma 6. Let ^ e G^{A, X), {CIQ, XQ, Xç^e A X X X R and let y be a closed orbit 
of the vectorfield ^^o ̂ f ^ prime period TQ. Let Fj x F2 be an open neighborhood 
of (^0, Xo) in A X X such that the Poincaré mapping H = Я[^ , «о» ô> 7> ^1 x 
X (F2 n I")] {Н{а, x) = cp{a, x, т(а, x)) for (a, x) e Fi x (F2 n I), where cp is the 
parametrized flow of ^) /5 defined. Let Wi be an open neighborhood of ao in A such 
that Wi cz Fl and let W2 be an open neighborhood of XQ in X such that W2 c: F2. 
Let Hi = HJWi X {W2 n I). Then there is an open neighborhood U{Hi) of the 
mapping H^ in C''{Wj^ x (W2 n 2"), I) such that for every H^ e U^H^) there is 
ale G\A, X) such that ф{а, x, т(а, x)) = Hi{a, x) for all (a, x) G Ж 1 x (W2 n Z), 
where ф is the parametrized flow of I. Moreover, I depends continuously on Н^. 

Proof. Let Si, Б2 be real numbers. Define the following sets: 

Ti = ri(Êi, £2) = {{a, y)eAxX\y = (p{a, x, t), (a, x) e Fi x {V2 n I), 

fii < r < т(а, x) + £2} J 

T2 = Г2(£1, £2) = {(i". t, z) I ß-\0, z) e F2 n Г, oc-\ß) G Fl, £1 < r < т{а, x) + £2} , 
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where (U x V, ce x ß) is a chart as in the definition of H. Let т^ : oc(V^) x p о 
oß{V2nl)-^R be defined by т^(д, z) = т(а~^(/х), jß~^(0, z)), where p : R^ x 
X i?"~^ -> K"~^ is the projection. Now, define the mapping Ф̂ ,̂̂ ^ • ^2(̂ 1» ^ i ) - ^ 

-^ 7̂ 1 (ei, 62), Ф,,,е,(/^, t, z) = (a-^(/i), ф(а"Х//), ^^"^(0, z), r) for (//, t, z) e T2{e^, С2У 
If >Ci^O, %2 ^ 0 are chosen small enough, then (T2(xi, ^2), idj^n+i) is a chart 
on î ""̂ ^ and (TI (XI , %2)> ^xilxa) is a chart on Л x X. The local representation/ of Ç 
with respect to the chart (Ti(xi, ^2), ^^^I^J ^^^ ^he form f{in,t,z) = (1,0) for 
(A/, /, z) e Ф,_^4Г1(х1, X2)). Denote /^ = a(îFi), l2 = {t\0utu т,{^, z), г̂ e I,, 
ß~'{0, z) G Pf2 n r } , /4 = ß{W2 n Z), /3 = {z I (0, z) E/4}. Let TQ = min х^{ц, z) 
on /1 X /3 and let ^ : R^ x Я^ x jR"~^ -> Я^ be a С function such that ^ = 0 
outside Ri = / ^ x {t | |го < ^ < |го} x /31, where / ^ is an open interval in R^ 
such that / ц cz 7^, /3^ is an open set in JR""^ such that /31 с / 3 , !F = 1 on the set 
^0 = ^10 ^ {^ I T ô < t < fro} X /30, where / ^ is an open interval in R^ such 
that /JO С / i i , /3oisanopenset in i?"~^ such that/30 c: /3 and Jo'̂ '̂̂ ^ *P(/i, s, z) ds = 
= 1 for (/I, z) G/i X /3 . Denote В = {g e C{l^ x I2 x / 3 , R"~^) \ g{ß, t, z) = 
= ^(ju, r, z)/ï(/i, z), heC''{l^ х / з , / ^"~^)} . Б is a closed, linear subspace of 
C ( / i X I2 X / 3 , Я"~^) and hence it is a Banach space. 

Let (Pt,g{l^, z) = z + j'o g{ii, 5, (p,,g{ii, z)) ds for (//, ,̂ z) G /^ x /2 x /3 , б' G Б 
{ч>{.,д) is the flow of 0̂ ). Define the mapping ^ : В -^ C{l^ x /3 , Я " ' ^), «^(^r) (/i, z) = 
= <p̂ j(̂ ^ j,)^(^, z) for б^GБ. Let ideC^I^ x I^,R"~^) be defined by iJ(/i, z) = z 
for all (/I, z) G/i X /3 , while П e С{1^^ x /2 x / 3 , i^""^) is defined by Я(//, Г, z) = 0 
for all (//, r, z) G/i X /2 X /3 . Obviously ^(П) = id. 

