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WEAKLY ASSOCIATIVE LATTICES AND TOLERANCE RELATIONS 

IVAN CHAJDA, Prerov and BOHDAN ZELINKA, Libérée 

(Received October 16, 1974) 

The investigation of tolerance relations has been rather expansive in a few last 
years. A number of results in this theory show its principal role in various branches of 
algebra and its applications (for example tolerance spaces, graph theory, topology 
etc.). In the paper [10] some results on the existence of non-trivial compatible 
tolerance relations on lattices were derived. Some of them can be generalized to 
weakly associative lattices and these "generalized" lattices offer a new view of these 
problems. A weakly associative lattice is obtained, roughly speaking, if the transitivity 
of the lattice ordering is omitted. These algebraic structures have very interesting 
properties and many of their applications play a principal role in algebra as is shown 
in the papers [1], [2], [3], [4], [5]. The purpose of this paper is to establish some 
results on the existence and basic properties of tolerance relations compatible with 
weakly associative lattices and tournaments. 

1. PRELIMINARIES 

Definition 1. A non-empty set Ä with two binary operations denoted by the 
symbols V and л is called a weakly associative lattice (briefly W/t-lattice), if for 
arbitrary a, b, с of A the following identities are fulfilled: 

l°ava = a, aAa=^a (idempotency); 
2°avb = bva, aAb = bAa (commutativity); 
3° a V (b A a) = a, a A (b V a) = a (absorption); 
4° \_(a A c) V (b A c)~\ V с = c, [{a v c) A (b v cj] A с = с (weak 

associativity). 

Further, if for arbitrary a, b of A either a w b = a or a v b = b, then (Л, v , л ) 
is called a tournament. 

In the papers [1] and [3] a relation ^ on a Ж/1-lattice A is introduced so that 
a ^ Ь if and only if a v b. This relation is reflexive and antisymmetric and evidently 
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it is uniquely determined by the operation v . It is also uniquely determined by the 
operation л ; we have a ^ b if and only if a л b = a. Conversely, the operations v 
and л are uniquely determined by the relation ^ . For any two elements a, b of Л 
there exists a unique element с such that с ^ a, с ^ b and с ^ c/ for each c' e A 
such that c' ^ a, c' ^ b; this element с = a v b. There exists also a unique element d 
such d -^ a, d ;É b and d ^ d' for each d' e A such that d' ^ a, d' -^ b; this element 
d = a A b. For any a, b of A the equahty a v b = b is equivalent to a A b = a. 
If Л is a tournament, then ^ is a complete relation, i.e. for any a, b we have either 
a ^ b ox b ^ a (and not both simultaneously). If ^ is also transitive, then a WA-
lattice A is an ordinary lattice and a tournament yl is a chain. (Note that in general 
l^'/l-lattices are not lattices and ^ need not be an ordering.) 

ly^-lattices which are subdirectly irreducible and satisfy Congruence Extension 
Property are very important for investigating the structure of ЖЛ-lattices. In [4] it 
is proved that the class of all И^/1-lattices which are subdirectly irreducible and satisfy 
Congruence Extension Property is equal to the class of all It04-lattices with Unique 
Bound Property (briefly UBP), i.e. with the property that to any two elements of A 
there is exactly one element greater and exactly one element less than they both. 
In [4] it is proved that the class of ^4-lattices satisfying UBP is decomposed into 
two (non-disjoint) subclasses, the so-called singular and regular ^(7-systems (Theorem 
1 in [4]) and that there exists exactly one ^4-lattice satisfying UBP which is simul­
taneously regular and singular. 

We can give an exact definition of these concepts. 

Definition 2. A ^4-lattice W^ is called a singular WU-system, if W^ = A и {O, 1} 
for Л Ф 0, /I n (0, 1} = 0 and the И^Л-lattice ordering is defined by the relations 

1 -< 0 , 0 <a <1 for all aeA, 

where x ^ у if and only if x •<, у or x = y. 
Let 1У be a WA-laUicQ, a e If and U{a) •= {xeW\a ^x}, L{a) = {yeW\y^ 

^ a}. If card U{x) = card U{y) = card L{y) for arbitrary two elements x, у of W, 
then VF is called a regular И^О-system. 

For singular IF(7-systems the non-existence of a non-trivial compatible tolerance 
will be proved. 

