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The investigation of tolerance relations has been rather expansive in a few last
years. A number of results in this theory show its principal role in various branches of
algebra and its applications (for example tolerance spaces, graph theory, topology
etc.). In the paper [10] some results on the existence of non-trivial compatible
tolerance relations on lattices were derived. Some of them can be generalized to
weakly associative lattices and these ‘‘generalized™ lattices offer a new view of these
problems. A weakly associative lattice is obtained, roughly speaking, if the transitivity
of the lattice ordering is omitted. These algebraic structures have very interesting
properties and many of their applications play a principal role in algebra as is shown
in the papers [1], [2], [3], [4]. [5]- The purpose of this paper is to establish some
results on the existence and basic properties of tolerance relations compatible with
weakly associative lattices and tournaments.

1. PRELIMINARIES

Definition 1. A non-empty set A with two binary operations denoted by the
symbols v and A is called a weakly associative lattice (briefly WA-lattice), if for
arbitrary a, b, ¢ of A the following identities are fulfilled:

1°a v a

Il

a, a A a =a (idempotency);
2avb=bva,anb=baa (commutativity);
3av(bara)=a,an(bva)=a (absorption);
fanc)vbarcve=c[(ave)a(bve]ac=c (weak
associativity).
Further, if for arbitrary a, b of A either a v b = aora v b = b, then (A. v, A)

is called a tournament.
In the papers [1] and [3] a relation < on a WA-lattice 4 is introduced so that

a X bif and only if a v b. This relation is reflexive and antisymmetric and evidently
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it is uniquely determined by the operation v. It is also uniquely determined by the
operation A ; we have a < b if and only if a A b = a. Conversely, the operations v
and A are uniquely determined by the relation <. For any two elements a, b of A4
there exists a unique element ¢ such that ¢ = a, ¢ = b and ¢ < ¢’ for each ¢’ € 4
such that ¢’ = a, ¢’ = b; thiselement ¢ = a v b. There exists also a unique element d
suchd < a,d X band d = d' for each d’ € A such that d’ < a, d’ X b; this element
d =a A b. For any a, b of A the equality a v b = b is equivalent to a A b = a.
If A is a tournament, then < is a complete relation, i.e. for any a, b we have either
a X b or b < a (and not both simultaneously). If < is also transitive, then a WA-
lattice A is an ordinary lattice and a tournament A is a chain. (Note that in general
WA-lattices are not lattices and =< need not be an ordering.)

WA-lattices which are subdirectly irreducible and satisfy Congruence Extension
Property are very important for investigating the structure of WA-lattices. In [4] it
is proved that the class of all WA-lattices which are subdirectly irreducible and satisfy
Congruence Extension Property is equal to the class of all WA-lattices with Unique
Bound Property (briefly UBP), i.e. with the property that to any two elements of A4
there is exactly one element greater and exactly one element less than they both.
In [4] it is proved that the class of WA-lattices satisfying UBP is decomposed into
two (non—disjoint) subclasses, the so-called singular and regular WU-systems (Theorem
1 in [4]) and that there exists exactly one WA-lattice satisfying UBP which is simul-
taneously regular and singular.

We can give an exact definition of these concepts.

Definition 2. A WA-lattice W, is called a singular WU-system, if W, = A u {0, 1}
forA+0,An {0, l} = 0 and the WA-lattice ordering is defined by the relations

1 <0, 0<a<1 forall aeA,

where x < yifand only if x < y or x = y.

Let W be a WA-lattice, ae W and U(a) = {xe W|a Z x}, L(a) = {ye W| y <
=< a}. If card U(x) = card U(y) = card L(y) for arbitrary two elements x, y of W,
then Wis called a regular WU-system.

For singular W(f—systems the non-existence of a non-trivial compatible tolerance
will be proved.

Definition 3. Let S be a set and T a binary relation on S. The relation T'is said to
be a tolerance, if it is reflexive and symmetric. Let Wbe a WA-lattice and Ta tolerance
on W. The tolerance T'is called compatible with W, if the following implication is true:

a;,a,, b, b,eWwW, a,Th,,a,Tb,=a,; v a,Tb, v b,, a, A a,Th; A b,.