Let 

s->0 S 

be the Gateaux diff'erential and let D^(g, h) be the Frechet diff'erential of J^. 

Sub lemma. If g.he C{l^ x /2 x /3 , R""^), then 

(1) dJ^(ör, /г) ex/s^5. 
(2) The mapping 

d^ : cXh X /2 X /3 , Я"~^) X ^-(/1 X /2 X /з , JR""^) -> C^Ii x /3 , K""^) 

f5 uniformly continuous in g and continuous in h on the set K{o) = {w G Б | ||w|| < 
< ОТ), (er > 0) with respect to the С metric on C^I^ x /2 x /3 , R"~^). 

Proof. Denote Q{t, 5, //, z, g, h) = (pt,g+sh{ß^ Ю - (Pt,g{^^, z). (d/d/) Q{t, s, ц, z, 
g, h) = g{fi, t, (pt,g+sh{f^^ z) - d{ß^ t, (pt,g{fi, z) + sh{ß, t, (Pt,g+sh{f^. z))' Let 

K, - sup 
/ 1 X / 2 X / 3 

(/i, ,̂ z) iC2 = sup 
/ l X / 2 X / 3 

X3 = sup Ti(/x, z) . 
/ 1 X / 3 

^(iW. V, ф, ,^+,й(у, z ) d v 
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Then by Gronwall's lemma 

(*) II Q{t, s, li, z, g, h)\ й sK for (/X, t, Z)EI^ x I2 x I^, 

where К = K2 ехр(Х1Кз). Therefore Q -^ 0 if s -^ 0 uniformly with respect to 
(//, t, z ) e / i X /2 X /3 . Using [7, Theorem 8.6.2] we have 

d̂  
dt 

Q{t, s, n, z,g,h) = \-~ g{jd, t, (pt,g{l^, z)) + œl Q{t, s, j^i, z, g, h) 

+ 5/l(/i, t, (pt,g + sh{l^, z)) , 

where со = co(ö) is a matrix function such that if e > 0, then there is a ^ > 0 such 
that ||co(ö)|| < e for | |ß | | < Ô and (ju, t, z)ely x /2 x /3 . 

Denote X(t, s, fi, z, g, h) = Q{t, s, ^i, z, g, h)\s. Then 

(**) — X{t, s, /I, z, g, h) = — éf(Ai, t, (pt,g{l^, z)) X(r, 5, fi, z, ,̂ , /7) + 
dt dz 

+ 7 + /2(A(, ^ (Pt,g + sh{ß^ ^) . 

where 7 = (co/5) Q. 
Using (*) we have y ^ ^ | | ^ | and so 7 -> 0 if s -^ 0 uniformly. Denote by 

Qo(t, fi, z, g, h) the solution of the equation 

(***) ~~ = "- 9{^, t, (p,^g{^, z)) y + /Î(A^, Г, Ф,,^(/1, Z ) ) 
dr ^z 

for which the condition Qo{0, /л, z, g, h) = 0 is satisfied. Since 7 -> О if 5 -> О 
uniformly and the equalities (**), (***) are satisfied, so lim [ ß (^ 5, /г, z, ^, /i) — 

s->0 

— ôo(^ -̂ j /̂ » ̂ ? 9^ hj] = 0 uniformly in the C^ metric. The convergence in the С 
metric can be proved similarly. Since d^(g, h) (//, z) = ÔO('^I(M» )̂5 i"? 2:, Ö', ^0' ^^ 
dJ^(ö^, /z) exists. Since Qo{t, s, 1л, z, g, h) is a solution of the differential equation 
(***), the form of this equation implies the assertion (2) of Sublemma. 