Definition 3. Let S be a set and Г а binary relation on S. The relation Tis said to 
be a tolerance, if it is reflexive and symmetric. Let WbQ a VF/4-lattice and Та tolerance 
on W. The tolerance Tis called compatible with W, if the following implication is true: 

^ 1 . ^25 ^1? ^2 ^ ^ ? ^ i ^ ^ i , a2Tb2 => a^ V Ö2^^i V 62 , a^ A a2Tb^ л b2 . 

This is a special case of the definition of a tolerance compatible with an algebra; 
this definition can be found in [9]. Tolerances on algebras are studied in [8], [9], [10]. 

For the sake of brevity we shall introduce the following concepts. 
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Definition 4. Let W be a ^4-lattice, a e W, beW. The set {xeW\a^x^b 
ox b ^ X -^ a] is said to be a segment of Pfand is denoted by S(a, b). 

Definition 5. Let S be a set. By the identical relation on S we mean the relation / 
fulfilling alb if and only if a = b for аМ a e S, b e S. By the universal relation on S 
we mean the binary relation U fulfilhng alJb for arbitrary two elements a, b of S. 
Let i? be a binary relation on S. We say that R is complete, if for arbitrary two ele­
ments a, b of S either aRb or ЬЯа is true. 

2. SIMPLE CHARACTERISTICS OF TOLERANCES ON H>^/^-LATTlCES 

Let <S be a set and let ^ be a binary relation on S, We say that a binary relation ^5 
on 5 is the symmetric hull of Q, if for arbitrary a, b of S we have a Q^ b if and only 
if a Q b or b Q a. It is clear that for a reflexive relation 0 the symmetric hull ^5 is 
a tolerance. 

Proposition 1. Let S be a non-empty set with an antisymmetric binary relation Q. 
Then (S, Q) is a tournament, if and only if the symmetric hull QS of Q is the universal 
relation on S. 

Proof. If (S, Q) is a tournament, then for any a, b of S we have a Q b or b Q a, 
therefore a Q^ b. On the other hand, if a ^5 Ь for any two elements a, b of S, then 
for any two elements a, b of S either a Q b, or b о a. As ^ is antisymmetric, for a ф Ь 
only one of these two possibilities can occur, thus (S, Q) is a tournament. 

Proposition 2. Let S be a non-empty set with an antisymmetric acyclic binary 
relation Q. Then (S, Q) is a chain, if and only if the symmetric hull QS of Q is the 
universal relation on S. 

Proof follows from Proposition 1, because a chain is an acyclic tournament. 

Theorem 1. Let W be a WA-lattice and let T be a tolerance compatible with W. 
Then for arbitrary two elements a, b of W 

aTb => xTy for arbitrary x, y e S{a A b, a v b). 

Proof. Let aTb. From the reflexivity of Г we have bTb and by the compatibility 
of Twe obtain: aTb, bTb => a A bTb, a v bTb. Analogously a л ЬТа, a v bTa. 
Further, a л ЬТа, a л bTb => (a A b) v {a A b) Та v b, i.e. a л ЬТа v b. Let x 
and V be in S{a A b, a v b). From a A bTa v b, xTx we obtain (a A b) v 
V xT{a V b) V X, [a A b) A xT{a v b) A x. If a л Ь ^ x ^ a v b, then 
(a A b) A X = X, [a V b) V X = a V b, thus xTa v b. If a v b ^ x ^ a A b, 
then [a A b) V X = X, (a у b) A x = a w b, thus also xTa v b. Analogously 
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уТа V Ь, уТа л Ь, хТа л Ь. Let aAb^x-^avb, aAb^y^avb; then 
хТа V Ь and а v bTj imply x л (a v b) T(a v b) л y, i.e. xTy. Dually a v b ^ 
•^ X -^ a A b, a V b -^ у -^ a л Ь imply xTy. If a v b ^ x ^ a л b, a л Ь ^ 
^ у ^ fl V b, then a л ЬТх, уТа v b yields (a A b) v уТх v (a A b), i.e. 
again xTy. 

3. EXISTENCE OF COMPATIBLE TOLERANCES ON И /̂4-LATTICES 

In this item we shall study compatible tolerances on liM-lattices. Evidently, on 
any ИМ-lattice (with more than one element) there exist at least two compatible 
tolerances, namely the identical relation and the universal relation. Also each con­
gruence on a Ifv4-lattice is a compatible tolerance on it. We are interested mainly in 
compatible tolerances which are not congruences. 

