Czechoslovak Mathematical Journal

Ján Jakubík

W-isomorphisms of distributive lattices

Czechoslovak Mathematical Journal, Vol. 26 (1976), No. 2, 330-338

Persistent URL: http://dml.cz/dmlcz/101406

Terms of use:

© Institute of Mathematics AS CR, 1976

Institute of Mathematics of the Czech Academy of Sciences provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these Terms of use.

This document has been digitized, optimized for electronic delivery and stamped with digital signature within the project DML-CZ: The Czech Digital Mathematics Library http://dml.cz

W-ISOMORPHISMS OF DISTRIBUTIVE LATTICES

Ján Jakubík, Košice

(Received December 28, 1974)

The notion of weak isomorphism was introduced by A. Goetz and E. Marczewski ([2], [6], [7]). Weak isomorphisms and weak automorphisms of universal algebras and of special types of algebraic structures were investigated by J. Dudek and E. Peonka [1], T. Traczyk [10], R. Senft [8] and J. Sichler [9]. In this note a generalization of the notion of weak automorphism (called W-isomorphism) will be dealt with.

Let $A=(M ; F)$ be an algebra with the underlying set M and with the set F of fundamental operations. The operations e_{j}^{n} on A of the form $e_{j}^{n}\left(x_{1}, \ldots, x_{n}\right)=x_{j}$ are called trivial. The smallest family of operations in A containing all trivial and fundamental operations, and closed with respect to superposition is called the family of algebraic operations and denoted by $\alpha(A)$. By $\alpha_{n}(A)$ we denote the family of all algebraic n-ary operations. Let $n, m \geqq 0$ be integers and let $f \in \alpha_{n+m}(A)$. Let $a_{1}, \ldots, a_{m} \in M$. The n-ary operation $f\left(x_{1}, \ldots, x_{n}, a_{1}, \ldots, a_{m}\right)$ will be called a polynomial in A and the family of all polynomials in A will be denoted by $\beta(A)$.

Let be given two algebras $A_{1}=\left(M_{1} ; F_{1}\right)$ and $A_{2}=\left(M_{2} ; F_{2}\right)$ and let φ be a one-to-one mapping of the set M_{1} onto M_{2}. For each n-ary operation $f \in F_{1}$ we define an n-ary operation f^{*} on the set M_{2} by putting

$$
f^{*}\left(c_{1}, \ldots, c_{n}\right)=\varphi\left(f\left(\varphi^{-1}\left(c_{1}\right), \ldots, \varphi^{-1}\left(c_{n}\right)\right)\right)
$$

for each n-tuple (c_{1}, \ldots, c_{n}) of elements of M_{2}. Analogously, for each n-ary operation $g \in F_{2}$ there exists a uniquely defined n-ary operation g^{*} on M_{1} such that

$$
\begin{equation*}
g^{*}\left(d_{1}, \ldots, d_{n}\right)=\varphi^{-1}\left(g\left(\varphi\left(d_{1}\right), \ldots, \varphi\left(d_{n}\right)\right)\right) \tag{1}
\end{equation*}
$$

for each n-tuple (d_{1}, \ldots, d_{n}) of elements of M_{1}.
The mapping φ is called a weak isomorphism of A_{1} onto A_{2} if for each $f \in F_{1}$ and each $g \in F_{2}$ the operation f^{*} belongs to $\alpha\left(A_{2}\right)$ and the operation g^{*} belongs to $\alpha\left(A_{1}\right)$. (Cf. Goetz [2].)

The mapping φ will be called a W-isomorphism of A_{1} onto A_{2} if for each $f \in F_{1}$ and each $g \in F_{2}$ the operation f^{*} belongs to $\beta\left(A_{2}\right)$ and the operation g^{*} belongs to $\beta\left(A_{1}\right)$.

In this note we shall investigate W-isomorphisms of a distributive lattice $L_{1}=$ $=\left(M_{1} ; \wedge, \vee\right)$ onto a lattice $L_{2}=\left(M_{2}, \cap, \cup\right)$. Denote $g_{1}\left(x_{1}, x_{2}\right)=x_{1} \cap x_{2}$, $g_{2}\left(x_{1}, x_{2}\right)=x_{1} \cup x_{2}$.