This is a special case of the definition of a tolerance compatible with an algebra;
this definition can be found in [9]. Tolerances on algebras are studied in [8], [9], [ 10].
For the sake of brevity we shall introduce the following concepts.
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Definition 4. Let W be a WA-lattice, ac W, be W. The set {xe W|a Zx =< b
or b < x =< a} is said to be a segment of Wand is denoted by S(a, b).

Definition 5. Let S be a set. By the identical relation on S we mean the relation [
fulfilling alb if and only if @ = b for all a € S, b € S. By the universal relation on S
we mean the binary relation U fulfilling aUb for arbitrary two elements a, b of S.
Let R be a binary relation on S. We say that R is complete, if for arbitrary two ele-
ments a, b of S either aRb or bRa is true.

2. SIMPLE CHARACTERISTICS OF TOLERANCES ON WA-LATTICES

Let S be a set and let ¢ be a binary relation on S. We say that a binary relation g
on S is the symmetric hull of g, if for arbitrary a, b of S we have a gg b if and only
if apb or boa. It is clear that for a reflexive relation ¢ the symmetric hull gy is
a tolerance.

Proposition 1. Let S be a non-empty set with an antisymmetric binary relation Q.
Then (S, @) is a tournament, if and only if the symmetric hull o5 of ¢ is the universal
relation on S.

Proof. If (S, o) is a tournament, then for any a, b of S we have a o b or b g a,
therefore a o4 b. On the other hand, if a g5 b for any two elements a, b of S, then
for any two elements a, b of S either a ¢ b, or b ¢ a. As g is antisymmetric, for a % b
only one of these two possibilities can occur, thus (S, ¢) is a tournament.

Proposition 2. Let S be a non-empty set with an antisymmetric acyclic binary
relation 9. Then (S, 0) is a chain, if and only if the symmetric hull og of ¢ is the
universal relation on S.

Proof follows from Proposition 1, because a chain is an acyclic tournament.

Theorem 1. Let W be a WA-lattice and let T be a tolerance compatible with W.
Then for arbitrary two elements a, b of W

aTb = xTy for arbitrary x,ye S(a Ab, avb).

Proof. Let aTh. From the reflexivity of T we have bTb and by the compatibility
of T we obtain: aTbh, bTb = a A bTh, a v bTb. Analogously a A bTa, a v bTa.
Further, a A bTa,a A bTb=(a A b) v (a A b)Ta v b,ie.a A bTa v b. Let x
and y be in S(a A b, a v b). From a A bTa v b, xTx we obtain (a A b) v
v xT(av b)vx, (anb)arxT(@avb)ax If anb=<x=avb then
(arnb)ax=x,(avb)vx=avbhb, thus xTavhb Ifavb=<x=aahb,
then (a A b)vx=x, (av b)Ax=avb, thus also xTa v b. Analogously
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yTa v b, yTa A b, xTa A b. Leta nb=Xx=<avb,anb=Xy=avb;then
xTa v band a v bTy imply x A (a v b) T(a v b) A y,ie. xTy. Duallya v b <
Xx=ZXaanbjavb=xy=XanbimplyxTy.Ifav b=x=<a A b,anb=
<y=Zavhb, then aabTx, yTa v b yields (a A b) v yTx v (a A b), ie.
again xTy.

3. EXISTENCE OF COMPATIBLE TOLERANCES ON WA-LATTICES

In this item we shall study compatible tolerances on WA-lattices. Evidently, on
any WA-lattice (with more than one element) there exist at least two compatible
tolerances, namely the identical relation and the universal relation. Also each con-
gruence on a WA-lattice is a compatible tolerance on it. We are interested mainly in
compatible tolerances which are not congruences.

Definition 6. Let W be a WA-lattice, let 4 be a subset of W. The set A is called
a cycle in W, if A = S(a, b) for arbitrary two distinct elements a, b of A.

