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1. INTRODUCTION

This paper is a continuation of [7] We consider special properties for the singular
elliptic operators introduced there: distribution of eigenvalues, density of the linear
hull of the associated eigenvectors in appropriate function spaces. In sect. 2 we recall
the necessary definitions (diﬁerential operators, function spaces). Sect. 3 contains the
results. The proofs are given in sect. 4.

2. DEFINITIONS

2.1. The weight function o(x). We recall the definition given in [7]. Let Q be an
arbitrary connected (bounded or unbounded) domain in the n-dimensional Euclidean
space R,. Its boundary is denoted by Q. As usual, C*(Q) is the set of all complex
infinitely differentiable functions defined on 2. We consider weight functions o(x)
with the following properties:

1.
(1) o(x)e C*(Q), o(x) >0 for xeQ.

2. For all multiindices y there exist C, > 0 such that
(2) |D7o(x)] = C,0""(x), xeQ.
3. For all K > 0 there exist g > 0 and ry > 0 such that
(3) o(x) > K if either d(x) < e or |x| 2 rg (xeQ),
where d(x) denotes the distance of the point x € Q from the boundary 0Q.
4. There exists a = 0 such that
) e (x)e Ly(9) .
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Examples of weight functions of this type are given in [7]. In contrast to [7], we add
the assumption (4) from the very beginning. Some results in [7] are true without this
hypothesis. Nevertheless, we discussed in [7] the importance of (4) in the theory
developed there. In particular see Lemma 4.1 in [7]. For our purpose here it is useful
to include (4) in the definition.

2.2. Differential operators. Again we follow [7] Let m be an integef: m=12 ...
Let 1 and v be real numbers; v > p + 2m. Let

(5) = L (v@m =10 +ul); =01, ...,v2m .
2m

Then A is said to be an operator of type A,‘,’:’:, if it can be represented in the form

(6) Au =3 Y 07(x)b(x) D'u + Y ayx)Dlu,
170 [ =21 1B{<2m
where the coefficients satisfy the following hypotheses:

1. by(x), ag(x) are infinitely differentiable real functions. D” b,(x) are bounded in Q
for all y and all «, where locl = 2] (I =0, ..., m). Further,

(7) D7 ay(x) = o(e" *"(x))

for all y and all f3, where I[)’I < 2m. ((7) means that for every & > 0 there exists
a number K = K(¢) such that

|D7 a,,(x)| < et ll(x) for o(x) =K.

¢
2. (Ellipticity-condition.) There exists a positive number ¢ such that for all & =

= (¢ .., &) e R, and for all x € Q,

(8a) (=" ¥ bix)& = cf¢

o 5 b(o,.“,o)(-\') =c

la|=2m

(8b) (—1)' Z b,(x)i’go. I=1,..,m-—1.
sy
(as usual, &* = &' ... &m).

Beside the class A") we need the subclass A"). An operator A belonging to A\") is

said to be an operator of type A\ if there exists § > 0 such that

",
9 DY ay(x) = O+ 117%)
B

Clearly, (9) is a reinforcement of (7). Examples of operators belonging to A}" are

given in [7]. These are also examples of operators of type A\".
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2.3. Function spaces. We need two types of complex function spaces: Sobolev-
Slobodeckij spaces with weights, and the nuclear function space S,(2). The space
L,(Q); 1 < p < oo has the usual meaning. Let

(1) S = (j Ve - f(”' axay + [7])" 0 <n <

and | f|w,o = [ f|c,; 1 < p < oo. Further, for s = 0 we write

s =[s] + {s}: [s] integer; 0= {s} <1

If ¢ and 7 are real numbers such that t = ¢ + sp, where s = 0, then W, , ,(Q) is the
completion of C$(Q) in the norm

(11) lwenee = € 2 N0

AR

(for s = 0, we assume ¢ = 1).
The theory of these Sobolev-Slobodeckij spaces with weights is developed in [6]
[7]- We do not repeat their properties, here.