Let us remark that if φ is a weak isomorphism of L_{1} onto L_{2} then, because of distributivity of L_{1}, the operation $g_{1}^{*}\left(x_{1}, x_{2}\right)$ - being algebraic in $L_{1}-$ must be a join of some of the expressions

$$
x_{1}, x_{2}, x_{1} \wedge x_{2}
$$

hence either $g_{1}^{*}\left(x_{1}, x_{2}\right)=x_{1} \vee x_{2}$ or $g_{1}^{*}\left(x_{1}, x_{2}\right)=x_{1} \wedge x_{2}$. Therefore φ is either an isomorphism or a dual isomorphism.

In what follows we assume (unless otherwise stated) that $L_{1}=\left(M_{1} ; \wedge, v\right)$ is a distributive lattice, $L_{2}=\left(M_{2} ; \cap, \cup\right)$ is a lattice and that φ is a one-to-one mapping of M_{1} onto M_{2}. Further we suppose that g_{1}^{*} and g_{2}^{*} belong to $\beta\left(L_{1}\right)$.

It will be shown that L_{2} is distributive and that, if L_{1} is not bounded, then φ is either an isomorphism or a dual isomorphism. There are lattices P and Q such that L_{1} is isomorphic to the direct product $P \times Q$ and L_{2} is isomorphic to $P \times Q^{\prime}$, where Q^{\prime} is a lattice dual to Q. Moreover, if L_{1} is bounded, then g_{1}^{*} and g_{2}^{*} necessarily have a very special form; namely, there exist elements $u, v \in M_{1}$ such that u is a complement of v in L_{1}, and for each pair $d_{1}, d_{2} \in M_{1}$ we have

$$
\begin{aligned}
& g_{1}^{*}\left(d_{1}, d_{2}\right)=\left(d_{1} \wedge d_{2} \wedge v\right) \vee\left(\left(d_{1} \vee d_{2}\right) \wedge u\right), \\
& g_{2}^{*}\left(d_{1}, d_{2}\right)=\left(\left(d_{1} \vee d_{2}\right) \wedge v\right) \vee\left(d_{1} \wedge d_{2} \wedge u\right) .
\end{aligned}
$$

For analogous results concerning Boolean algebras cf. Traczyk [10] and Goetz [3].
Let us define the operations \cap and \cup on M_{1} by putting

$$
\begin{equation*}
x \cap y=g_{1}^{*}(x, y), \quad x \cup y=g_{2}^{*}(x, y) \tag{2}
\end{equation*}
$$

for each pair of elements $x, y \in M_{1}$. Then according to (1), $L_{1}^{*}=\left(M_{1} ; \cap, \cup\right)$ is a lattice and φ is an isomorphism of L_{1}^{*} onto L_{2}. The partial order in L_{1} or L_{1}^{*} will be denoted by \leqq or \leqq, respectively.

From the fact that both g_{1}^{*} and g_{2}^{*} belong to $\beta\left(L_{1}\right)$ it follows immediately:
(*) If R is a congruence relation on the lattice L_{1}, then R is also a congruence relation on L_{1}^{*}.

For any congruence relation R on L_{1} and any $c \in M_{1}$ we denote by $c(R)$ the class of R containing the element c. The set $c(R)$ is a sublattice in both lattices L_{1} and L_{1}^{*}. If we view this set as a sublattice of L_{1} or L_{1}^{*}, then we denote it respectively by $c\left(R, L_{1}\right)$ or $c\left(R, L_{1}^{*}\right)$. The symbols R^{0} and R^{1} denote respectively the least and the greatest congruence relation on L_{1}.