Lemma 1. Let W be a WA-lattice. Then each cycle of W is a tournament with at
most three elements.

Proof. If a, b are two distinct elements of 4, then ae 4 = S(a, b), thus either
axXaxXborb=xXa=xa. As a,b are distinct, we have either a < b or b<a
and A is a tournament. Suppose that there exists a cycle 4 of W with more than threc
elements. Let a, b, ¢, d be some four of them. We have 4 = S(a, b), therefore either
a<c<borb<c< a; without loss of generality let a < ¢ < d. If a < b, then
a¢ S(b, c) and A4 *+ S(b, c), which is a contradiction. Thus b < a. The element d
must satisfy either a < d < b or b < d < a. In the first case a < ¢, a < d, thus
a ¢ S(c,d) and A # S(c, d); in the second case b < a, b < d and thus b ¢ S(a, d);
both these cases lead to contradictions.

Theorem 2. Let W be a WA-lattice, let A be a cycle of W and let T be a tolerance
compatible with W. Then the restriction T' of T onto A is either the identical
relation or the universal relation on A.

Proof. According to Lemma 1 A cannot have more than three elements. If it has
less than three elements, then any tolerance on A is either the identical relation or
the universal relation. Let A4 have three elements a, b,c and a < b <c<a. If T’
is not the identical relation, then there exist two distinct elements of 4 which arein 77;
without loss of generality let aT’b. From aT’b and ¢T'c we have a = a v ¢T'b v
ve=c¢,b=DbnAcT'anc=cand T is the universal relation.

Lemma 2. Each three-element WA-lattice is a cycle or a chain.

This assertion is evident.
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Lemma 3. Each tolerance compatible with a three-element or a four-element
singular WU-system is either the identical relation I or the universal relation U
on the system.

Proof. Let W, be a three-element singular WU-system. Then W, is a cycle and
according to Theorem 2 each tolerance compatible with it is I or U. If W, is a four-
element singular WU-system, then A = {a, b} and {a, 0, 1} is a cycle of W,. This
means that the restriction T’ of T onto {a, 0, 1} is either the identical relation or the
universal relation. Analogously the restriction T” onto {b, 0, 1} is either the identical
relation or the universal relation. Let both T" and T” be identical relations. Then
either T = I, or aTb. If aTh, then aTh, bTbh imply a v bTb v ‘b, which means 1 Th
and 1 T"b, which is a contradiction with the assumption that T” is the identical
relation. Now let T’ be the universal relation on {a, 0, 1}. Then 0T1 and according
to Theorem | we have xTy for any two elements x, y of W, and T = U. Analogously
if T" is the universal relation on {b, 0, 1}.

Lemma 4. Let W be an at least five-element singular WU-system. Then each
tolerance compatible with W is either the identical relation I, or the universal
relation U.

Proof. Let Wbe an at least five-element singular WU-system and let T be a toler-
ance compatible with W. Further let T # I. Then there exist two distinct elements
a, b or Wsuch that aTh. If a =0, b = 1, then T = U according to Theorem 1.
Ifa+x0,a+1, b=+0,b=+1,then a A bTa v b according to Theorem 1, thus
OTtand T= U. Leta = 0, b & 1. As W has at least five elements, there exist c € W,
d € W which are pairwise distinct and distinct from 0, 1 and b. As T is reflexive,
¢Te.dTd. From aTb and a = 0 we have OTbh. Then ¢Te,0Tb = ¢ =c¢ v 0Tc v b =
= 1. Thus ¢T'| and analogously dT1. This implies 0 = ¢ A dT1 A 1 =1, thus 0T1
and the situation is the same as in the preceding case. If a = 1, b * 0, the proof
is dual.

Theorem 3. On each singular WU-system there exist only two compatible toler-
ances, namely the identical relation and the universal relation.

Proof follows directly from Lemmas 3 and 4.
4. SUB-WA-LATTICES AND COMPATIBLE TOLERANCES

If can we prove the existence of a compatible tolerance which is not a congruence
on a special sub-WA-lattice of a WA-lattice, we can extend this result onto the whole
WA-lattice. We formulate this exactly in the following theorem.

