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INTERPOLATION IN A BANACH SPACE 

JAROSLAV MILOTA, Praha 
(Received March 25, 1974) 

1. INTRODUCTION 

Let £ be a Banach space and let Ф be a Hnear subspace of its dual space £*. A Hnear 
subspace Lcz E is said to be Ф•^interpolative if for every x e E there exists one and 
only one y E L such that <x, (рУ = {у, (ру for all cp E Ф. If it is this case we denote 
by JL the operator J^ : x -^ y. It is obvious that J^^ is a projection onto L. 

In Section 2 we shall prove some simple conditions on L in order to be Ф-inter
polative and closed (in this case Jj^ is continuous). If Ф is a finite dimensional sub-
space of a reflexive space E we shall show that there exists a Ф-interpolative subspace 
with smallest possible norm of J[^ and in such a way we shall generalize a result 
due to AUBIN [1]. We shall also give a dual interpretation of this fact. 

To relate the notion of Ф-interpolative subspace with the notion of the n-width 
(see e.g. [5], [6], [9]) we define for M с £ and a Ф-interpolative L 

(1) сГф{М, L) = sup IIX — Ji^x\\ 
xeM 

and 

(2) сГф{М) = i n f (7ф(M,L) , 
L 

where the greatest lower bound is taken over all Ф-interpolative L's. We shall say 
that аф{М) is the Ф-interpolative width of M. Using a similar method to that of 
GARKAVI [4], who has proved the existence of the best n-dimensional approximation 
for bounded M, we shall prove in Section 3 that this fact is valid in a reflexive space E 
also for the Ф-interpolative width if the dimension of Ф is finite. 

2. Ф-INTERPOLATIVE SUBSPACES 

Throughout the paper we shall use the following notation: If L ci £ then L^ = 
= { / G £ * ; < X , / > = 0 for all xeL}, if Ф с £* then Ф_L = {x e E; <x, ф> = 0 
for all (p еФ]. ït is easy to prove that L^ is a w*-closed subspace of £* and Ф^ is 
a w-closed subspace of £. 
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Lemma 1. Let Lbe a linear subspace of E. Then {L^)± is the closure of L. 

Proof. It was noted that {L^)i is w-closed and therefore closed. As L cz (L"̂ )x 
it is L с (L^) ! . If there exists XQ e {L^)± \ L then, by using the Hahn-Banach theorem, 
we can find / e £* such that <Xo,/> Ф 0 and / ( L ) = 0, what contradicts XQ G (L-^)I. 

Lemma 2. Let Ф be a linear subspace of £*. Then {Ф±У is the w*-closure of Ф. 
If E is moreover reflexive then {Ф±)^ is the closure of Ф. 

Proof. It was noted that (^ i )^ is w*-closed. Let W denote the w*-closure of Ф. 
Then ^ с {Ф^^. I f /о Ф ^ then, by virtue of one theorem of Banach (see e.g. [2], 
p. 122, or [8]), there exists XQ e W^ such that <Xo,/o> = 1. The element XQ belongs 
to Ф^ and therefore /o ф (^i)"^- Thus !F = {Ф±)^' The second statement follows 
now from the first one by using the Mazur theorem. 

The following proposition yields a very simple condition for L in order to be Ф-
interpolative. 

Proposition 1. Let L be a linear subspace of E and let Ф be a linear subspace 
of E*. Then Lis Ф-interpolative if and only if E = L® Ф^ {algebraic direct sum). 

Proof. Let L be Ф-interpolative. From the definition of J^ it is obvious that 
X — JjX e Ф^ for all xeE. If XQ e L n ФĴ  then <x, ф> = < / L ^ + XQ, <p> for all 
X e E, (p e Ф. From the requirement of the uniqueness of Jj^x it follows that XQ = 0. 
Hence E = L@ Ф^. The sufficient part of the proposition is obvious. 

Corollary. Let Ф be a finite dimensional subspace of E* with a base cp^, ..., ç„. 
Then the following conditions are equivalent: 

(i) L is a Ф-interpolative subspace of E. 
(ii) There exists a base x^,..., x„ of Lsuch that 

(3) <Xi, (pj} = ôij , i,j = l,...,n. 

(iii) E = L + Ф^^ and dim L= n. 