Definition 6. Let IF be a H'^l-lattice, let Л be a subset of W. The set A is called 
a cycle in W, if A — S{a, b) for arbitrary two distinct elements a, b of A. 

Lemma 1. Let Wbe a WA-lattice. Then each cycle of Wis a tournament with at 
most three elements. 

Proof. If a, b are two distinct elements of A, then ae A = S(a, b), thus either 
a -^ a -^ b or b ^ a -^ a. As a, b are distinct, we have either a -< b or b <, a 
and Л is a tournament. Suppose that there exists a cycle A of Ж with more than three 
elements. Let a, b, c, d be some four of them. We have A = S{a, b), therefore either 
a ^ с < b or b < с ^ a; without loss of generality Ы a < с < d. If a •< b, then 
a Ф S(b, c) and A ф S{b, c), which is a contradiction. Thus b < a. The element d 
must satisfy either ö - < J - < b o r b < d - < a . In the first case a ^ c, a ^ d, thus 
a Ф S{c, d) and A Ф S{c, d); in the second case b -< a, b < d and thus b ф S(a, d); 
both these cases lead to contradictions. 

Theorem 2. Let W be a WA-lattice, let A be a cycle of W and let T be a tolerance 
compatible with W. Then the restriction T' of T onto A is either the identical 
relation or the universal relation on A. 

Proof. According to Lemma I A cannot have more than three elements. If it has 
less than three elements, then any tolerance on A is either the identical relation or 
the universal relation. Let A have three elements a, b, с and л -< Ь < с -< a. If T' 
is not the identical relation, then there exist two distinct elements of A which are in T'; 
without loss of generality let aVb. From aVb and cVc we have a = a v cT'b v 
vc = c, Ь = ЬА cT'a A с = с and T' is the universal relation. 

Lemma 2. Each three-element WA-lattice is a cycle or a chain. 

This assertion is evident. 
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Lemma 3. Each tolerance compatible with a three-element or a four-element 
singular WU-system is either the identical relation I or the universal relation U 
on the system. 

Proof. Let W^ be a three-element singular WU-system. Then W^ is a cycle and 
according to Theorem 2 each tolerance compatible with it is / or U. If W^ is a four-
element singular WU-system, then Ä — {a, b] and [a, 0, 1} is a cycle of W^, This 
means that the restriction T' of Г onto {a, 0, 1} is either the identical relation or the 
universal relation. Analogously the restriction T" onto {b, 0, 1} is either the identical 
relation or the universal relation. Let both V and V be identical relations. Then 
either T = /, or aTb. If aTb, then aTb, bTb imply a v bTb v b, which means 1 Tb 
and 1 ТЪ, which is a contradiction with the assumption that T" is the identical 
relation. Now let Г ' be the universal relation on {a, 0, 1}. Then OTl and according 
to Theorem 1 we have xTy for any two elements x, у of W^ and T — U. Analogously 
if T" is the universal relation on {b, 0, 1}. 

Lemma 4. Let W be an at least five-element singular WU-system. Then each 
tolerance compatible with W is either the identical relation / , or the universal 
relation U. 

Proof. Let Whe an at least five-element singular WU-system and let Tbe a toler­
ance compatible with W. Further let T Ф I. Then there exist two distinct elements 
a, b or W such that аТЬ. If a = 0, Ь = 1, then T = U according to Theorem 1. 
If a Ф 0, a Ф 1, Ь Ф 0, Ь Ф 1, then a л ЬТа v b according to Theorem 1, thus 
OTl and T = U. Let a = 0, Ь ф 1. As Ж has at least five elements, there exist ce W, 
d 6 W which are pairwise distinct and distinct from 0, I and b. As T is reflexive, 
cTc. dTd. From aTb and a = Owe have 0Tb. Then cTc, 0Tb => с = с v OTc v b = 
= 1. Thus cTl and analogously dTi. This implies 0 = с л dTi л 1 = 1, thus OTl 
and the situation is the same as in the preceding case. If a = 1, Ь Ф 0, the proof 
is dual. 

Theorem 3. On each singular WU-system there exist only two compatible toler­
ances, namely the identical relation and the universal relation. 

Proof follows directly from Lemmas 3 and 4. 