Theorem 4. Let W be a WA-lattice. A necessary and sufficient condition for the
existence of a tolerance T compatible with W which is not a congruence is the
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following: there exists a sub-WA-lattice W, of W, a tolerance T, compatible with W,
which is not a congruence and a homomorphism ¢ of Wonto a WA-lattice W, such
that (x) = ¢(v) if and only if either x = y or both x and y belong to W,.

Proof. The necessity is obvious; if the required tolerance T exists, we may put
W, = W, T, = T and ¢ equal to the mapping of W onto a one-element WA-lattice.
Let us prove the sufficiency. First we prove thatif ae W,, be W — Wy, a v be W,
then a v b = a. Suppose that it is not so. Then a A b # b. But ¢(a) = ¢(a v b)
in Wi, thus ¢(a) A ¢(b) = ¢(a v b) A @(b) + ¢(b) in W,, because be W — W,
and thus ¢(b) is the image of only one clement of Win ¢. But (a v b) A b =b
in W, thus ¢(a v b) A ¢(b) = ¢(b) in W,, because ¢ is a homomorphism. We have
a contradiction. Dually we can prove that if ae Wy, be W — W,, a A be W,
then a A b = a. Now let T be a tolerance on W defined so that xTy if and only if
either x = y, or xe W, ye W,, xTyy. Let x,, x,, y;, y, be elements of W and
X Ty, x,Ty,. If X, = v), x; = yy, then x; v X, = ¥ V Yy, X{ A X3 =¥ A Y,
and thus x; v x,Ty; Vv 32, X; A X,Ty, A y,. If all the elements x,, x,, yy, ¥, are
in Wy and x,Tyy, X,Toy,, then x; V X5, Vi V Vo, X1 A X5, ¥y A P, are all in W,
and x; v x,Tyyy V y2, X; A X,To¥y A V., Which means x, v x,Ty; Vv y,, x; A
A X, Ty, A y,. Nowifx; = y, € W— W, and x,, y, are in W, and x,T,y,, we have
o(x;) v o(x,) = o(r;) v ¢(y,) in W,. This means that either x, v x, = y; v ¥,
Or X; V X,, ¥, V ¥, are both in W,. In the first case evidently x; v x,Ty; v y,.
In the second case X, v x, = x5, ¥; V Jy» = ), (as proved above), thus again
x, VvV x,Ty, v y,. Dually we prove x; A X;Ty,; A y,.

Lemma 5. Let W be a WA-lattice and let Wy be a sub-WA-lattice of W. The
necessary and sufficient condition for the existence of a homomorphism ¢ of W
into a WA-lattice Wy such that o(x) = ¢@(y) for x + y if and only if x€ Wy, y € W,
is the following: for each xe W — W, either x <y for each ye W, or y < x for
each y € W, or none of the cases x < y, y < x occurs for any y € W,,.

Proof. Necessity. Let we W,, xe W — W,. In W, we have either ¢(x) < ¢o(w)
of ¢(w) > ¢(x), or none of the cases ¢(x) =< @(w), p(w) Z= ¢(x) occurs. In the
first case ¢(x) A @(w) = o(x) in W, and we must have x A y = x for any
y € Wy, which means x < y for each y € W,. In the second case dually y < x for
each y € Wy. In the third case ¢(x) v @(w) and ¢(x) A @(w) are both distinct from
both ¢(x), p(w). As they are distinct from ¢(w), the elements u = ¢~ *(o(x) v @(w)),
v = ¢ (@(x) A ¢(w))are determined uniquely and are in W — W,. But ¢(y) = o(w)
for each ye W, thus ¢(u) = ¢(x) v o(y), ¢(v) = @(x) A @(y) for each ye W,
which means u = x v y, v = x A y for each ye W,. As u, v are distinct from x,
none of the cases x < y, y < x occurs for any y € W,

Sufficiency. If xe W — W,, y < x for each ye Wy, then x v y = x, X A y =
= ye W, for each ye W,. If xe W— W, x <y for each ye W,, then x v y =
=yeWo, x Ay=x. Let xe W— W, and neither x < y nor y < x for any
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y € W,. Choose we W,. Then x v w > w and thus x v w > y for each ye W,.