Further we need the space S,,,(2) which is defined by

(12) S,(@Q) = {/|fec (@), |f]i. = sup ¢ '(x) [D* f(x)| <

forall I =0,1,2,..., and all multiindices o} .

Theorem 4.2 of [7] yields that S,,,(2) is nuclear (F)-space, isomorphic to s, the space
of rapidly decreasing sequences.

3. RESULTS

The paper contains two theorems. One deals with self-adjoint operators in L,(Q),
the other with general operators in the framework of L -theory. The first theorem is
needed for the proof of the other one (also this seems to be a little surprising at the
first glance).

Theorem 1. Let A be a formally self-adjoint operator of type AL"'\’ where v > 0,
with the domain of definition

(13) D(A) = W55, 2(Q) -

Then A is a self-adjoint operator in L,(Q), bounded from below, having a pure
point-spectrum. There exist two positive numbers ¢, and ¢, such that

(14) (L4 22m) < 1+ N(2) £ ¢y(1 4 Alernrmmmzmiy
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Here a has the meaning from (4); i = min (g, 0); N(2) = Y. 1 is the number
14154

of the eigenvalues A; of A (including their multiplicites) less than or equal to A

by modulus; A > 0. Further, if s > 0 and if A is positive-definite then the domain

of definition of the fractional power A® of A is given by
(15) D(A%) = Wi 20(9) -

The left hand side of (14) has the usual behaviour of N(1) for regular elliptic
differential operators in bounded domains. But the right hand side shows the influence
of the different parameters. For special cases one can strengthen this estimate.

Theorem 2. Let A be an operator of type A"), where v > 0, with the domain of
definition
(16) D(A) = Wyp.n(Q)

I < p < . Then A is a closed operator in L,(RQ). Its spectrum consists of isolated
eigenvalues of finite algebraic multiplicity. The eigenvalues and the associated
eigenvectors are independent of p. The associated eigenvectors belong to Sam(Q)i
their linear hull is dense in Sy (Q). Further, their linear hull is also dense in all
the spaces W, (Q), where 0 < s < 0; 1 <g<o; —0 <x+s5¢<7< 0
(and hence, in particular, dense in L,(Q)).

This theorem is the counterpart to the theory of F. E. BROWDER and S. AGMON
for general regular elliptic differential operators, see [1]. However the situation here
is different, and in some respects easier. Although the theorem is formulated as
an L -theorem, the proof will show that we use Hilbert space methods. The basic
idea is to reduce the last theorem to the criterion of J. C. GOCHBERG and M. G. KREIN
[2]. Chapter V, Theorem 10.1.

4. PROOFS

4.1. Proof of Theorem 1. Step 1. It follows from [7], namely from Theorem 5.3
in [7], that A — AE is an isomorphic mapping from D(A4) onto L,(2), provided the
real number 4 is sufficiently small. Since C3°(2) is dense in D(A4) and since 4 is formal-
ly sef-adjoint, it follows easily that A4 is a symmetric operator. Together with the first
fact one obtains that A is self-adjoint and bounded from below. Further, Theorem
5.3 of [7] yields (15) for s = k = 1,2, 3,.... We assume that A is positive-definite.
Concerning the use of the well-known interpolation formula

(17) D(A%) = (Ly(Q), D(A"))sp2; 0 <s <k,
see for instance [4], Lemma 6. Using the interpolation Theorem 4.3 of [6] and (15)
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fors = k =1,2,3, ..., we obtain (15) for s > 0. Now we prove that the embedding
from D(A) into L,(2) is compact. Let

(18) Q ={x|xeQ ox)<K}; K>0

and let yx(x) be the characteristic function of Q. Since Qy is bounded and since the
embedding from W;™(Qy) into L,(Q) is compact, it follows that for each positive K

MK = {/:K(\) ll(X)I ‘}u(x)llwz"'z,z;.,:v g l}

is a precompact subset in L,(). On the other hand, using v > 0, the estimate

J‘Q|l - ZK(,\')'2 lu(x)|2 dx £ K'z"f 0*'(x) Iu(x)l2 dx

Q

yields that My is a precompact ¢-net for the image of the unit ball of D(A) in L,(),
provided K = K(¢) is sufficiently large. Hence, the embedding from D(A) into
L,(£2) is compact. Now it follows by the well-known criterion of F. RELLICH (see for
instance [5], p. 277) that A is an operator with pure point spectrum.