By [8, VIII., Theorem 2] and by Sublemma D^{g,h) exists and D^{g,h) = 
= d^{g, h) for g, h e K{a). D^{g, h) = ^'{g) h, where ^'{g) e L{B, C{I, X 
x / 3 , jR"~^)). The mapping g-> ^'{g) is continuous and bounded in a neigh

borhood of Я е Б . Let h^eB. Then there is an h^ ^C\l^ x / 3 , Я"~^) such that 
/io(/i, r, z) = 4^{ii, t, z) h,{fi, z) for (/i, и Z)EI, xl2X / 3 . [J^ ' (^) (^0)] (/̂ , ^) = 
= Hm (1/s) [ J^(n + 5/zo) (A ,̂ Z) - J^(n) (A(, Z) ] = fo'̂ '̂ '̂ ) ^(/z, (X, z) /zi(/i, z) dtr = 

s->0 

= /ii(jU, z) and so ^'{n) is a linear isomorphism of В onto ^ ( / 1 x / з ,К""^) . 
е^(Я) = ïJ. The conditions of [8, Theorem 10.2.5] are satisfied. By this theorem 
there is an open neighborhood N of the mapping id in Oij^ x / 3 , R"~ ^) and an open 
neighborhood N of the mapping П in C{l^ x /2 x /3 ,^""^) such that Ĵ /ЛГ is 
a dififeomorphism of N onto M, U^ = {(a, (p(a, x, t)\ — x < t < x, (a, x) G F^ x 
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X {V2 n I)}, W,, : U, -^ K"^S il/,,{a, (p{a, x, t)) = (a(a), t, z), where ß' '{0, z) = x, 
Ух = {ф(«о. »̂ 0 I '^(^0. x) - X < t < т(ао, x) + X, («0, x) e F, x (F2 n l)}, ^2x • 
: F;, -^ Я", ^2х(ф(«о» »̂ 0) = ( '̂ ^)' i5~4^' ^) = ^' X > 0. If X is chosen small 
enough, then {U^, W^^) is a chart on Л x X at («o, ^o) and {V^, W2,,) is a chart 
on X at XQ- Let h^ il^ x /3 -^ i^""^ be the local representation of H^ with respect 
to ( l /„ ^1,) , (F,, ^2.) . Then /ii = iJ. Let U{H,) = {F e C^W, x (PF2 n l ) , Z) | 
J F e M } , where P is the local representation of H^ with respect to [U^, 4^iy), 
(V^.^iy)' Then h^eM and 6̂ 1 = i^"^(Äi) is such that ф,̂ ^̂  ,)^^,(/z, z) = z + 
+ Го̂ ""'̂ ^ di{f^^ V, (Py,3,(/̂ ' ^)) dv = ^i(i"' ^) for (/i, z) e / i X /3 , where 6^i(/i, t, z) = 
= *P(ju, t, z) /Zj(/i, z). Since ^ = 0 outside R^ (R^ is defined on the p. 75), so g^ = 0 
outside R^. Let g e C^I^ x /2 x /3 , R") be defined by g{^^ t, z) = ( l , gi{ix, t, z)) 
for (/г, ^ z) e / i X /2 x /3 . We can define a parametrized vectorfield ^ such that ^ 
is the local representation of ä, with respect to the chart {T^{x^, X2), ^x^xi) ^^^ 
I = Ç outside Ti{x^,X2). From the properties of g it follows that ^ЕС(А,Х). 
The construction of ^ yields: (1) ф(а, х,т{а, x)) = Hi{a, x) for [a,x)eWi x 
X (Ж2 n I"), where ф is the parametrized flow of ^. (2) For every neighborhood 
F((^) of (̂ , there is a neighborhood [/(Hi) с ЩН^) of the mapping Я^ in C^W^ x 
X (ÎF2 n I ) , Z) such that if H^ e (/(Я^), then there is a | G U{^) such that 

<p{a, X, т(а, x)) = H^[a, x) for (a, x) e ÎF^ x (PF2 n I") and ä, depends continuously 
on H,. 