The following result has been proved in [5]:
(A) Let $L_{1}=\left(M_{1} ; \wedge, \vee, \leqq\right)$ and $L_{1}^{0}=\left(M_{1} ; \cap, \cup, \leqq\right)$ be any pait of lattices that are defined on the same underlying set M_{1}. Assume that if R is a congruence relation on the lattice L_{1}, then R is also a congruence relation on L_{1}^{0}. Further assume that the lattice L_{1} is distributive. Then the following assertions hold:
(α) The lattice L_{1}^{0} is distributive.
(β) For $x, y \in M_{1}$ put $x R_{1} y\left(x R_{2} y\right)$ if $x \wedge y \leqq x \vee y$ (respectively, $x \wedge y \geqq$ $\geqq x \vee y$). Then R_{1} and R_{2} are permutable congruence relations on $L_{1}, R_{1} \wedge R_{2}=$ $=R^{0}, R_{1} \vee R_{2}=R^{1}$.
(γ) Let $c_{0} \in M_{1}$. Then $c_{0}\left(R_{1}, L_{1}\right)$ coincides with the lattice $c_{0}\left(R_{1}, L_{1}^{0}\right)$, and $c_{0}\left(R_{2}, L_{1}\right)$ is dual to the lattice $c_{0}\left(R_{2}, L_{1}^{0}\right)$.
(δ) For each $z \in M_{1}$ let us denote by $\psi_{1}(z)$ or $\psi_{2}(z)$ the unique element contained respectively in $c_{0}\left(R_{1}\right) \cap z\left(R_{2}\right)$ or in $c_{0}\left(R_{2}\right) \cap z\left(R_{1}\right)$. Then the mapping

$$
\psi(z)=\left(\psi_{1}(z), \psi_{2}(z)\right)
$$

is an isomorphism of the lattice L_{1} onto the direct product $c_{0}\left(R_{1}, L_{1}\right) \times c_{0}\left(R_{2}, L_{1}\right)$. At the same time, ψ is an isomorphism of L_{1}^{0} onto $c_{0}\left(R_{1}, L_{1}^{0}\right) \times c_{0}\left(R_{2}, L_{1}^{0}\right)$.

In what follows we shall use the same notation as in (A) with $L_{1}^{0}=L_{1}^{*}$. According to $(*)$ and (A), the assertions $(\alpha)-(\delta)$ are valid for lattices L_{1}, L_{1}^{*}. Since L_{2} is isomorphic with L_{1}^{*}, by putting $P=c_{0}\left(R_{1}, L_{1}\right), Q=c_{0}\left(R_{2}, L_{1}\right)$ we obtain

Theorem 1. Let L_{1} be a distributive lattice and let L_{2} be a lattice W-isomorphic to L_{1}. Then L_{2} is distributive and there are lattices P, Q such that L_{1} is isomorphic to $P \times Q$ and L_{2} is isomorphic to $P \times Q^{\prime}$, where Q^{\prime} is a lattice dual to Q.

As above, let c_{0} be a fixed element of M_{1}.
Lemma 1. Suppose that $c_{0}\left(R_{1}\right)=\left\{c_{0}\right\}$ (or $\left.c_{0}\left(R_{2}\right)=\left\{c_{0}\right\}\right)$. Then φ is a dual isomorphism (respectively, an isomorphism).

Proof. Let $c_{0}\left(R_{1}\right)=\left\{c_{0}\right\}$. Then by $(\beta), c_{0}\left(R_{2}\right)=M_{1}$ and hence $c_{0}\left(R_{2}, L_{1}\right)=L_{1}$, $c_{0}\left(R_{2}, L_{1}^{*}\right)=L_{1}^{*}$. Therefore according to (γ), the lattice L_{1}^{*} is dual to L_{1}. Since φ is an isomorphism of L_{1}^{*} onto L_{2}, we obtain that φ is a dual isomorphism of L_{1} onto L_{2}. The other assertion can be verified analogously.

Lemma 2. Suppose that $c_{0}\left(R_{1}\right) \neq\left\{c_{0}\right\} \neq c_{0}\left(R_{2}\right)$. Then the lattice $c_{0}\left(R_{2}, L_{1}\right)$ possesses a greatest element.

Proof. Because L_{1} is distributive, the polynomial $g_{1}^{*}(x, y)$ can be written as a join of some of the expressions

$$
a, b \wedge x, \quad c \wedge y, \quad d \wedge x \wedge y, \quad x, y, x \wedge y
$$

where a, b, c, d are fixed elements of the set M_{1}.