Step 2. Now we prove the left hand inequality of (14). Assume, without loss of
generality, that A is positive-definite. The eigenvalues of A are denoted by 4; (including
their multiplicities), and the approximation numbers of the compact embedding
operator I from D(A) into L,(2) are denoted by s;. By a suitable choice of an equi-
valent norm in D(A) (“u”D(A, = HAu”LZ) it holds s; = 2; ' (see [2] where one has
to take into consideration, that I can be written as I = A~ 'A4, where A is regarded
as unitary operator from D(A4) onto L,(), and A~ as compact operator in L,(2)).
Lei K, and K, be two open balls such that K, = K, and K, = Q. We shall use the
well-known fact that there exists a linear and bounded extension operator S from
W3"(K,) into W3™(K,), and so also from W;"(K,) into D(A). (A description of the
extension method may be found, for instance, in [5], p. 377 —380). Finally, let R be
the restriction operator from L,(Q) onto L,(K,), and let I be the embedding operator
from W;"(K,) into Ly(K,). Then

I =RIS.

Denoting the approximation numbers of I by §;, it follows from the ideal properties
of the s-number (see [2])

~ \ -
S CS; = C4;

I\

' (e >0).
On the other hand, the distribution of the numbers 3; is well known,

S ;—2m/n
.Sj ~ ] .



Hence

)] Ji2m/n
/'j (J‘ >

IIA

where ¢’ is a suitable positive number. This implies the left hand inequality of (14).

Step 3. We prove the right hand inequality of (14). First we have to recall some
former notations. If K = 2/, then Q4. defined in (18), will be denoted by QY, see
[6]. (For j = N, these domains are not empty.) In [6], p. 73, it is shown that there
exists a positive number ¢, independently of j, such that
(19) inf |x—y|z¢ 27, j=N,N+1, ...

QU

y}:m()f:n
Let 4 be a sufficiently large positive number and let j, = [log, A'/"] 4+ 1 be the
corresponding integer. Then QY7 is covered by cubes Q, of the side — length d . 277,

where d > 0 is chosen (independently of j,) such that

(20) QYU ~ UQI o QUstD .

It holds

(21) iQ“i"’ =J 07Ux) 0(x)dx £ ¢y 274 < 2.
alis)

Let L; be the number of the cubes Q, needed for covering 2% in the way described
above. Then it follows from (20) and (21) that

(22) L/_. g (.4/211'\-‘]—:1 2);_71 é (,5/”~u/\'+n/‘\' .

It holds
L,

73 ME — 02 112

(23) s ) = (U e -uen F 0 ] W en -
=1

These norms are considered as quadratic forms over the Hilbert spaces L,(2),
L,(Q — UQ,) and L,(£,), respectively. These quadratic forms are generated by the
corresponding self-adjoint positive-definite operators A,, 4, and A,, respectively.
(See [3]. p. 317—318.) It holds

L,(Q) = Ly(2 - UQ) 69!2@ Ly(Q),

L
”,2:.'311,2\-(9) < 22,’311.2\'((2 - UQI) ®'Z @ ””22.';;:.2\'(Ql) .
=1
If N¢(2) denotes the distribution of eigenvalues for the self-adjoint operator C,
Courant’s variation principle implies

(24) N, (%) £ N4 (4) +I§NA,().).
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The choice of j; yields

H““fw"‘z.zu,zvm—uan 2 2Zi"v”“”f.zm—uq,) = (A +¢) “u“iz(Q—UQn

where ¢ is a sufficiently small positive number. Hence, N, (4) = 0. By virtue of
i = min (g, 0) it follows