4. SUB-H^/4-LATTICES AND COMPATIBLE TOLERANCES 

If can we prove the existence of a compatible tolerance which is not a congruence 
onaspecialsub-^4-latticeof a W/l-lattice, we can extend this result onto the whole 
I^v4-lattice. We formulate this exactly in the following theorem. 

Theorem 4. Let W be a WA-lattice. A necessary and sufficient condition for the 
existence of a tolerance T compatible with W which is not a congruence is the 
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following: there exists a sub-WA-lattice WQ of W, a tolerance TQ compatible with WQ 
which is not a congruence and a homomorphism cp of Wonto a WA-lattice W\ such 
that (p{x) = (p{y) if and only if either x = y or both x and y belong to WQ. 

Proof. The necessity is obvious; if the required tolerance T exists, we may put 
WQ = Ж, TO = Tand ip equal to the mapping of Pf onto a one-element M^/l-lattice. 
Let us prove the sufficiency. First we prove that if a e WQ, b e W — WQ, a У be WQ, 
then a V b = a. Suppose that it is not so. Then a A b =^ b. But (p(a) = (p{a v b) 
in W^, thus (p{a) л (p{b) = (p(a v b) л (p(b) Ф cp{b) in W^, because beW — WQ 
and thus cp{b) is the image of only one element of W in (p. But (a v b) A b = b 
in W, thus (p[a v b) A (p{b) = (p{b) in W^, because (/? is a homomorphism. We have 
a contradiction. Dually we can prove that \{ ae WQ, b eW — WQ, a A b e WQ, 
then a A b ^ a. Now let Tbe a tolerance on Ж defined so that xTy if and only if 
either x — y, or xe WQ, ye WQ, xTQy. Let Xj,X2, УиУг be elements of W and 
x^Ty^, Х2ТУ2. If Xi = V,, X2 = У2, then Xj v X2 = >'i v V2. x^ л X2 = y^ A у2 
and thus Xj v X2TV1 v Г2, A'J Л X2Ty^ л j2- I^ ^̂ 1 the elements Xj, X2, j ' l , У2 are 
in Жо and XiToVi, ^i^oyi^ then x^ v X2, Vi v у2, x^ л X2, .V] л у2 are all in WQ 
and Xi V X2To3'i v j2^ ^i ^ A'2'^O>4 /̂  >'2. which means Xj v X2T>̂ i v У2, x^ л 
л Х2Ту, л у2- Now if Xj = y^ e W — WQ and X2, y2 are in WQ and Х2Т0У2, we have 
<p(xi) V c/?(x2) = ^O'l) V (/>(>'2) in Wi. This means that either x^ v X2 = Vi v у2 
or Xj V X2, J i V У2 are both in Жо- In the first case evidently x^ v X2TV1 v у2-
In the second case x^ v X2 = X2, Vi v у2 = у2 (as proved above), thus again 
Xi V X2T>'| V у2- Dually we prove x^ л X2TV, л у2-

Lemma 5. Let W be a WA-lattice and let WQ be a sub-WA-lattice of W. The 
necessary and sufficient condition for the existence of a homomorphism cp of W 
into a WA-lattice W^ such that cp{x) = (p{y)for x ф у // and only if xe WQ, у e WQ 
is the following: for each x e W - WQ either x < у for each у e Жо or у -< x for 
each у e WQ or none of the cases x < y, у <x occurs for any у e WQ. 

Proof. Necess i ty . Let w G Жо, x e Ж - WQ. In W^ we have either cp{x) < (p{w) 
of (p[w) > cp{x), or none of the cases (p{x) ^ ç>(w), (p{w) Ъ (p(x) occurs. In the 
first case (p{x) л (p{w) = (p(x) in W^ and we must have x л у = x for any 
у e WQ, which means x -< у for each у e WQ. In the second case dually у < x for 
each у e WQ. In the third case (p(x) v (p(w) and (p(x) л (p(w) are both distinct from 
both (p{x), (p{w). As they are distinct from (p{w), the elements и = (p~\(p(x) v (p(w)), 
V = (p~^((p(x) A (p{w)) are determined uniquely and are in Ж — WQ. But (p{y) = (p(w) 
for each у e WQ, thus (p{u) = ^(x) v (p{y), (p{v) = (p{x) л (p{y) for each у e WQ, 
which means и = x v y, v = x A у for each у e WQ. As u, v are distinct from x, 
none of the cases x < y, у < x occurs for any у e WQ. 