Suppose that for some y, € W, there exists z < x v w such that x <z, y, = z.
Then y, < zand y < z for each y € W,, in particular w < z and thus we have w < z,
x < z, z < x v w, which is a contradiction. We have proved that x v y = x v w

for each y e W,. Dually we can prove x A y = x A w for each ye W,. Thus we
have proved that the mapping ¢ of W into W, such that ¢(x) = ¢(y) for x + y if
and only if x € W,, y € W, is a homomorphism.

Theorem 5. Let W be a WA-lattice and let C be a sub-WA-lattice of W which is
a chain with at least three elements. Let any eleiment x € W — C be either greater
than all elements of C or less than all elements of C, or such that neither x <y
nor y < x for any element y € C. Then there exists a tolerance compatible with W
which is not a congruence.

Proof. By Theorem 4 from [10] there exists a compatible tolerance which is not
a congruence on each chain with at least three elements. By Lemma 5 the assumptions
of Theorem 4 are fulfilled, thus according to Theorem 4 the assertion holds.

5. TOURNAMENTS

The algebraic definition of a tournament was given in § 1. Nonetheless as is well-
known, a tournament can be defined also graph-theoretically.

A tournament is a directed graph without loops in which any two distinct vertices
are joined exactly by one directed edge.

The two definitions of a tournament represent two different view-points from
which this concept can be considered. Substantially they express the same thing. We
can take a tournament W according to the algebraic definition and for any two its
distinct elements a, b for which a v b = b we join a and b by a directed edge
outgoing from a and coming into b. Then we obtain a tournament according to the
graph-theoretical definition. For any two distinct elements a, b either a v b = b
or a v b =a and not both simultaneously; thus any two distinct elements are
joined cxactly by one directed edge and the set of elements of Wcan be viewed as the
set of vertices of a tournament according to the graph-theoretical definition. On the
other hand, let W be a tournament according to the graph-theoretical definition.
For any two distinct elements @ and b we puta v b, a A b = a, if and only if there
exists a directed edge from a into b; we obtain a tournament according to the
algebraic definition.

This enables us to consider tournaments from the two view-points. We shall
always use the view-point which will be more convenient for our considerations.

Now we shall prove some theorems concerning tolerances on tournaments.

Theorem 6. Let W be a tournament which is not strongly connected [6] and
which has at least three vertices. Then there exists a tolerance T compatible with W
which is neither the identical relation nor the universal relation.
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Proof. As Wis not strongly connected, it has at least two quasicomponents. For
two quasicomponents C,, C, of Wlet C; < C, ifand only if C, #+ C, and each edge
joining a vertex from C; with a vertex of C, has its terminal vertex in C,. As is well-
known from the graph theory, this ordering is complete. Let C be a quasicomponent
of W which is not minimal in this ordering. Let W, (or W,) be a subtournament
of Winduced by the vertices of all quasicomponents C’ for which C’ < C (or C" > C,
respectively). The vertex sets of W, and W, are disjoint, non-empty and each edge
joining a vertex of W, with a vertex of W, has its terminal vertex in W,. Now let T
be a tolerance on W such that two elements are in T if and only if they are both
in W, or both in W,. Evidently T is neither the identical relation, nor the universal
relation. Now let x,; Ty, x,Ty,. If all the elements x,, y,, x,, y, are in W,, then also
X; V Xz, X3 A Xy, ViV Yy Vi A Yy are allin Wy oand x; v x,Ty; v y,, X A
A x,Tyy A y,. Analogously if all the elements x,, yy, X,, y, are in W,. Now let
Xy, yy be in W, and let x,, v, be in W,. We have x; v x, = x,, x; A X, = Xy,
ViV y2=Yy ¥y Aya =y and thus x; v x; = 3Ty, =y, v y,, X; A X =
= x,;Ty, = y; A y,. Analogously if x,, y; are in W, and x,, y, are in W,.