Remark. Let H : V^ x (F2 n Z) -> Z be the Poincaré mapping and let Й : V^ x 
X (F2 n I") -> I" X Z be the mapping given by H(a, x) = (x, H(a, x)). Let A(l) 

be the diagonal in I" x 2;. Denote Z = Й~\А{1)\ W(Z, i) = {{/л, t, z) \ {oi~\ii\ 
ß~\0, z)) e Z, 0 ^ r ^ Ti(/i, z). We can choose the function W from the proof of 
Lemma 5 such that ï ' = 0 on W(Z, ^). Then for every a e A, the vectorfield ^̂  has 
the same closed orbits as the vectorfield ^a-

Let ^ e G^A, X) and let 7 be a closed orbit of the vectorfield ^^o through XQ of 
a prime period TQ. Let Я = H\_^, ÜQ, XQ, y, Fj x (F2 n l)~\ be the Poincaré mapping. 
For aeV^, define the mapping Я^ : F2 n Г -> I , Hj^x) = H{a, x) for x e F2 n I . 
Denote by Gs{A, X) the set of all ^ e G"^{A, X) such that the mapping T^ßao ' 
: T^Jy2 n I) -^ T^^I has the following properties: 

(1) It has no eigenvalue on 5 = {Я e С | JA| = 1} of multiplicity ^ 2 . 
(2) All eigenvalues of this mapping meet S transversally at (ÖO? ^o)-
(3) If a complex eigenvalue of this mapping lies on S, then there is no other eigen

value on S except of its complex conjugate. 
(4) It has no complex eigenvalue Я such that Я'" = 1 for a natural number m > L 

Remark. The condition (2) means the following: If ÀQ is an eigenvalue of Т̂ Я̂до» 
ÀQ e S, then there is an open neighborhood of (ÜQ, XQ) in Z ( Z = H~^{A(l))) and 
a unique С mapping X : N -> R^ such that Я = (Я^, Я2), Я(а, x) = Ài{a, x) + 
+ ^2(0, x) is an eigenvalue of the mapping Т^Н^ for (a, x) e N, Я(ао, XQ) = Яо 
and Я rs {{ft,, ^2) ER^\fil+ fil = 1}. 
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Denote by G]j.JS) the set of all i e G'j^ such that if for {UQ, XQ) e N ( (J ^л(^), 2(? ' ) 
fc = 0 

there is a closed orbit of the vectorfleld ^ao through XQ of a prime period TQ e [jbi — ̂ ,> 
(; + l)bi - ôi'], then the mapping T^o^ao ^^^ ^^^ properties ( l ) - ( 3 ) from the defini
tion of the set G's{A, X) and has no complex eigenvalue such that Я'" = 1 (m being 
a natural number). 

Lemma 7. T/ie se^ G\j^J^A, X) is open and dense in G^^. 

Proof. Openness. Let ^o ^ ô'̂ mC*̂ )- From [5, Theorem 3] it follows that there 
is a 5i > 0 and an open neighborhood NIJJ^^Q) of ^o in G^^.^A^X) such that for 

^ eiV,,.,(^o), iV( Ù Y,{^), Iq-') c= N( U П(^о), Ч~' - à) where 5 > ^, and 

N,.,.,(^0) с G^,. Now, define the mapping Ч': N^j^Q ^ a-\N{\jY,{Q, 

q-' -ö)x {0, {j + 1) bi) X L{T{X), T{X)) {L{T{X), T{X)) is defined in [4, §9]), 

•P(^) = W^, where f^(a, x, t) = T>«,.„), ^« = ,p« | iV( U Y,{Q, q'' - Ô) x 

X (0, (; + 1) b,), Ф1„,У = ф%а, у, t) for y e N ( и Y,{Q, q'' - ô). 
k = 0 

Let W с L(T(JJf), T(;^)) be the set of all В e L{T{X), T(X)) such that 

(1) В E L{T^X, T^X) for some xeX; 
(2) В has eigenvalues on S (different from 1) of multipHcity ^ 2 . 

The set W is a closed subset of L{T(X), T(X)). By [4, Theorem 18.1] the set 

K,j^ = {ieN,j^{Q I {^(5) {N{ и y,(^o), ^ " ' - ^) X [jb, - ^,, (j + 1) b, - (5J} n 

n ж = 0} is open in N^^(^0). Therefore, there exists an open neighborhood Nijq{^o) 

of ^0 in Gl{A,X) such that for ^eN^j^Q, {Це)[М{[] Y,{^),2q-') x [jb, - (5,, 

(7 + 1) bi — ^/]]} n Ж = 0 and this proves the openness of (l). The openness of (4) 
can be proved similarly. The openness of (2) follows from [4, Theorem 18.2] and the 
openness of (3) is clear. 