If $x_{0}, y_{0} \in c_{0}\left(R_{1}\right)$ or $x_{0}, y_{0} \in c_{0}\left(R_{2}\right)$, then according to (2) and (γ) we have
(3) $g_{1}^{*}\left(x_{0}, y_{0}\right)=x_{0} \cap y_{0}=x_{0} \wedge y_{0}$ (respectively, $\left.g_{1}^{*}\left(x_{0}, y_{0}\right)=x_{0} \vee y_{0}\right)$.
(a) Suppose that $g_{1}^{*}(x, y)=x \vee y \vee D$, where D is either empty or D is a join of some of the expressions

$$
a, b \wedge x, \quad c \wedge y, \quad d \wedge x \wedge y, \quad x \wedge y
$$

Then

$$
\begin{equation*}
g_{1}^{*}(x, y)=a \vee x \vee y \text { or } g_{1}^{*}(x, y)=x \vee y . \tag{4}
\end{equation*}
$$

Choose $x_{0}, y_{0} \in c_{0}\left(R_{1}\right), x_{0} \neq y_{0}$. According to (3) and (4) we have

$$
x_{0} \wedge y_{0}=a \vee x_{0} \vee y_{0} \text { or } x_{0} \wedge y_{0}=x_{0} \vee y_{0}
$$

Thus $x_{0}=y_{0}$, which is a contradiction. Hence without loss of generality we may assume that $g_{1}^{*}(x, y)$ is a join of some of the expressions

$$
a, b \wedge x, \quad c \wedge y, \quad d \wedge x \wedge y, \quad x, x \wedge y
$$

(b) Suppose that $g_{1}^{*}(x, y)=x \vee D$, where D is a join of some of the expressions $a, b \wedge x, c \wedge y, d \wedge x \wedge y, x \wedge y$. Then

$$
\begin{equation*}
g_{1}^{*}(x, y)=x \vee a \vee(c \wedge y) \text { or } g_{1}^{*}(x, y)=x \vee(c \wedge y) \tag{5}
\end{equation*}
$$

(the relations $g_{1}^{*}(x, y)=x, g_{1}^{*}(x, y)=x \vee a$ being obviously impossible).
Put $\psi_{1}(a)=a_{1}, \psi_{1}(c)=c_{1}=y_{0}$ and choose $x_{0} \in c_{0}\left(R_{1}\right), x_{0} \neq y_{0}$. Then (because $\psi_{1}(z)=z$ for each $z \in c_{0}\left(R_{1}\right)$) from (5) we obtain

$$
\begin{align*}
g_{1}^{*}\left(x_{0}, y_{0}\right)= & x_{0} \vee a_{1} \vee\left(c_{1} \wedge y_{0}\right)=x_{0} \vee a_{1} \vee y_{0}, \tag{6}\\
& \text { or } g_{1}^{*}\left(x_{0}, y_{0}\right)=x_{0} \vee y_{0} .
\end{align*}
$$

From (6) and (3) we conclude, analogously as in (a), that $x_{0}=y_{0}$, which is a contradiction. Therefore $g_{1}^{*}(x, y)$ is a join of some of the expressions

$$
a, b \wedge x, \quad c \wedge y, \quad d \wedge x \wedge y, \quad x \wedge y
$$

(c) Suppose that the lattice $c_{0}\left(R_{2}, L_{1}\right)$ has no greatest element. Then there are distinct elements $x_{0}, y_{0} \in c_{0}\left(R_{2}\right)$ such that

$$
\begin{equation*}
x_{0} \wedge y_{0}>\psi_{2}(a) \vee \psi_{2}(b) \vee \psi_{2}(c) \vee \psi_{2}(d)=a_{0} . \tag{7}
\end{equation*}
$$

The element $g_{1}^{*}\left(x_{0}, y_{0}\right)$ is a join of some of the elements

$$
\psi_{2}(a), \psi_{2}(b) \wedge x_{0}, \psi_{2}(c) \wedge y_{0}, \psi_{2}(d) \wedge x_{0} \wedge y_{0}, x_{0} \wedge y_{0}
$$