Sufficiency. If x G Ж - Жо, у ^ x for each y e WQ, then x v y - x, x л y = 
= y G Жо for each y e И̂ о- If x G Ж - Жо, x -< y for each y G WQ, then x vy = 
= y G Жо, X л j ; = X. Let X G Ж - Жо and neither x<y nor у <x for any 
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V G WQ. Choose w e WQ. Then x v w > w and thus x v vv > y for each y e W^. 
Suppose that for some уо e WQ there exists z •< x v w such that x ^ z, J'Q ̂  z. 
Then Jo ^ ^ î̂̂ d _у -< z for each y e WQ, in particular vv -< z and thus we have w < z, 
X -< z, z < X V w, which is a contradiction. We have proved that x y y = x v w 
for each y e Жо- Dually we can prove x л у = x л vv for each у e WQ. Thus we 
have proved that the mapping (p of W into W^ such that cp[x) = (p{y) for x ф >' if 
and only if x e WQ, ye WQ is a homomorphism. 

Theorem 5. L^r W be a WA-lattice and let С be a sub-WA-lattice of W which is 
a chain with at least three elements. Let any element xe W — С be either greater 
than all elements of С or less than all elements of C, or such that neither x -< у 
nor у -< X for any element ye C. Then there exists a tolerance compatible with W 
which is not a congruence. 

Proof. By Theorem 4 from [10] there exists a compatible tolerance which is not 
a congruence on each chain with at least three elements. By Lemma 5 the assumptions 
of Theorem 4 are fulfilled, thus according to Theorem 4 the assertion holds. 

5. TOURNAMENTS 

The algebraic definition of a tournament was given in § 1. Nonetheless as is well-
known, a tournament can be defined also graph-theoretically. 

A tournament is a directed graph without loops in which any two distinct vertices 
are joined exactly by one directed edge. 

The two definitions of a tournament represent two difi'erent view-points from 
which this concept can be considered. Substantially they express the same thing. We 
can take a tournament W according to the algebraic definition and for any two its 
distinct elements a, b for which a v b = b we join a and Ь by a directed edge 
outgoing from a and coming into b. Then we obtain a tournament according to the 
graph-theoretical definition. For any two distinct elements a, b either a v b = b 
or a V b = a and not both simultaneously; thus any two distinct elements are 
joined exactly by one directed edge and the set of elements of Ж can be viewed as the 
set of vertices of a tournament according to the graph-theoretical definition. On the 
other hand, let Ж be a tournament according to the graph-theoretical definition. 
For any two distinct elements a and b we put a v b, a A b = a, if and only if there 
exists a directed edge from a into b; we obtain a tournament according to the 
algebraic definition. 

This enables us to consider tournaments from the two view-points. We shall 
always use the view-point which will be more convenient for our considerations. 

Now we shall prove some theorems concerning tolerances on tournaments. 

Theorem 6. Let W be a tournament which is not strongly connected [6] and 
which has at least three vertices. Then there exists a tolerance Tcompatible with W 
which is neither the identical relation nor the universal relation. 
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Proof. As Wis not strongly connected, it has at least two quasicomponents. For 
two quasicomponents Cj, C2 of Wlct Ci < C2 if and only if C^ Ф C2 and each edge 
joining a vertex from C^ with a vertex of C2 has its terminal vertex in C2. As is well-
known from the graph theory, this ordering is complete. Let С be a quasicomponent 
of W which is not minimal in this ordering. Let W^ (or W2) be a subtournament 
of ^induced by the vertices of all quasicomponents С for which С < С (or С > С, 
respectively). The vertex sets of W^ and W2 are disjoint, non-empty and each edge 
joining a vertex of W^ with a vertex of W2 has its terminal vertex in W2. Now let T 
be a tolerance on W such that two elements are in T if and only if they are both 
in Wi or both in VF2. Evidently Tis neither the identical relation, nor the universal 
relation. Now let x^Ty^, Х2ТУ2. If all the elements x^, y^, X2, у2 are in W^, then also 
Xi V X2, Xi л X2, У1 V у 2, у I л у 2 are all in Ж̂  and x^ v X2TV1 v у2, x^ л 
л ^ 2 T F I A У2. Analogously if all the elements x^, y^, X2, j'2 are in W2. Now let 
Xi, j i be in Wi and let X2, У2 be in FF2. We have x^ v X2 = X2, x^ л X2 = x^, 
Ĵ i V J2 = У2^ >'i A >'2 = J'l and thus Xi V X2 = Х2ТУ2 = У1 V };2» x^ л X2 = 
= XiTvi = J i A У2- Analogously if x^, y^ are in W2 and X2, У2 are in W^. 