2 24/v], |12
) = e A |u“wmz(Q,) ,

12 2ijal,, |2
I1“||W2'"z,z,.,zv(<2n 2 ¢62 ”u“W“'z(Ql

where ¢4 and c; are suitable positive numbers. Let B be the operator belonging to the
quadratic form |[u32m,,, (With respect to the Hilbert space L,(Q,)). Then (22), (24),
and the last estimate yield

(25) N(/‘v) § Csia‘/v+n/\'N[qlﬁ/vB(/’_) é Cloia,’\-ﬁ»n/vNB(Cl 1/:'1 —ﬂ,'v) .

Let Q be the unit cube, and let D be the operator belonging to “u”,zvz.,.z‘,),. We use
the well-known fact

Nu(’l) < ClzND('I)~ nz1.

This assertion can be proved by mapping Q, onto Q with the aid of a linear transfor-
mation of coordinates and comparing the corresponding quadratic form with
Hu[)ﬁ,zmz(g). Then one obtains the last assertion from Courant’s principle. However,
the distribution of the eigenvalues for D is known. It holds Np(n) < ¢;3n"*™ (see
also the second step, §; ~ j“z"‘/"). Hence

N(/].) = ‘,14)'11/\'4.—,.,"-/«',,(, —Am/2m
This proves Theorem 1.

4.2. Proof of Theorem 2. Step 1. Assume p = 2. Let

Au =1 Y [0(x) b(x) D'u + D*(0™*(x) b,(x) u)] + Bu = Au + Bu .
=0 2j=21
Now, using the method developed in [ 7] (in particular, formula (10) in [7]) we obtain
that A belongs to A", while B is a perturbation operator of order 2m — 1, whose
coefficients have the property (9). Since A4 is formally self-adjoint, Theorem 1 yields
that A, D(A) = W;7%, ,,(Q), is self-adjoint in L,(Q). Using again Theorem 1, in
particular (15), we obtain that 4 with the domain of definition

D(/‘i) = WZZ,(Z,‘(TZL)I”;M.Z(I\"F1)\‘(9)

is a self-adjoint operator in the Hilbert space H = szf'z",'\.,,.z,“.(Q) (after a suitable
choice of an equivalent norm). Here k = 0, 1, 2, ... . This operator has a pure point
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spectrum. For a suitable number # > 0 it holds

1/2
c( Y j Q"“‘“”(x)]D”ulzdx) ,
1B < 2km+2m=1 ] o

2k +1)m—j) = }ij + 2 (2km + 2m — j).
m m

(6) [Buls = [Bul o

IIA

2,21, 2kv(£2)

_ A+ D 2Ak+ Dy
ook +)ymT 2k + 1)m
(Here we use again the method developed in the proof of Lemma 3.1 in [7]. One has
to take into consideration that A4 is not only of type AS" but even of type A".)
Setting n = 2vs, we have

X —n= z(lf+l— Ly + 2k 1 - )y 2k +1—=5s)ym—j).

2k +1 —s)m 2k + 1 —s)m
Without loss of generality we may assume 0 < s < 1/2m. Now we use Lemma 3.2
of [7]. This lemma is formulated for I = 1,2, ... (see the notation introduced there).
But the lemma, as well as the proof, are true, for arbitrary positive numbers I. Then
(26) yields

2 gl
("7) HBH HH é ¢ !IHHW:“‘ P9y St 1 =s)u, 20k + 1 =5)u(R2) *
For a moment we denote by I the embedding operator from
2(k+1)m . 2(k+1—s)m
Wa 20 .20k + m(Q) into Wi hae1Zgu 241 —s)v(Q) :

But now it is an easy consequence of Theorem [, in particular of (14) and (15), that /
belongs to the ideal S,, where r is a suitable number, 1 < r < 0. (For the definition
of S, see [2]. The original definition of S, is restricted to compact operators acting
from one Hilbert space into itself. Nevertheless, of course, there is no difference when
considering compact operators acting from one Hilbert space into another one.)
Let 4 be a real number, not an eigenvalue of A. Then B(4 — AE)™!, viewed as an
operator from H into H, can be represented as