(because $\psi_{2}(z)=z$ for each $z \in c_{0}\left(R_{2}\right)$). Hence by (7),

$$
\begin{equation*}
g_{1}^{*}\left(x_{0}, y_{0}\right) \leqq x_{0} \wedge y_{0} \tag{8}
\end{equation*}
$$

From (8) and from (3) we get $x_{0} \vee y_{0} \leqq x_{0} \wedge y_{0}$, thus $x_{0}=y_{0}$, which is a contradiction. Therefore the lattice $c_{0}\left(R_{2}, L_{1}\right)$ possesses a greatest element.

Lemma 3. Let $c_{0}\left(R_{1}\right) \neq\left\{c_{0}\right\} \neq c_{0}\left(R_{2}\right)$. Then the lattice $c_{0}\left(R_{1}, L_{1}\right)$ has a greatest element.

The proof is analogous to that of Lemma 2 with the distinction that we consider the polynomial $g_{2}^{*}(x, y)$ instead of $g_{1}^{*}(x, y)$.

Lemma 4. Let $c_{0}\left(R_{1}\right) \neq\left\{c_{0}\right\} \neq c_{0}\left(R_{2}\right)$. Then both lattices $c_{0}\left(R_{1}, L_{1}\right)$ and $c_{0}\left(R_{2}, L_{1}\right)$ have least elements.

The proofs are dual to the proofs of Lemma 2 and Lemma 3.
A lattice will be called bounded if it has a least as well as a greatest element.
Lemma 5. Let $c_{0}\left(R_{1}\right) \neq\left\{c_{0}\right\} \neq c_{0}\left(R_{2}\right)$. Then both lattices L_{1} and L_{2} are bounded.
Proof. The assertion for L_{1} follows from Lemmas 2, 3, 4 and from (δ). Similarly, from Lemmas 2, 3, 4, from (γ) and (δ) we obtain that L_{1}^{*} has a least and a greatest element; because L_{2} is isomorphic to L_{1}^{*}, the same holds for L_{2}.

Theorem 2. Let L_{1} be a distributive lattice and let φ be a W-isomorphism of L_{1} onto a lattice L_{2}. Suppose that either L_{1} or L_{2} is not bounded. Then φ is either an isomorphism or a dual isomorphism.

This follows from Lemma 5 and Lemma 1.
Now let us consider the case when the lattice L_{1} is bounded.
Lemma 6. Let $L_{1}=\left(M_{1} ; \wedge, \vee\right)$ be a bounded distributive lattice. Let $u, v \in M_{1}$ such that u is a complement of v. Define on M_{1} binary operations \cap, \cup by the rules

$$
\begin{align*}
& x \cap y=(x \wedge y \wedge v) \vee((x \vee y) \wedge u) \tag{9}\\
& x \cup y=((x \vee y) \wedge v) \vee(x \wedge y \wedge u) \tag{10}
\end{align*}
$$

Then (i) $L=\left(M_{1} ; \cap \cup\right)$ is a distributive lattice with the least element u and the greatest element v; (ii) for each $x, y \in M_{1}$,

$$
\begin{align*}
& x \wedge y=(x \cap y \cap b) \cup((x \cup y) \cap a), \\
& x \vee y=((x \cup y) \cap b) \cup(x \cap y \cap a)
\end{align*}
$$

is valid, where a and b are respectively the least and the greatest element of L_{1}.