Proof, (i) => (ii). It is a well known fact that there exists a biorthogonal sequence 
j i , . . . , y„ to cpi, ..., cpn. Put Xi = J L ^ P I = 1> •••» "• These elements belong to L, 
satisfy the condition (3) and therefore they are linearly independent. Now 

и 

OL^ - Z <̂ » я>1У ^h (pj} = 0 

for7 = 1, ..., w and all xeE. Hence 
n 

(4) «/L^ = Z <̂ » ^i> ^i 

and this proves that x^, ...,x„ form a base of L. 
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(ii) => (iii). We have only to prove the first condition. But it is obvious from (3), (4) 
that Lis Ф-interpolative. It remains to use Proposition 1. 

(iii) => (i). By the assumption on the dimension of Ф, it follows that Ф = {Ф±)^ 
(Lemma 2). Being (L/ФJ^)* isomorphic to (Ф^)^ = Ф, ^/Ф^^ is a space of the dimen
sion n. Therefore L cannot contain a proper subspace that is a direct complement 
of ФĴ . This proves that E = L@ Ф^ and, by Proposition 1, Lis a Ф-interpolative 
subspace. 

Proposition 2. Let Ф be a subspace of E*. Then a linear subspace of E is Ф-
interpolative if and only if it is (^ФJ^^••interpolative. 

Proof. By virtue of Lemma 2, it is Ф^ = 1{Ф±У^± and therefore the statement 
follows immediately from Proposition 1. 

We remark that J^ is a bounded linear operator if L is a closed Ф-interpolative 
subspace (evidently, the finite dimension of Ф is sufficient for this). This fact is a simple 
consequence of the Banach closed graph theorem. Further, it is known (see [7]) 
that there exists a Banach space E (e.g. /^„ p Ф 2) with a closed linear subspace X 
having no closed complement. Setting Z-*- = Ф we obtain an example of a w*-closed 
subspace of £* having no closed Ф-interpolative subspaces, what follows directly 
from Proposition 1 and Lemma L 

Proposition 3. Let Ф be a subspace of L*. Then a Ф'interpoJative subspace L is 
closed if and only if L* = {^lY ® '̂̂ • 

Proof. Suppose first Lis a closed Ф-interpolative subspace and l e t / e L * . As Ji^ 
is a continuous Hnear map the functional g — f о J^is an element of L* and moreover 
де^Ф^)^. Further, for xeL we have <^x, g} = {Ji^^f} = <x, /> and therefore 
f-geL\ Now, if fe{Ф^У n L^ then <x, /> = <x - J^x, /> + < /^x , /> = 0 
for all X e E. Thus / = 0 what finishes the proof of the necessity part. 

Let now the condition of Proposition be satisfied. By Proposition 2, we can sup
pose that Ф is w*-closed and therefore £* = Ф © L^. F o r / e L* we h a v e / = g + h, 
where g e Ф and h e L^. If x is an element of the closure of L it follows from the 
assumptions and Lemma 1 that <x, / > = <x, g} — (^J^x, g} = < / L ^ , / > . Hence 
X = JiX and X e L. 

Corollary. Let Lbe a closed subspace of E and Ф be a subspace of JE*. Then the 
decomposition E* = (Ф^)^ ® ^ '^ ^ necessary condition for Lto be Ф-interpolative, 
If E is moreover a reflexive space then this condition is also sufficient. 

Proof. We have to prove only the second statement. By the decomposition of £*, 
l} is a closed Ф^-interpolative subspace of £* (Ф^ is considered as a subset of L**). 
Proposition 3 and reflexivity of E yield the decomposition of E in the form E = 
= [(Фх)"^]! © {f^)L- Using now Lemma 1 and Proposition 1 we finish the proof. 
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If Ф is a finite dimensional subspace of E we need not to assume reflexivity of E 
for the validity of the last corollary because of the following proposition. 

Proposition 4. Let Ф be a finite dimensional subspace of E*. Then a subspace L 
of E is Ф-interpolative if and only if E"^ = Ф @ L^. 

Proof. By the assumption on the dimension of Ф and Lemma 2, it follows that 
Ф = {Ф±)^. Suppose L is Ф-interpolative. According to Corollary of Proposition 1 
the dimension of Lis finite, i.e. Lis a closed subspace of L. Hence the decomposition 
E"^ = Ф @ L^ follows from Proposition 3. 

Suppose now L* = Ф © L^. Being L* isomorfic to E^JL^, the dimension of L is 
finite. For the sake of simphcity we denote L* = X, L^ = A, i.e. we have X = Ф @ A, 
As A is closed A = (^'^)i according to Lemma L By using Proposition 1, the decom
position of X means that Ф is ^Mnterpolative and therefore, by Proposition 3, we 
obtain that X* = Ф^ © A-^. Let Q denote the canonical imbedding of E into £**. 
By virtue of Lemma 1 in [3], § 1,5, we have Q{L) — A^ (L is a finite dimensional 
subspace) and the above decomposition of X* can be rewritten in the form 

(5) £** = Ф^® Q{L) . 