(28) B(A — JE)™' = BI(A — JE)™",

where (27) yields that B on the right hand side is a bounded operator acting from
Wy m s aws1-9w(@) into H. It follows from the ideal property of S, that
B(A — Z2E)™" belongs to S, (viewed as an operator from H into H). But now we can
apply the important criterion of I. C. Gochberg and M. G. Krejn for the density of
associated eigenvectors, ee [2], Chapter V, Theorem 10.1. Applying this theorem we
obtain that A with the domain of definition W5 %41, 20+ 1(®Q) is a closed operator
in the Hilbert space H, its spectrum consists of isolated eigenvalue of finite algebraic

multiplicity, and the linear hull of the associated eigenvectors is dense in H.
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Step 2. Let again p = 2. It follows from the first step that the linear hull of the
associated cigenvectors of the operator 4, where D(A) = W57, ,(Q), is dense in
L,(22). Now we want to show that

(29) DA") = 0 DAY = (1 WE0(@) = Sue(@).

Theorem [ yields that only the last assertion as not evident (the first one is definition).
Let u € C3(2). Then it follows

(30) Hu”WIJ"'Z-IL‘J.Z\'J’-Q) = [ Z Qzuj(x) 1D1”

Qlzl=2jm

2+ 0™(x) |u|2) d.\':ll/2 <

= Y [sup 0"t (x) ID’ u(.\')| (f o™(») d)‘)l/z +

|a]=2jm| xeQ
+ sup "1 2(x) Ju(x)

sup ) Ju(x)[? (Le""()') dy>m]

and, with the aid of Sobolev’s embedding theorem and Lemma 3.2 of [7],

A

D* u(x)| < c|o(x) D* u(x)|

(31) sup Ql(x) wny(Q) = "'“”!'wumz_m.mm) .
xeQ

Here, 1 =0, 1,2, ..., o multiindex, and j= j(/, :x) is a sufficiently large positive
integer. Cg(R) is a dense subset both in S,,,(2) and W;'4%; ,, (). Hence it follows
by completion that (30) and (31) are also true for u € S,(2) and u e W55, . (Q),
respectively. But then (30) and (31) yield (29), where the equality is to be understood
in the topological sense. Hence, the associated eigenvectors belong to S, (Q) =
= D(A”). This implies that these associated eigenvectors are the same as the cor-
responding associated eigenvectors for the operator A, considered in the Hilbert
space H = W7*%;, 2,(Q). However, one obtains now from (29) that the linear hull
of the associated eigenvectors of the operator 4 is dense in S,,(2Q).

Step 3. Let 1 < p < . Repating the argument of the first step of 4.1, it follows
that the embedding from D(A) = W/7, (Q) into L,(Q) is compact. Further,
Theorem 5.3 of [ 7] yields that for suitable A the operator A — AE gives an isomorphic
mapping from W,"  (Q) onto L,(2). Hence (4 — AE)™' is a compact operator
acting in L,,'(Q). It follows (as a consequence of the Riesz-Schander-theory for compact
operators in Banach spaces) that A is a closed operator having a pure point spectrum,
which consists of isolated eigenvalues of finite algebraic multiplicity. Now, using
again Theorem 5.3 of [7] and repeating the argument of the second step we obtain
also in this case

D(A”) = Sy(9) .
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Hence the associated eigenvectors belong to S,.,(£2). But then they are the same as
in the case p = 2. Consequently, they are independent of p (and so are also the eigen-
values, including their multiplicities). Finally, let 0 < s < w0; 1 < g < o0:
—o0 < x + sq £ 1 < oo. The counterpart to (30) yiclds

Sun(R) = Wy Q).

Since Cg'(2) is dense in W, (£2), 50 S,)(£2) is also dense. Hence we obtain that the

linear hull of the associated eigenvectors of the above operator is dense in W, .. ().
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