Density. Let ^ G G ^ „ (ao, Xo, То) e iV( U Y,{^1 2q-') x [jb, - Ô,, {j + 1) b, - Ô,] 
k = 0 

and let 7 be a closed orbit of the vectorfleld ^^o through XQ of a prime period TQ. 
Let H = H[^, 

0̂» ^0? 7? ^1 X (F2 П ij] be the Poincaré mapping such that Z = 
= H~^{A(Z)) is an open 1-dimensional submanifold of V^ x (V2 ^ ^)- Let W^ x W2 
be an open neighborhood of («0, XQ) such that îFi x W2 c^ V^ x F2. By [3, Theorem 
2] there is an F e CÇW^ x (PF^ ^ ^) , ^) arbitrary close to HJW^ x W2 such that 
for (a, x) e Ж1 X (Ж2 n I ) the mapping T^F^ (F^>^) = F{a, y)) for >̂  6 Pf̂  n I ) has the 
properties (1) - (4). By Lemma 6 there is a (̂  G G'^(A, X) such that Я[^ , «о, XQ, 7, Ж1 x 
X {W2 n I ) ] = F/H^i X (VF2 '^ ^ ) ' where 7 is a closed orbit of iao close to у which 
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can be constructed arbitrarily close to (̂  if F is close enough to HJWi x {W2 n I). 

Since the set N{ (J 7^(^), 2q )̂ x [jbi - ôi, (j + 1) fo^ -„ Sß is compact, the proof 
k = 0 

of Lemma 7 is complete. 

Proposition 2. The set Gs{A, X) (r ^ l) is residual in G'{A, X). 

The proof of this proposition follows from Lemma 7 analogously as Proposition 1 
from Lemma 4. 

For ^ G С(А, X) denote by Pi{0 the set of (a, x) e A x X such that the vector-
field ̂ a l̂ ŝ a closed orbit through x of a prime period т and Я = 1 is the eigenvalue 
of the mapping T^(P(^^a) o^ multiplicity 2. Let ^2(0 ^^ ^̂ ^ ^̂ ^ ^^ (a, x) G Л x X 
such that Д = — 1 is an eigenvalue of the mapping T^cp^^^^y 

Let (̂  G O^^^(S), (ao, XQ) G Pi{^). Then there is a chart (U x V, a x ß) on A x X 
at(ao, Xo) such that a(ao) = 0, Д(хо) = 0 and the local representation of the mapping 
H = Я[^, ÛQ, Xo, y, Fl X (F2 п г)] with respect to this chart has the form 

У2 = >'i + oCi/x + а2у1 + ш(//, j i , Zi) , Z2 = Bz^ + X(fi, y^, Zj) , 

where dim y^ = 1, dim z^ = n — 2, a),X e C\ X(0, 0, 0) = 0, ш(/(, j^i, O) contains 
only /x ,̂ /гу| and terms of higher order than 2 and В is a matrix which has the fol
lowing properties: 

(i) В has no eigenvalue on S of multiplicity ^ 2 . 
(ii) If a complex eigenvalue of В lies on S, then there is no other complex eigenvalue 

on S except of its complex conjugate and Я = 1. 
(iii) В has no complex eigenvalue À such that A"* = 1 for a natural number m ^ 2. 

Let D/jq^ be the subset of С у̂̂ ,„(5) such that for all £, e D^j^^^ the matrix В from the 
expression of the local representation of H has no complex eigenvalue on S' and 
Я = — 1 is not an eigenvalue of JB. This set is open and dense in G^^ .̂ The openness 
is obvious. To prove density we assume £, e D^j^^. We change H into H by changing 
the term Bz^ in the local representation of Я into (B + W(fi, yi, z^) SÉ) Zj, where E 
is the unit matrix, W is a С bump function vanishing outside (a x ß)(U x V) 
and equal to 1 at a neighborhood of (0, 0, O), 0 < ^ is a real number such that 
В + ÔE has no complex eigenvalue on S and Я = — 1 is not an eigenvalue of В + ôE, 
By Lemma 6 there is a J such that for every a e A the vectorfield ^̂  has the same 
closed orbits as 4 , Я[ | , ад, XQ, у, Vi x (F2 n Ej] = H and | can be constructed 
arbitrarily close to ^ if <5 is sufficiently small. ---̂ -̂̂ .̂ _̂-̂ ,̂ -̂̂ _̂̂ .̂ _̂ .̂ ^ 

Denote by L^^^ the set of all ^ e В\^^^ such that if («o, XQ, to) e iV( (J Ш\ 2^" ̂ ) x 

>< b^i ~~ ^h 0 + 1) bi - ôi] and y is a closed orbit of «̂Q, then there is a chart 
(U X V, a X ß) as before such that 062 Ф 0. 