Theorem 7. L f̂ W be a tournament having at least three quasicomponents. Then 
there exists a tolerance Tcompatible with Wwhich is not a congruence. 

Proof. Let Co be a quasicomponent of 1У which is neither minimal nor maximal 
in the ordering described in the proof of Theorem 6. Let W^ (or W2) be a subtour­
nament of W induced by the vertices of all quasicomponents С of W for which 
С < CQ (or С > Co, respectively). The subtournaments W^, W2, Co are pairwise 
disjoint and all non-empty. Now let Г be a tolerance on Ж such that two elements are 
in Tif and only if they are both in W^ u CQ or both in W2 u CQ. Any edge joining 
a vertex of W^ u Co with a vertex of W2 u Co has its terminal vertex in Ж2 u Co-
Thus the proof of the compatibility of T is analogous to the proof of Theorem 6. 
Now if a is in W^, b in Co and с in W2, we have aTb, because both a, b are in Wi u Co, 
bTc, because both b, с are in W2 u Co, but a and с are not in T, because a is not in 
W2 u Co and с is not in W^ u Co- The tolerance T is not transitive, therefore it is 
not a congruence. 

Remark . We speak about vertices rather than about elements, because elements 
of a tournament in the graph theory are also edges. 

Theorem 8. / / W is a strongly connected tournament with three vertices, then any 
tolerance compatible with it is either the identical relation or the universal relation. 
If Wis a strongly connected tournament with four vertices, then there exists exactly 
one tolerance compatible with it which is neither the identical relation nor the 
universal relation. 

Proof. There exists only one (up to isomorphism) strongly connected tournament 
with three vertices, namely the cycle with three vertices. For it the assertion follows 
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from Theorem 2. Now let Ж be a strongly connected tournament with four vertices. 
The tournament W cannot be acyclic. As is well-known, a tournament which is not 
acyclic contains at least one cycle with three vertices. Thus let (a, b, c} be such a cycle, 
a ^ b -< с -< a. The fourth element d is neither greater than all a, b, с nor less than 
all a, b, c; otherwise Ж would not be strongly connected. Without loss of generality 
two cases may occur; either d ^ a, d ^ b. d ^ с or d ^ a, d ^ b, d ^ c. The latter 
case is obtained from the former by the isomorphism induced by the permutation 
(abed) -> (cabd). Therefore there exists only one strongly connected tournament W 
with four vertices up to isomorphism; this tournament has vertices a, b, c, d and 
a •< b, a ^ c, a < d, b ^ c, b < d, с >- d. Let Г be a tolerance on W consisting 
of the pairs (6, J), (d, b) and all pairs (x, x) for all vertices x of Ж This tolerance is 
compatible with W; this can be easily proved. This tolerance Tis a congruence and 
is neither the identical relation nor the universal relation. Let T' be a tolerance 
compatible with W which is neither the identical relation nor equal to T. Then T' 
must contain a pair of distinct elements other than (b, d) or [d, b). Both elements of 
such a pair either belong to [a, b, c} or to {a, d, c}. Both these sets are cycles. If 
such a pair belongs to [a, b, c}, then the restriction of T' onto {a, b, c} must be the 
universal relation according to Theorem 2. But then аТ'с, both the elements a, с 
belong to the cycle {a, c/, c] and the restriction of T' onto {a, d, c} must be the 
universal relation. Now from аТЪ, dT'a we obtain d = a v dT'b v a = b and 
from the symmetry bVd. Thus T' is the universal relation on W. Analogously if the 
pair belongs to {a, d, c}. 

Definition 7. Let Ж be a tournament, let x and у be two of its vertices such that 
X ^ z -< у -< X for each z e W — {x, y]. Then we say that W is reducible and can 
be reduced onto WQ = W — {x, y} by deleting x and y. 

This concept was defined in [7]. 

Lemma 6. Let W be a reducible tournament which can be reduced onto a tour­
nament WQ by deleting its vertices x, y. Let TQ be a tolerance compatible with WQ 
which is not a congruence. Then there exists a tolerance compatible with W which 
is not a congruence. 