Let X be an element of £. Then there exist ^ e Ф^ and z e Lsuch that Qx = ^ + Qz. 
It means that x - z ЕФ^ and hence E = L + Ф^. By (5), it is obvious that Ln Ф^ = 
= [0]. Using Proposition 1 it finishes the proof. 

Lemma 3. Let Ф be a subspace of E* and Lbe a closed Ф-interpolative subspace 
of E. Then J* (the adjoint operator to Jj) is the projection onto (Фх)"̂  which is 
parallel to l}. 

Proof. Ji^ is a bounded Hnear operator and hence J* exists and it is bounded. 
By the definition, 

(6) <JLxJ> = <x,Jlfy for all xeE, f E E^ . 

Putting X to be an element of ФĴ  we find <x, J*/> = 0 for all / G £* and therefore 
Jl{E*) a (Ф^-^. Now, let g be an element of {Ф^^. Then {х,дУ = {JjX, g} for 
all X E E (Proposition 2), what proves that g = J*д. Thus J* is a projection onto 
{Ф±У. Setting / to be an element of L^ in (6) we find <x, J*/> = 0 for every x E E. 
It proves the rest of the statement. 

Definition. Let Ф be a subspace of £*. If there exists a closed Ф-interpolative 
subspace L of E such that 

llJ^II = inf l l^ l l , 
L 

where the greatest lower bound is taken over all Ф-interpolative subspaces L, then L 
is called the best Ф-interpolative subspace. 
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The following theorems yield the existence and the characterization of the best 
Ф-interpoîative subspace and they can be considered as a generahzation of analogous 
results due to Aubin [1] for Hilbert spaces. 

Theorem 1. Let E be a reflexive Banach space and let Ф be a finite dimensional 
subspace of E"^. Then there exists the best Ф-interpolative subspace. 

Proof. Denote a = inf Ц/̂ Ц̂, where the greatest lower bound is taken over all 
L 

Ф-interpolative subspaces. As a is finite there exists a sequence (if"^) of Ф-interpoIative 
subspaces such that 

(7) (тй ры4 <ст + - , 
n 

Let (pi,..., (/)̂  be a base of Ф. According to Corollary of Proposition 1 let x^i\ ..., x^^ 
be the base of &^ with the property (3). Then x^"^ = 1ь(п)Х^\ i = 1, ..., m, and 
therefore 

| | xW| | ^ | | j ,<„ , | | . | | x< /> | | ^ (^ + ] ) l | 4 " l | . . • = l , . . . , m . 

By virtue of the Eberlein-Smulyan theorem (see e.g. [3]), the sequences (x |̂"̂ )„, 
i = 1 , . . . , m, are w-sequentially compact and, by it, there exist subsequences (х̂ "̂ )̂у, 
Ï = 1, . . . , m, such that 

(8) w-lim x^J^ = Xi, / = 1, . . . , m . 
J 

In particular, x^, . . . , x^ is biorthogonal to cp^, ..., (p^. By Corollary of Proposition 1, 
^i> •••5 ^m generate a Ф-interpolative subspace which we denote by L. By (4), (8) we 
further have 

m m 

W-lim J^inAX = w-Hm Y, i^^ Я>1> î"^^ = Z <^' ^>i) ̂ i 
j j i=i i=i 

for all X e E. Therefore 

\\Jr^x\\ й liminf ||j^(.^,x|| й lim(^(T + - ) ||x|| . 

Thus the estimate \Ji\ g cr is valid. This inequahty completes the proof. 

Theorem 2. Let E be a reflexive Banach space and let Ф be such a subspace of E* 
that {Фх}^ admits a bounded projection onto itself. Then L is the best Ф-inter
polative subspace if and only if J* is a projection onto {Ф±У with the smallest 
possible norm, i.e, | | j * | | = inf ||P||, where the greatest lower bound is taken over 