Lemma 8. The set L̂ ^̂  (r ^ 2) is open ani dense in С(^А, X)-
The proof of this lemma is analogous to the proof of Len r̂na 7. 
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^ 00 

Define the set G2{A, X) = f) n ц, p , 

forO 
, n I)] define the sets Z,{H) =. ((«, ^) ^ p.̂  ^ ^^^ ^ ^^, ^.(^.^ ^ ^̂  ;̂̂ ^>^ ^ ^ 
< j < fc} Д = 1, 2, ..., where НЦх) = я,(х) = Ща, x), Н^х) = Я , ( я Г Ч^))-

Theorem 1. There is a residual set G^^,X) (r ^ 2) /n С̂ 'СЛ, J)̂ ) swc/z that the 
following is true: If ^ e С\{А, X), then 

(1) the set Pi{C) consists of isolated points. 
(2) / / (^0, Xç^e A X X, y /5 a closed orbit of the vectorfield ^ao through XQ, then 

there is a chart (V^ x V2, h^ x h2)on A x X at (ÖQ, XQ), /ÎI(OO) = 0, /i2(xo) = 0 
such that 

(a) the Poincaré mapping H = Я[6 ô» ô» У? ̂ i x (^2 '^ ^)] ^̂  defined and 
Zi = 21(Я) /5 a I'dimensional submanifold of A x X. 

(b) //(^0, xo) e Pi(^), f/î n (/zi X /12) (21(Я)) = {(/i, j ^ , y„ ..., >̂ „) | /г = (po(yi), 
j ; . = (р^[у^), / = 1, ..., П, j i G J}, w/iere J /5 an open interval, 0 e J, (p^e C^ 
1 = 0 , 1 , . . . , " , 

dj i d^i 

(c) If fi > 0, then there are exactly two numbers y^ > 0, z^ < 0 such that 
(ai,xi) = (/zi X h2)-'{^i,yuO)eZ,{H),{a,,X2) = {h, x /i,)"^ (/1, z^, 0) G 
eZ^{H) and the following is true: If s is the number of eigenvalues of the 
mapping T^-^H^^ with moduli >1 , then the number of eigenvalues of the 
mapping T^J^^i ^'^^ moduli >1 15 5 — 1. 

(3) / / {a, x) 6 Pi(^), then the mapping T^H^ has exactly one eigenvalue equal to 1. 
(4) Fi X (F2 гл I) — Z^{H) contains no invariant set. 

Proof. It is possible to prove this theorem by virtue of Lemma 6 and using the 
results of P. BRUNO VSKY [3], who has proved a similar theorem for one-parameter 
families of diff*eomorphisms. 

Let ^ E GljqmiS), {aQ, XQ) E Pzi^)- Then there is a chart (U x V, oc x ß) on A x X 
at (^0, XQ) such that a(ao) = 0, ß{xQ) = 0 and the local representation of the mapping 
Я = Я[^, flo, XQ, y, Fj X (F2 n r)] with respect to this chart has the form 

У2 =" ~ Ji + 0СФУ1 + СС2У1 + y^yl + ш(//, j^i, z i) , 

Z2 = Czi + X{iii, У1, Z i ) , 

where dim y^ = 1, dim z^ = n - 2, œ,X E C, X{0, 0, 0) = 0, co(ju, Ji , 0) contains 
only fi^, jwji and terms of higher order than 2 and С is a matrix which has the 
properties (i)~(iii) as the matrix В above (see the case («o, XQ) E PI(^)) . 

Denote by M^^^ the set of all ^ e G^g^(5) such that the matrix С from the expres-
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sion of the local representation of H has no complex eigenvalue on S and X = 1 
is not an eigenvalue of С By the same argument as in the case (GQ, XQ) e Yi{^) the 
set M^jq^tt is open and dense in G]jq^(S). Denote by N^j^^ the set of all ^ e M^j^^^ such 
that a2 + 7i Ф 0. This set is open and dense in G\A, X). Therefore the set Оз(Л, X) = 

сю 00 

= n и ^'у,ш is residual. 
j,q,m= 1 i = 1 
Using [3, Theorem 4] and using our method of construction of vectorfields to 

the Poincaré mapping, it is possible to prove the following theorem. 