Proof follows from Lemma 5 and Theorem 4. 

Theorem 9. For each n ^ 5 there exists a strongly connected tournament W 
with n vertices on which there exists a tolerance compatible with it which is not 
a congruence. 

Proof. If n ^ 5, then n — 2 ^ 3 and there exists a tournament WQ with n — 2 
vertices on which a compatible tolerance exists which is not a congruence; for 
example, a chain [10]. Let Ж be a tournament which can be reduced onto WQ (in 
the sense of Definition 7). Then Wis evidently strongly connected and has n vertices. 
According to Lemma 6 the assertion holds. 
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6. A REMARK ON LATTICES 

Here we shall give two theorems concerning tolerance relations on lattices. This 
is an addition to the paper [10]. 

Theorem 10. Let Lbe a lattice. Let there exist a proper ideal J of Land a proper 
filter F of L such that J и F = L, J n F ф 0. Then there exists a tolerance T 
compatible with Lwhich is not a congruence. 

Proof. Let Tbe a tolerance on Lsuch that xTy if and only if x and v either both 
belong to J, or both belong to F. We shall prove that T is compatible with L. Let 
p, q, r, s be elements of Land pTq, rTs. This means that at least one of these cases 
occurs: 

(i) p E J, qe J, r e J, se J; 

(ii) pe J, q E J, r e F, se F; 

(iii) p E F, q E F, r E J, s E J; 

(iv) pE F, qE F, r E F, SE F. 

In the case (i) the elements рлг, qAs, pvr, qvs are all in J, because J is 
a sublattice of L. Thus/7 A rTq A s, p v rTq v 5. In the case (ii) we have/? л r e J, 
q A SE J, because J is an ideal, and p v ГЕ F, q v SE F, because F is a filter; 
thus again p A rTq A s, p v rTq vs. The case (iii) is dual to the case (ii), the case 
(iv) is dual to (i). As J is a proper ideal of L, we have an element a E L — J; as 
J V F = L,WQ have aE F. As F is a proper filter of L, we have an element ЬЕ L— F; 
as J u F = L, we have b E J. As J n F ф 0, we have an element с E J n F. Now 
аТс, because both a and с are in F, and bTc, because both b and с are in J. But the 
elements a and b are not in T, because a ф J, b ф F. The tolerance Tis not transitive 
and is not a congruence. 

Theorem 11. Let L be a complete infinitely distributive non-complementary 
lattice. Let Lbe atomic and dually atomic. Then there exists a tolerance T com­
patible with Lwhich is not a congruence. 

Proof. As L i s non-complementary, there exists an element a e L to which no 
complement exists. This means that a A x = О implies a v x ^ I for each x E L. 
(The symbols О and / denote the least and the greatest element of L, respectively. 
These elements exist, because Lis atomic and dually atomic.) Let В = {XE L \ a A 
A X = 0}. Denote b = У x; this element exists, because L i s complete. We have 

xeB 

aAb = aA\/x = \/aAx=0, because L is infinitely distributive. Let с = 
хеВ хеВ 

= a V b; we have с -< / . Further, let J be a dual atom of Lsuch that d Ъ с Denote 
J = {O, d); this is a proper ideal of L. As J is a dual atom, we have either x ^ d 
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or X V d = I for each xe L. Let E = [x e L \ x v d = I}. Denote e = Д x; we 
xeE 

have dve = dv/\x = Advx=I. Thus ее E. From the definition of E we 
xeE xeE 

see that £ = < ,̂ /> and further JnE = 9, JuE = L, Let / be an atom of L such 
that f ^ e. As / is an atom, we have either x ^ / or x л / = О for each xe L, 
Both these cases mean that fe J. Let JF = {f,I}; this is a proper filter in L. As 
E cz F and J и E = L, v/e have J и F = L. Now according to Theorem 10 there 
exists a compatible tolerance on L which is not a congruence. 

7. PROBLEMS 

Problem 1. For which regular P^X/-systems is any compatible tolerance equal 
either to the identical relation or to the universal relation? For which regular WU-
systems is any compatible tolerance a congruence? 

Problem 2. According to Theorem 10 in [10] the set of all compatible tolerances 
of an algebra forms a lattice. For which ^4-lattices is this lattice distributive (or 
modular, complementary etc.)? 
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