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CLUSTER SETS OF ARBITRARY FUNCTIONS DEFINED
ON PLANE SETS

PauL D. HuMKE, Macomb

(Received November 28, 1974)

In this paper we investigate the question of ““how many” different ambiguities of
a function from the Euclidean Plane, P, into the Riemann sphere, Q, can occur at
a point. Here, and throughout the paper unless specified as otherwise, the functions
we speak of will be single valued only with no other conditions such as continuity
or measurability presumed. Some initial investigations of this question were conducted
by McMILLAN [5] and BAGEMIHL and HUMKE [3].

Suppose z is an ambiguous point of a function f with arcs of ambiguity o, and «,.
If y is a third arc at z then either:

LC(f.z)nC(fiz) # ¢ and C(f,2) 0 Cp)(f.2) + ¢
or
2. C(f,z) 0 C,(f, z) = ¢ for atleast one of i =1 or i = 2.

Here C,,(f, z) is the set of limit points of f at z along f. If «, and «, are specified,
then it is easily verified that a third arc y can be defined such that situation 1 occurs.
As such we investigate those points at which there is an arc y where situation 2 is
true. As a special case of situation 2 McMillan has proved [4, Corollary 2, page 447
the following result. (We have couched McMillan’s result in our notation.)

Theorem M. If f is an arbitrary function then the set of ambiguous points z such
that both

Co(fi2)nCf.z)=¢ and C,(f,z)n C[(f,z)=¢
is of the first Baire Category. ‘

We prove the following theorem under the assumption that o, a,, and y are as in
situation 2 above.
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Theorem H. If f is an arbitrary function then except for a set of the first Baire
Category either:

1. C(f2) = C(f, 2)

or
2. Cu(f, 2) = C(f, 2).

McMillans result, then, is a special case of Theorem H. In a restrictive sense
Theorem H says that except for a first category set if a point z is an ambiguous point
relative to a function f then that ambiguity is the only ambiguity at z. The restriction
is of course that in a sense, one arc of ambiguity at z is considered fixed and one
searches for new ambiguities relative to the cluster set along that fixed arc at z.

If this restriction of Theorem H is relaxed one obtains examples of functions with
many ambiguities at every point. Such examples will be published elsewhere.

The paper is divided into two parts; in the first part we prove a set theoretic
theorem concerning arc accessibility to subsets of P and in the second part we utilize
this theorem to prove the main result, and then prove a series of corollaries.

1. Denote by P the Euclidean plane with a rectangular Cartesian coordinate system
where the x-axis is horizontal and the y-axis is vertical.

The distance between the points z; and z, in P is denoted Iz,, 22', and the closed
line segment joining z, and z, is denoted [z,, z,]. If J is a Jordan arc in P having
one endpoint = then J — {z} is an arc at z or if the terminal point z is not specified
J — {z} is simply an arc*. Let o/ be a collection of arcs*. A point z is termed
accessible via of provided there is an arc at z which is an element of .«/. Two sets
of arcs* .o/ and % are pointwise disjoint if whenever a € o7 and € #,then a N f = ¢.
Two sets of arcs* & and & are arcwise disjoint if whenever « € & and € 4 and
both o and f are arcs at a point z, then « n f contains no arc at z. Let &/, #,, and 4,
be sets of arcs*, and set Z = %, U #,. Suppose

1. &/ and # are pointwise disjoint, and
2. #, and A, are arcwise disjoint.

Then the triple (/, #,, %,) is called an accessibility triple of sets of arcs*. If D is
an open disc and «(z) is an arc at a point z € D, then o in D is the arc a,(z) where

ay(z3 1) = ofz; (1 — 1*)t + 1¥)
and
t*=sup{t:0=<t<1and «(z;1)¢ D}, if aE D and *=0 if a <= D.
Theorem 1. If (<, %, Qz) is an accessibility triple, then the set of points which

are simultaneously accessible via each of o/, B, and %, is a set of the first Baire
category.
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Proof. Let 4 = #, U #,. Let S denote the points which are simultaneously
accessible via <7/, #,, and 4, and suppose that S is of the second Baire category.
For z € S there are arcs «(z) € o7, B,(z) € #,, and B,(z) € #, at z such that

Loa(z) 0 [Bi(2) v Ba(2)] = ¢,
and
2. Bi(z) 0 By(2) contains no arc at z.
Let D(z) be a rational disc (i.e. a disc of rational radius having rational coordinates

for its center) which contains z and whose boundary meets each of the three arcs
of accessibility, o(z), f,(z), and B,(z). If D is a rational disc we define

S(D) = {zeS:D(z) = D}.