Theorem 2. There is a residual set ff'^{A, X) (r ^ 3) in ^{A, X) such that the 
following is true: For ^ e СЦЛ, X), 

(1) the set P2{^) consists of isolated points. 

(2) / / («0, XQ) G P2{C) cind H = Я[^, «о» 0̂» 7» ^i x (^2 ^ ^)] '^ ^^^ Poincaré 

mapping, then Z2 = 2^2(Я) is a 1-dimensional C'^ submanifold of A x X. 

(3) Vi X (У2 П r ) — (Zi u Z2) contains no invariant set. 

Let T be a positive real number and let G\A, X, T) be the set of ^ e G\A, X) 
with the following properties: If 7 is a closed orbit of the vectorfield ^a {^ ^ A) 
through X of a prime period т ^ T and H = Я[(^, a, x, y, V^ x (F2 n Г)] is the 
Poincaré mapping, then 

(1) y is A-transversal, 

(2) the mapping T^H^ {Ha{x) = H{a, x) for x G F^ x (F2 n I)) has the properties 
( l ) - ( 4 ) from the definition of the set G'siA, X). 

(3) a) If (a, x) G Pi{0, then T^H^ has no complex eigenvalue on S and has not the 
eigenvalue X = —1. 

b) The Poincaré mapping H = Я[^, a, 7, V^ x (F2 n Z)] has the local represen
tation as on p. 79, where 0C2 Ф 0. 

(4) a) If (a, x) G P2(^)> then T^H^ has no complex eigenvalue on S and has not the 
eigenvalue Я = 1. 

b) The Poincaré mapping Я = Я[(^, a, x, y, F^ x (F2 n I")] has the local repre
sentation as on p. 80, where al + 7 1 ф 0. 

(5) The mapping T^H^ has no complex eigenvalue Я such that Я"" = 1 for a natural 
number m < [Т/т], where [z] denotes the greatest integer strictly less than z. 

For ^ G G^A, X) denote by P^{^, T) (РгС^, Т)) the set of {a, x) G Pi(^) ((a, x) G 
G P2(^)) such that the closed orbit of the vectorfield ^̂  through x has a prime period 
TUT. 

Let Yo{i) = {(a, x) G Л x X\ ^{a, x) = 0^} for ^ G G''(y4, X), where 0,, denotes 
the zero of the space T^X. For {a, x) G УО((^) denote by Цх) : T^X -^ T^X the 
Hessian of the vectorfield ^̂  at x ([4, § 22]). 
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Let G''^(A, X) be the set of all ^ e G''(A, X) with the following properties: If (a, x) e 
e Yoii), then 

(1) if the mapping ^^(x) has an eigenvalue 0, then it has multiplicity 1, 
(2) if ia{^) has a complex eigenvalue with zero real part, then it has multiplicity 1, 
(3) if |д(х) has an eigenvalue 0, then it has no complex eigenvalue with zero real part. 

By [1, Theorem 1, Theorem 2] the set G^yl ,^ ) is open and dense in G^A, X). 
Let G\{A, X, T) = G\A, X, T) n G\{A, X). We shall prove the following lemma. 

Lemma 8. The set G\{A, X, Т) (r ^ 3) /5 open and dense in G\A, X). 

Proof. Density follows from G\{A,X,T) :D G'2{A,X) ел G'^{A,X) гл G\{A,X). 
Now, we shall prove the openness. It suffices to prove it for the set GĴ (yl, X, T) = 

00 

= Gl{A,X) n G\{A,X, T), because G\A,X, T ) = (J G2,(yl, X, T), where {L,}r=i 
i = l 

is an increasing sequence of positive numbers such that hm L̂  = +co. If ce 
i-*oo 

e G\{A, X, T), then by Lemma 1 for a e A every closed ojbit of the vectorfield ç^ 
has a prime period ^ b, where b = 4JL. 