p 
all bounded projections P of E onto {Ф±)^> 
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Proof. First, by the assumptions on Ф, E and Corollary of Proposition 3, there 
exists at least one closed Ф-interpolative subspace. For, if P is a bounded projection 
onto {Фл_У and N = P-i(O) then N = (iVj_)-̂  (Lemma 2). Using Corollary of 
Proposition 3 we obtain that L = TVJL is a closed Ф-interpolative subspace. Let now L 
be the best Ф-interpolative subspace. By virtue of Lemma 3, J^ is a bounded projec
tion onto {Ф±у. Suppose that there exists a projection P onto {Ф±У such that ||P|[ < 
"^ 11*̂1 II- ^ ^ P^^ ^ ^^ above. L is a Ф-interpolative subspace and, by Lemma 3, 
J* is the projection onto {Ф±У which is parallel to N and therefore J* = P. It 
means that ||/^^|| = ||P|| < | | j | | | = ||«^L||> ^ contradiction. To prove the sufficient 
part suppose P is a projection onto {Ф±)^ ^^^^ ^^^ ^̂ ^̂ ^ possible norm. As above, 
we obtain L= [P-i(O)] which is a closed Ф-interpolative subspace. If here exists 
a closed Ф-interpolative subspace Lsuch that \\jj^\\ < \\Ji\\ we get, by using Lemma 
3, a projection J* onto {Ф±)^ which norm is less than the norm of P. This contradic
tion finishes the proof. 

3. Ф-INTERPOLATIVE WIDTH 

The definition of the Ф-interpolative width was given by (l) and (2). Throughout 
this section we shall suppose that Ф is of the dimension n and we shall choose some 
base of Ф which will be denoted by cp^^, ..., (p„. For a subset M of £ we use the 
following notation: 

(a) K{M) is the absolute convex hull of M, i.e. 

m m 

К{М) = { X ^i^h ^1»..., x^ e M, YJ \^i\ ^ 1, '^ is any positive integer} . 

(b) If Lis a subspace of E then we put 

d{M, L) = sup inf ||x — y|| . 
xeM yeL 

(c) d^M) denotes the n-width of M (see e.g. [5], [6], [9]), i.e. J„(M) = inf rf(M, L), 
L 

where the greatest lower bound is taken over all subspaces L of E such that 
dim L= n. 

The following proposition yields very simple properties of the Ф-interpolative 
width. 

Proposition 5. Let Ф be a finite dimensional subspace of E and let M, N be 
subsets of E, Then: 

(i) If M czN then (Тф{М) й о-ф(ЛГ). 
(ii) If N is the closure of M then (Тф{М) = сГф(М). 

(iii) / / M is bounded set then (Тф{М) is finite. 
(iv) (Тф{М) = (Тф{К(М)), 
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(v) If Lis a closed Ф-interpolative subspace of E then 

d{M, L) й (Гф{М, L) й (1 + р4) d{M, L) . 

(vi) / / dim Ф = n then d^M) £ (Тф{М). 

Proof, (i) It is clear. 

(ii), (iii) It is also obvious from the continuity of J^ for any Ф-interpolative sub-
space L. 

m 

(iv) Let L be Ф-interpolative and x eК[М), i.e. x = Yj^i^h where x^, ..., x^ G M 
m 

and YJ \^i\ ^ 1- Then 
1 = 1 

m m 

|Ь - JL4 = Il Z ^ii^i - Jx-^dW й Z |a,| (Уф{М, L) й <Уф{М, L) . 
i=l i = 1 

By (i), we have (Тф{К(М), L) — (Тф(М, L) and taking the greatest lower bound we 
obtain the result. 

(v) The left-hand side inequality is obvious from the definition of d(M, L). Let 
xe M and y^ e L such that 

\\x - У4 ^ inf ||x - ĵ ll + - . 
yeL m 

Then Ji^y^ = y^ and we have 

||x - J^x|| й \\x - У4 + \\J^{x - vJII = (1 + IIJJI) ||x - У4 . 

Therefore ||x — Jj^x|| ^ (l + || J^ |̂|) inf ||x — y||. From this inequality the result 
follows immediately. ^^^ 

(vi) The inequahty follows directly from the left-hand side inequality in (v). 

R e m a r k . The preceding proofs show that (i), (iv), (v) hold without the assumption 
upon the dimension of Ф. 