Proof. Let a and b be respectively the least and the greatest element of L_{1}. Denote

$$
X_{1}=\left\{x \in M_{1}: a \leqq x \leqq u\right\}, \quad X_{2}=\left\{x \in M_{1}: a \leqq x \leqq v\right\} .
$$

Since $u \wedge v=a, u \vee v=b$ and since L_{1} is distributive, the mapping

$$
\psi(x)=(x \wedge u, x \wedge v)
$$

is an isomorphism of the lattice L_{1} onto the direct product of lattices $\left(X_{1}, \wedge, \vee\right)$, $\left(X_{2}, \wedge, \vee\right)$, and for any $x_{1} \in X_{1}, x_{2} \in X_{2}$ we have

$$
\psi^{-1}\left(\left(x_{1}, x_{2}\right)\right)=x_{1} \vee x_{2} .
$$

Thus, in particular, ψ is a one-to-one mapping of the set M_{1} onto the set $X_{1} \times X_{2}$. Let us define binary operations \cap, \cup on X_{1} and on X_{2} in such a way that $\left(X_{1}, \cap, \cup\right)$ is a lattice dual to $\left(X_{1}, \wedge, \vee\right)$, and $\left(X_{2}, \cap, \cup\right)$ coincides with $\left(X_{2}, \wedge, \vee\right)$. Then it follows from (9) and (10) that ψ is an isomorphism of the algebra (M_{1}, \cap, \cup) onto the direct product $\left(X_{1}, \cap, \cup\right) \times\left(X_{2}, \cap, \cup\right)$. Therefore $\left(M_{1}, \cap, \cup\right)$ is a distributive lattice.

Two lattices P and Q defined on the same underlying set M will be said to fulfil the condition (D) if there exist lattices A_{1}, A_{2} (defined respectively on the set A_{1} and A_{2}) and a mapping ψ of M onto $A_{1} \times A_{2}$ such that ψ is an isomorphism of P onto $A_{1} \times A_{2}$ and, at the same time, ψ is an isomorphism of Q onto $A_{1}^{*} \times A_{2}$, where A_{1}^{*} is the lattice dual to A_{1}.

We have verified that the lattices $\left(M_{1}, \wedge, \vee\right)$ and $\left(M_{1}, \cap, \cup\right)$ fulfil the condition (D). Because both these lattices are distributive, according to [4] they fulfil also the condition (E), namely, there exist elements t and t^{\prime} in M_{1} such that t^{\prime} is a complement of t in $\left(M_{1}, \cap, \cup\right)$ and the relations

$$
\begin{aligned}
& x \wedge y=(x \cap y) \cup(y \cap t) \cup(t \cap x), \\
& x \vee y=(x \cap y) \cup\left(y \cap t^{\prime}\right) \cup\left(t^{\prime} \cap x\right),
\end{aligned}
$$

hold for each pair $x, y \in M_{1}$. Since $\left(M_{1}, \cap, \cup\right)$ is distributive, we have

$$
\begin{gathered}
(x \cap y) \cup(y \cap t) \cup(t \cap x)=\left[(x \cap y) \cap\left(t \cup t^{\prime}\right)\right] \cup[(x \cup y) \cap t]= \\
=[(x \cap y) \cap t] \cup\left[(x \cap y) \cap t^{\prime}\right] \cup[(x \cup y) \cap t]=[(x \cup y) \cap t] \cup\left[x \cap y \cap t^{\prime}\right] .
\end{gathered}
$$

Hence

$$
x \wedge y=[(x \cup y) \cap t] \cup\left[x \cap y \cap t^{\prime}\right] .
$$

Analogously we can verify that

$$
x \vee y=[x \cap y \cap t] \cup\left[(x \cup y) \cap t^{\prime}\right] .
$$

In particular,

$$
\begin{aligned}
& x \wedge t=[(x \cup t) \cap t] \cup\left[x \cap t \cap t^{\prime}\right]=t, \\
& x \vee t^{\prime}=\left[x \cap t^{\prime} \cap t\right] \cup\left[\left(x \cup t^{\prime}\right) \cap t^{\prime}\right]=t^{\prime}
\end{aligned}
$$

for each $x \in M_{1}$. Hence $t=a, t^{\prime}=b$. Thus (9^{\prime}) and (10^{\prime}) hold.
Theorem 3. Let $L_{1}=\left(M_{1} ; \wedge, \vee\right)$ be a bounded distributive lattice. Let $u, v \in M_{1}$ such that u is a complement of v. Let M_{2} be a set with two binary operations \cap and \cup, and let φ be a one-to-one mapping of M_{1} onto M_{2} such that for each pair $x^{\prime}, y^{\prime} \in M_{2}$ we have