Theorem 7. Let W be a tournament having at least three quasicomponents. Then
there exists a tolerance T compatible with W which is not a congruence.

Proof. Let C, be a quasicomponent of W which is neither minimal nor maximal
in the ordering described in the proof of Theorem 6. Let W, (or W,) be a subtour-
nament of W induced by the vertices of all quasicomponents C’ of W for which
C' < C, (or C" > C,, respectively). The subtournaments W,, W,, C, are pairwise
disjoint and all non-empty. Now let T be a tolerance on W such that two elements are
in Tif and only if they are both in W; U C, or both in W, u C,. Any edge joining
a vertex of W, u C, with a vertex of W, u C, has its terminal vertex in W, u C,.
Thus the proof of the compatibility of T is analogous to the proof of Theorem 6.
Now if aisin W, bin C, and ¢ in W,, we have aTb, because both a, b arein W; U C,,
bTc, because both b, ¢ are in W, U C,, but a and ¢ are not in T, because a is not in
W, U C, and c is not in W; U C,. The tolerance T is not transitive, therefore it is
not a congruence.

Remark. We speak about vertices rather than about elements, because elements
of a tournament in the graph theory are also edges.

Theorem 8. If W is a strongly connected tournament with three vertices, then any
tolerance compatible with it is either the identical relation or the universal relation.
If Wis a strongly connected tournament with four vertices, then there exists exactly
one tolerance compatible with it which is neither the identical relation nor the
universal relation.

Proof. There exists only one (up to isomorphism) strongly connected tournament
with three vertices, namely the cycle with three vertices. For it the assertion follows
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from Theorem 2. Now let W be a strongly connected tournament with four vertices.
The tournament W cannot be acyclic. As is well-known, a tournament which is not
acyclic contains at least one cycle with three vertices. Thus let {a, b, c} be such a cycle,
a < b < ¢ < a. The fourth element d is neither greater than all a, b, ¢ nor less than
all a, b, c; otherwise W would not be strongly connected. Without loss of generality
two cases may occur; either d > a,d > b.d < cord < a,d < b, d > c. The latter
case is obtained from the former by the isomorphism induced by the permutation
(abed) - (cabd). Therefore there exists only one strongly connected tournament W
with four vertices up to isomorphism; this tournament has vertices a, b, ¢, d and
a<b,a>c,a<d, b<c b<d,c>d Let T be a tolerance on W consisting
of the pairs (b, d), (d, b) and all pairs (x, x) for all vertices x of W. This tolerance is
compatible with W; this can be easily proved. This tolerance T is a congruence and
is neither the identical relation nor the universal relation. Let T’ be a tolerance
compatible with W which is neither the identical relation nor equal to T. Then T’
must contain a pair of distinct elements other than (b, d) or (d, b). Both elements of
such a pair either belong to {a, b, ¢} or to {a, d, c}. Both these sets are cycles. If
such a pair belongs to {a, b, ¢}, then the restriction of T" onto {a, b, ¢} must be the
universal relation according to Thecrem 2. But then aT’c, both the elements a, ¢
belong to the cycle {a, d, ¢} and the restriction of T’ onto {a, d, ¢} must be the
universal relation. Now from aT'b, dT’a we obtain d =a v dT'b v a = b and
from the symmetry bT’d. Thus T’ is the universal relation on W. Analogously if the
pair belongs to {a, d, c}.

Definition 7. Let W be a tournament, let x and y be two of its vertices such that
x < z <y < x for each ze W — {x, y}. Then we say that W is reducible and can
be reduced onto Wy, = W — {x, y} by deleting x and y.

This concept was defined in [7].

Lemma 6. Let W be a reducible tournament which can be reduced onto a tour-
nament W, by deleting its vertices x, y. Let T, be a tolerance compatible with W,
which is not a congruence. Then there exists a tolerance compatible with W which
is not a congruence.

