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MAXIMAL IDEALS IN A SEMIGROUP OF MEASURES 

H. L. CHOW, Hong Kong 

(Received October 17, 1974) 

In what follows S is a compact topological semigroup. A non-empty subset I с S 
is called an ideal of -S if / S c: / and SI a I. The ideal / is said to be maximal if it is 
proper and not properly contained in a proper ideal. Now let P(S) denote the set of 
probability measures on S. It is well-known that P(5) is a compact semigroup under 
convolution and the weak* topology, [2]. In this note we are concerned with maximal 
ideals in P[S) and their intersection (which is P(S) if P(S) has no maximal ideal). 

Let the support of a measure ß in P(S) be denoted by supp /x. For ju ,̂ /12 ^ ^('^)> 
we have [2], 

s u p p Aii/(2 = s u p p / ( , s u p p fi2 . 

Given a subset Л of P(S), let ^{A) = \J supp ^. It is clear that, for J j , ^2 ^ P{sy 
f.ieA 

Therefore, if A is an ideal of P{S), ^(A) is an ideal of S. 

Proposition 1. Every maximal ideal in P(S) is dense. 

Proof. Since P{S) is convex and so connected, the result follows from [5, p. 29]. 

Theorem 2. Let A be a maximal ideal in P{S). Then ^{A) = S. 

Proof. Let / = ^ ( ^ ) and suppose / ф S. Take ae S\I and let ô(a) be the unit 
point mass at a; then ô(a) ф1 = {]ле P(S) : supp x̂ n / Ф 0}. It is easily seen that / 
is a proper ideal of P(S) and A cz Î. Accordingly we have I = A, whence ^ ( / ) = / . 
Pick bel and let ju = i{ô[a) + ^(b)). Since supp/( = {a, b], we see that /г e 7, 
giving a G ^ ( / ) = /. This contradiction proves the theorem. 

Theorem 3. Let ф be the intersection of all maximal ideals in P{S). Then 
У{ф) = S\ 
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Proof. As shown in the first part of the proof of Corollary 3 in [4], P(sy => ф. 
This yields S^ = 6^{P{sy) з У^(ф). To prove the reverse inclusion, let ab e S^ 
where a, b e S. Let / = ^{ф) which is evidently an ideal of iS. If a 6 / , ab e I. Now 
suppose a ф1 and we assert that ab e I also holds. Since ^(a) ф ф, ô{a) does not belong 
to some maximal ideal Л, say, of P(S). Consider 7 = {// e P{S) : supp /i n / Ф 0}. 
Because d{a) ф / , we see that / u zl is a proper ideal of P(S). It follows that I и Л = A, 
whence I Œ A. Pick eel and let fi = i(<5(b) + <5(c)). That supp/^ = {t>, c} implies 
fiel. By virtue of [6, Theorem 2], ö{a) fi e ф. Thus ab e supp ô{a) fi cz ^ ( ф ) = / 
as required. 

CoroUary 4. Let F be the intersection of all maximal ideals in S. Then ^{ф) => F, 
where the bar denotes closure. 

Proof. Observe that S^ =э F, which implies S^ з F. Then apply the preceding 
theorem to complete the proof. 

Example 5. The inclusion in the corollary above may be proper. Take the semi­
group S = {0, 1} with usual multiplication. Then ^ ( ф ) = 5^ = 5 Ф {0} = F = F. 

CoroUary 6. The set ^{ф) is an intersection of maximal ideals in S. Further, if 
each idempotent of S is contained in the minimal ideal of S then ^{ф) is the inter-
section of all maximal ideals of S. 

Proof. Since the intersection F of all maximal ideals of S is contained in ^ ( ф ) , 
the first part of the result is immediate from Theorem 6 of [3]. As for the second 
part, we note that S^ = F (see [4, Corollary 3]) and apply Theorem 3. 

Proposition 7. 6^{Ф) = ^{ф\ 

Proof. Since ^{ф) = S^ by Theorem 3, we have ^{ф) = ^ (ф) . Moreover, 
^ ( ф ) = ^ ( ф ) (cf. [2, p. 55]). It follows that ^ ( ф ) = ^ (ф) = ^{ф) ZD ^{ф) ID 
=3 .9^(ф), and the result is clear. 

Following GRILLET [3], we call the semigroup S intersective if the intersection F of 
all maximal ideals of S coincides with the minimal ideal К of S. 

Proposition 8. If P(S) is intersective, then S is intersective. 

Proof. By assumption, ф is the minimal ideal of P{S). It follows that К a F cz 
cz ^{ф) CI с5 (̂ф) = К (see, for example, Theorem 5 of [ l ]) . Thus F = K, completing 
the proof. 

We remark that the converse of the previous proposition is not true. For instance, 
consider the semigroup S given in Example 5. While S is intersective, P{S) is not 
intersective, since ф = P(S) \ ^(1) contains properly the minimal ideal {^(0)} of P(S). 

271 



References 

[1] H. L. Chow, On supports of semigroups of measures, Proc. Edinburgh Math. Soc. (2) 19 
(1974), 3 1 - 3 3 . 

[2] /. Glicksberg, Convolution semigroups of measures, Pacific J. Math. 9 (1959), 51 — 67. 
[3] P.A. Grillet, Intersections of maximal ideals in semigroups, Amer. Math. Monthly 76 (1969), 

503-509. 
[4] R. J. Koch and A. D. Wallace, Maximal ideals in compact semigroups, Duke Math. J. 21 

(1954), 681-685. 
[5] A. B. Paalman - de Miranda, Topological semigroups, 2nd edition (Mathematisch Centrum, 

Amsterdam, 1970). 
[6] S. Schwarz, Prime ideals and maximal ideals in semigroups, Czech. Math. J. 19 (94) (1969), 

7 2 - 7 9 . 

Author's address: Department of Mathematics, Chung Chi College, The Chinese University 
of Hong Kong. 

272 


		webmaster@dml.cz
	2020-07-03T00:27:53+0200
	CZ
	DML-CZ attests to the accuracy and integrity of this document