$$
\begin{align*}
& \varphi^{-1}\left(x^{\prime} \cap y^{\prime}\right)=(x \wedge y \wedge v) \vee((x \vee y) \wedge u) \\
& \varphi^{-1}\left(x^{\prime} \cup y^{\prime}\right)=((x \vee y) \wedge v) \vee(x \wedge y \wedge u)
\end{align*}
$$

where $x=\varphi^{-1}\left(x^{\prime}\right), y=\varphi^{-1}\left(y^{\prime}\right)$. Then $L_{2}=\left(M_{2} ; \cap, \cup\right)$ is a lattice and φ is a W-isomorphism of L_{1} onto L_{2}.

Proof. From the assertion (i) of Lemma 6 and from (9"), ($10^{\prime \prime}$) it follows that L_{2} is a distributive lattice. For any $x, y \in M_{1}$ denote $h_{1}(x, y)=x \wedge y, h_{2}(x, y)=$ $=x \vee y, \varphi(x)=x^{\prime}, \varphi(y)=y^{\prime}, g_{1}\left(x^{\prime}, y^{\prime}\right)=x^{\prime} \cap y^{\prime}, g_{2}\left(x^{\prime}, y^{\prime}\right)=x^{\prime} \cup y^{\prime}$. Then (using the same notation as in the introduction) we infer from ($9^{\prime \prime}$) that

$$
g_{1}^{*}(x, y)=(x \wedge y \wedge v) \vee((x \vee y) \wedge u)
$$

hence $g_{1}^{*} \in \beta\left(L_{1}\right)$. Analogously, from ($10^{\prime \prime}$) we obtain $g_{2}^{*} \in \beta\left(L_{1}\right)$. Further we have

$$
h_{1}^{*}\left(x^{\prime}, y^{\prime}\right)=\varphi\left(\varphi^{-1}\left(x^{\prime}\right) \wedge \varphi^{-1}\left(y^{\prime}\right)\right)=\varphi(x \wedge y) .
$$

Denote $x \cap y=g_{1}^{*}(x, y), x \cup y=g_{2}^{*}(x, y)$. The assertion (ii) of Lemma 6 (cf. ($\left.9^{\prime}\right)$) implies

$$
h_{1}^{*}\left(x^{\prime}, y^{\prime}\right)=\varphi((x \cap y \cap b) \cup((x \cup y) \cap a)) .
$$

The mapping φ is obviously an isomorphism with respect to both operations \cap and \cup; thus

$$
h_{1}^{*}\left(x^{\prime}, y^{\prime}\right)=\left(x^{\prime} \cap y^{\prime} \cap b^{\prime}\right) \cup\left(\left(x^{\prime} \cup y^{\prime}\right) \cap a^{\prime}\right) .
$$

Hence $h_{1}^{*} \in \beta\left(L_{2}\right)$. Similarly we can verify that $h_{2}^{*} \in \beta\left(L_{2}\right)$. Therefore φ is a W-isomorphism of L_{1} onto L_{2}.

We shall show that if L_{1} is a bounded distributive lattice, then each W-siomorphism of L_{1} onto a lattice L_{2} has the form described in Thm. 3.

The following statement was established in [5].
(B) Let L_{1} and L_{1}^{0} be as in (A). Suppose that a and b are respectively the least and the greatest element of L_{1}. Put $u=a \cap b, v=a \cup b$. Then u and v are respec-
tively the least and the greatest element in L_{1}^{0}, u is a complement of v and for each pair $x, y \in M_{1}$ the relations (9) and (10) are valid.

In view of (*), the statement of Thm. (B) holds for the pair of lattices L_{1} and $L_{1}^{0}=L_{1}^{*}$.