Proof follows from Lemma 5 and Theorem 4.

Theorem 9. For each n = 5 there exists a strongly connected tournament W
with n vertices on which there exists a tolerance compatible with it which is not
a congruence.

Proof. If n = 5, then n — 2 = 3 and there exists a tournament W, with n — 2
vertices on which a compatible tolerance exists which is not a congruence; for
example, a chain [10]. Let W be a tournament which can be reduced onto W, (in
the sense of Definition 7). Then W is evidently strongly connected and has n vertices.
According to Lemma 6 the assertion holds.
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6. A REMARK ON LATTICES

Here we shall give two theorems concerning tolerance relations on lattices. This
is an addition to the paper [10].

Theorem 10. Let L be a lattice. Let there exist a proper ideal J of Land a proper
filter F of L such that JUF =L, JnF % 0. Then there exists a tolerance T
compatible with Lwhich is not a congruence.

Proof. Let T be a tolerance on Lsuch that xTy if and only if x and y either both
belong to J, or both belong to F. We shall prove that T is compatible with L. Let
D> g, 1, s be elements of Land pTq, rTs. This means that at least one of these cases
occurs:

(i) peJ, geJ, relJ, seJ;
(i) peJ, geJ, reF, seF;
(i) pe F, geF, reJ, seJ;
(iv) peF, qeF, reF, seF.

In the case (1) the elements p A v, g A's, p v r, q v s are all in J, because J is
a sublattice of L. Thus p A rTg A s, p v rTg v s.In the case (ii) we have p A re J,
q A s€ J, because J is an ideal, and p v re F, q v s€ F, because F is a filter;
thus again p A rTq A s, p v rTq v s. The case (iii) is dual to the case (ii), the case
(iv) is dual to (i). As J is a proper ideal of L, we have an clement ae L — J; as
J v F = L,wehavea € F. As F is a proper filter of L, we have an element be L — F;
as JUF =L, we have be J. As Jn F + 0, we have an element ce J n F. Now
aTc, because both a and ¢ are in F, and bTc, because both b and ¢ are in J. But the
elements a and b are not in T, because a ¢ J, b ¢ F. The tolerance T is not transitive
and is not a congruence.

Theorem 11. Let L be a complete infinitely distributive non-complementary
lattice. Let L be atomic and dually atomic. Then there exists a tolerance T com-
patible with Lwhich is not a congruence.

Proof. As L is non-complementary, there exists an element a € L to which no
complement exists. This means that a A x = O implies a v x <[ for each x € L.
(The symbols O and I denote the least and the greatest element of L, respectively.
These elements exist, because L is atomic and dually atomic.) Let B = {x e L, an
AX = 0}. Denote b = V x; this element exists, because L is complete. We have

xeB

anb=anrnVx=Vanax= 0, because L is infinitely distributive. Let ¢ =

xeB xeB

= a v b; we have ¢ < I. Further, let d be a dual atom of Lsuch that d = ¢. Denote
J = {0, d); this is a proper ideal of L. As d is a dual atom, we have either x < d
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or x vd=1I for each xe L. Let E={.\‘EL|x v d =1I}. Denote e = A x; we
xeE
have d ve=d v Ax = Ad v x =1. Thus ee€ E. From the definition of E we

xeE xeE
see that E = (e, I> and further J N E = 0, JuU E = L. Let f be an atom of Lsuch
that f < e. As f is an atom, we have either x = f or x A f = O for each xe€ L.
Both these cases mean that fe J. Let F = {f, I); this is a proper filter in L. As
Ec Fand JUE = L, we have J U F = L. Now according to Theorem 10 there
exists a compatible tolerance on L which is not a congruence.

7. PROBLEMS

Problem 1. For which regular WU-systems is any compatible tolerance equal
either to the identical relation or to the universal relation? For which regular WU-
systems is any compatible tolerance a congruence?

Problem 2. According to Theorem 10 in [10] the set of all compatible tolerances
of an algebra forms a lattice. For which WA-lattices is this lattice distributive (or
modular, complementary etc.)?
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