Let Ф : G'iA^X) -> C{A x X x R-", X x R^ x X) be the mapping defined 
on p. 71. The properties (l) —(5) of the set 0''(Л, X, Т) together with the properties 
( l ) - ( 3 ) of the set G'^{A,X) imply that if ^o^G\{AX,T\ then Ф{^о)г^Л on 
A X X X [b, T ] . By [4, Theorem 18.2] there is an open neighborhood iV(^o) of ^0 
in G\{A, X, T) such that Ф{0 n A on A x X x [b^T] for ^ЕМ{^ and this yields 
the openness of the property (l). 

Let L{TX) : L{T{X), T{X)) -> X x X be the Hnear map bundle defined in [4, § 9], 
whose fiber over a ponit (x, y) e X x X is the Banach space L(T^X, TyX) of con
tinuous hnear maps from T^X into Г Д , i.e. L{T{X), T{X)) = \J L{T^X, Т Д ) . 

Let Wi {i = 1, 2, 3) be the set of all A G L{T{X), T{X)) such that 

(H) A e L{T^X, T^X) for some xeX, 
(HI) AeW^ has the eigenvalue 1 = — 1 of multiplicity > 1 , 
(H2) AeWi has a complex eigenvalue on S of multiplicity > 1, 
(H3) AeW^, has a complex eigenvalue X such that X^ = \ for a natural number 

к < [Т/Ь]. 
ki 

By an argument similar to [4, Theorem 30.2], Wi = \j Wij (г = 1, 2, 3), where Wif 
j = i 

are submanifolds of L(T(X), T(X)) and Wi (/ = 1, 2, 3) are closed. 
Define the following mapping: 
Ф' : G'{A,X) -> C-\A X X X R + ̂  L{T{X), T{X)) for ^ e С^(Л,Х), Ф'(^) = ^ç 

for ^ G G'{A, X), where Ф^(а, x, t) - T^c^f,,,), (a, x, r) G Л x X x Я"^, (?)f,,«)(x) = 
= (p\a, X, t), (p^ is the parametrized flow of ^. The mapping Ф' is a C " ^ 
representation. 
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Let ^0 e G\{A, X, T), From the properties ( l ) - ( 4 ) of the set G\A, X, Т) and from 
the properties ( l ) - ( 3 ) of the set G\{A, X) we obtain that Ф'(^о) {A x X x \b, T]) n 
n VF, = 0 for i = 1, 2, 3. Since Л x Z x [b, T] is compact and W^ {i = 1, 2, 3) 
are closed, [4, Theorem 18.2] implies that there is an open neighborhood NI{^Q) 
in G\{A, X. T) such that Ф'(^) (^ x X x [b, T]) n Ж, = 0 for i = 1, 2, 3, !^ e 
ENI{^O). This estabhshes the openness of the properties (2) —(5) except of the open
ness of the property that there are not two eigenvalues of T^H^ on S and that a2 Ф 0 
(«2 + 7i + 0). It is clear that if (a, x) e Pi{^o^ T) {{a, x) e P2(^o. T)), then there is 
a neighborhood (7 x Fof (a, x) in A x X and a neighborhood N2(^0) such that for 
all ^ 6 iV2((̂ o) the sets P^{^, T) a U x V{P2{i, T) Œ U x V). Let (ä, 3c) e P,{^, T) n 
n(U X V) and let y be the closed orbit of ^^ through x. Since (̂ 0 ^ ^ i ( ^ ' ^ ' ^ ) ' 
so for N2(^0) sufficiently small, the Poincaré mapping H = Н[^, a, x, y, U x 
X {Vn Ij] has the form as on p. 79 (p. 80) such that a2 Ф 0 (a^ + yi Ф 0) and T^H^ 

has no two eigenvalues on S. Since Л x X x [b, T] is compact, the sets Pi(^o» 7"), 
P2((^OJ '^) are finite and the proof of Lemma 8 is complete. 

The following theorem is a consequence of Lemma 8: 

Theorem 3. There is an open, dense set G'^^i'^^ ^> ^) ^^ G'^^A, X) (r ^ 3) such that 
ifieG'2{A,X,T), then 

(I) Pi(^, T) and P2{L T) are finite. 

(II) / / («0, XQ) E A X X and у is a closed orbit of the vectorfield ^ao through XQ 
of a prime period т ^ T, then the properties (2) —(4) of Theorem 1 and the 
properties (2) —(3) of Theorem 2 are fulfilled. 
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