Theorem 4. Let $L_{1}=\left(M_{1} ; \wedge, \vee\right)$ be a distributive lattice and let φ be a Wisomorphism of L_{1} onto a lattice $L_{2}=\left(M_{2} ; \cap, \cup\right)$. Let a and b be respectively the least and the greatest element of L_{1}. Then
(i) L_{2} is bounded (the least and the greatest element of L_{2} will be denoted by u_{2} and v_{2}, respectively, and we put $\varphi^{-1}\left(u_{2}\right)=u, \varphi^{-1}\left(v_{2}\right)=v$);
(ii) if $x_{2}, y_{2} \in M_{2}$ and $x=\varphi^{-1}\left(x_{2}\right), y=\varphi^{-1}\left(y_{2}\right)$, then

$$
\begin{align*}
x_{2} \cap y_{2} & =\varphi((x \wedge y \wedge v) \vee((x \vee y) \wedge u)), \tag{11}\\
x_{2} \cup y_{2} & =\varphi(((x \vee y) \wedge v) \vee(x \wedge y \wedge u)) ; \tag{12}\\
& u \wedge v=a, u \vee v=b, \tag{iii}
\end{align*}
$$

Proof. Let u, v be as in (B). Because φ is an isomorphism of L_{1}^{0} onto $L_{2}, \varphi(u)$ and $\varphi(v)$ are respectively the least and the greatest element of L_{2}. The assertions (ii) and (iii) are immediate consequences of (B).

Remark. The relations (11) and (12) are clearly equivalent with the relations

$$
\begin{aligned}
& g_{1}^{*}(x, y)=(x \wedge y \wedge u) \vee((x \vee y) \wedge v), \\
& g_{2}^{*}(x, y)=((x \vee y) \wedge u) \vee(x \wedge y \wedge v)
\end{aligned}
$$

If $u=a$, then $v=b$ and hence from (11) and (12) we obtain

$$
x_{2} \cap y_{2}=\varphi(x \wedge y), \quad x_{2} \cup y_{2}=\varphi(x \vee y) ;
$$

thus φ is an isomorphism of L_{1} onto L_{2}. If $u=b$, then $v=a$, and by (11) and (12),

$$
x_{2} \cap y_{2}=\varphi(x \vee y), \quad x_{2} \cup y_{2}=\varphi(x \wedge y),
$$

and hence φ is a dual isomorphism of L_{1} onto L_{2}. Therefore we have
Corollary 1. Let L_{1}, L_{2}, a, b, u, v be as in Thm. 4. If $u=a($ or $u=b)$, then φ is an isomorphism (a dual isomorphism, respectively).

For an analogous result concerning Boolean algebras cf. Traczyk [10].
Since L_{1} is distributive and v is a complement of u, the element v is uniquely determined by u. Thus from Thm. 4 we conclude

Corollary 2. Let $L_{1}, L_{2}, a, b, u_{2}$ be as in Thm. 4. Then L_{2} is determined up to an isomorphism by L_{1} and by the element $u=\varphi^{-1}\left(u_{2}\right)$.

References

[1] J. Dudek, E. Plonka: Weak automorphisms of linear spaces and of some other abstract algebras, Coll. Math. 22 (1971), 201-208.
[2] A. Goetz: On weak automorphisms and weak homomorphisms of abstract algebras, Coll. Math. 14 (1966), 163-167.
[3] A. Goetz: On various Boolean structures in a given Boolean algebra, Publ. Mathem. 18 (1971), 103-108.
[4] J. Jakubik, M. Kolibiar: O nekotorych svojstvach par struktur, Czechoslov. Math. J. 4 (1954), 1-27.
[5] J. Jakubik: Pairs of lattices with common congruence relations (to appear).
[6] E. Marczewski: A general scheme of the notion of independence in mathematics, Bull. Acad. Polon. Sci. Sér. Math. Phys. Astron. 6 (1958), 731-736.
[7] E. Marczewski: Independence in abstract algebras. Results and problems, Colloq. Math. 14 (1966), 169-188.
[8] R. Senft: On weak automorphisms of universal algebras, Dissertationes Math. 74 (1970).
[9] J. Sichler: Weak automorphisms of universal algebras, Alg. Univ. 3 (1973), 1-7.
[10] T. Traczyk: Weak isomorphisms of Boolean and Post algebras. Coll. Math. 13 (1965), 159-- 164.

Author's address: 04001 Košice, Švermova 5, ČSSR (Vysoké učení technické).