Definition. Let Ф be a finite dimensional subspace of £* and let M be a bounded 
set of E. If there exists a Ф-interpolative subspace L such that сГф(М, L ) = (Тф{М) 
then Lis called the best Ф-interpolation for M, 

Our next aim is to prove the existence of a best Ф-interpolation. We fix some 
Ф-interpolative subspace for which we shall keep the notation Л .̂ Let x^, . . . ,x„ 
be a base of N with the properties (3), (4). A subset M of £ is said to have the Ф-
interpolative range m if dim Lin JN{M) = m (Lin denotes the Hnear hull). We 
remark that the Ф-interpolative range does not depend on the choice of N. For, 
let j i , . . . , j ^ be such elements of M that /iv^i, • • -, JNym ^^^^ ^ base of Lin JN{M). 
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This means that for each xeM there exist scalars ĉ ,̂ ..., c^ such that 
m 

(9) -̂ NX = Y. iiJ^yi, 

m m 

i.e. л- - Y, ^1У1 ^ ^ 1 - It follows that J^x = ^ CÎ^L^/ for a Ф-interpolative subspace L 

and therefore dim Lin JjiM) ^ dim Lin J ^ ( M ) . Substituting iV for L, we obtain 
the converse inequality. 

We shall need the following lemma. 

Lemma 4. Let M be a subset of E with the Ф-interpolative range m. Then there 
exists a base Zj, ..., z„ ofN such that for each Ф-interpolative subspace L there 
exists a Ф-interpolative subspace L' having the following properties'. 

(i) L' has a base C j , . . . , c„ with the decomposition Ci = Zi-{- di, i = l,...,n, 
where J^, ..., d^ are elements of Ф and d^+i = ... = d„ = 0. 

(ii) For all X e M there exist scalars ^i, ..., ^^ ^hich do not depend on Lsuch that 
m 

(10) J^,x = X ^J^J = JL^ • 

Proof. Let {vi, •••, Ут} be the minimal set of M such that (9) is valid. We set 
Zj = Jj^yj, 7 = 1, . . . , m. As these elements are linearly independent we can choose 
such elements z^+j, ..., z„ that z^, ..., z„ form a base oïN. Let now Lbe a Ф-inter
polative subspace. Then Jj^yj = Zj + dj, j = 1, ..., m, where d^,..., rf^ belong 
to Ф^. We put Cj = Jj^yj, 7 = Ь •••, '̂ ^ ^^^ Cj = ^j-> 7 = '^ + 1? •••5 "• By using 
Proposition 1, it can be easily proved that the subspace ll generated by c^, ..., c„ 
is Ф-interpolative. Further, Ĵ .̂y^ = Jbyj^j = 1, ..-, ^ what follows that Jj^^x = J^x 
for all Л- e M. We have (lO) with the same ^i, • •., ш̂ ^s in (9). 

For further purposes we denote by ^ф{К) the set of all Ф-interpolative sub-
spaces L such that (Тф(М, L) ^ K. 

Lemma 5. Let M be a bounded subset of E with the Ф-interpolative range m. 
Let К be such that К > (Тф{М). Then there exists such a positive number Ä that 
for all Le ^ф{¥^ the base Cj, ..., c„ of ll from Lemma 4 has the property 

\d\ ^ A , i = 1, ..., П . 

Proof. By the proof of Lemma 4, we have d^ = (Jj^ — J^) yj = {yj — J^yj) — 
- b'j - -^ьУз) and thus 

II J j ^ аф{М, N) + (7ф(М, L) й (Гф{М, N) + К 

for j = 1, ..., m. 

91 



Theorem 3. Let M be a bounded set of a reflexive Banach space E and let Ф be 
a finite dimensional subspace of E. Then there exists a best Ф-interpolation for M. 

Proof. Let (L^^^) be such a sequence of Ф-interpolative subspaces of E that 

к 
Let M have the Ф-interpolative range m and let (ii''^ ) be the sequence of Ф-inter
polative subspaces from Lemma 4. We denote the base of Li''^' with the properties 
of Lemma 4 by cf\ ..., clJ'K Putting К = (Тф{М) + 1 in Lemma 5 we find that 
||jf^|| ^ A for I = 1, ..., n, /c = 1, . . . By virtue of the w-sequential compactness 
of the unit ball of E, there exist subsequences {df'^)j / = ! , . . . , n, such that 

w-hm cf'^ = Z; + w-lim df'^ = ẑ  + J,- = c^, f = 1, ..., n . 
j J 

As df^^ e ФJL the elements d^, ..., ^„ lie also in Ф^^ and therefore c^, ..., c„ generate 
the Ф-interpolative subspace L. By virtue of the property (ii) of Lemma 4, we have 
w-lim Jbik.)X = JLX and hence 

j 

\x - Л-хЦ й lim inf II л; - JLik.)x\ = lim (Тф{М, L̂ "-''̂ ) = аф{М) 
j j 

for ail X E M. Taking the least upper bound over x e M we obtain the required 
result. 
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