Then S = US(D) where the union is taken over the enumerable set of rational
discs D. It follows that there is an index D, and a disc D, such that S(D, is everywhere
of second category in D,. Let S, = S(DO) n Dy, ze S,, and denote respectively
by a'(z), Bi(z). and B3(z) the arcs «(z), B,(z), and B,(z) in D,. Also, let

F={t:0<1t<1and B,(z;:1) e B,y(z)} .

Claim 1. Sup F + 1.

If sup F = 1 then as F is a closed subset of [0, 1) and F contains no interval
having 1 as its right end point it follows that there are numbers ¢, and ¢, with

LOZt <t, <1,

2. Bl ) e BYz) (i = 1,2),

3. Bi(zi 1) ¢ By(z) for 1, <t <1,

There are numbers ¢; and t; such that i(z; t,) = B3(z; 1)) and B(z: t,) = Bi(z; 13).
Let R, denote the region bounded by

Bi(@)/[1s 2] © Ba(=)/[11 12] -
Then R, = D, and as S, is dense in D, there is a zo€ R; N S,. But a'(z9;0) €
€ Bd(D,) [Bd = boundary] and a'(z,) is an arc at z,. Consequently, «'(z,) intersects
the boundary of R; which is impossible. Claim 1 is verified.

If z € S, let D,(z) be a rational subdisc of D, such that if f7(z) is B{z) in D,(z)
(i = 1,2), then Bi(z) n B3(z) = ¢. Define a*(z) to be a(z) in D,(z). Let 0(2), y,(2),
and y,(z) be mutually exclusive arcs on the boundary of D, such that

1. a*(z; 0) € 0(z2),

2. Bi(z,0)ey(z) (i = 1,2), and

3. the radii of D, terminating in the endpoints of 0(z), 7:(z), and y,(z) all have

rational slopes.
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Define
So(D» 0, Yis Yz) = {35 So : Dz(:) = D, 0(3) =0, YI(:) =" and 72(:) = 72}

Then
SO = US()(D7 (), 71, 'Yp_)

where the union is taken over all admissible ordered quadruples. As S, is of second
Baire category there is an index (D,, 0, 7. ;) and a disc Dy such that Dy = D, and
So(D,, 0, 71, y,) is everywhere of second category in D;. Let Dy 0 So(D5. 0, 74, 7,) =
= S§ and for z € S} define

1. o¥(z) to be ofz) in Ds, and

2. Bi(z) to be Bi(z) in Dy (i = 1,2).

Then define
d* ={o¥(z):ze Sy}, A ={Bi(z) :ze Sy}, B3 = {B3(z) : € S§} .

Claim 2. If zy € S}, then, z, € a*(z) for some z € Sg.
Let zo € Sy. There is an arc I' on Bd(D,) such that

1 (0) = Fi(z0:0),

2. I(1) = B3(20: 0

3. I' no¥(zg) = ¢ (ie. a*(z0,0) ¢ ).
If R is the region bounded by the arcs I', B3(z,), and B3(z,), and the point z, then
RN Dy #+ ¢. Let ze R Dy~ S§. Then o(z; 0) is exterior to R and as z€ R it
follows that o?(z) intersects the boundary of R. But .o/ and # are pointwise disjoint
and o*(z) N T’ = ¢; consequently z, € «*(z) and the claim is verified.

If 7, and 1, are arcs* and D is a disc, we say that 2, crosses 2, in D if there are
numbers 1y, 15, and 1; (0 < 1, < 1, < 13 < 1) such that

1. 24/[t1, t5] = D,
2. (1) ¢4, (i =1,3),
3. 4(t) € 2,y

Claim 3. If z, and z, are in Sy, then Bi(z,) does not cross either pi(z,) or B3(z,)
in Ds.

Suppose to the contrary that there are points z, and z, in S§ such that Bf(zl)
crosses either B3(z,) or B3(z,) in Ds. For definiteness we suppose f1(z,) crosses f3(z,)
in Dj. That is, there are numbers 1, f,. and t; (0 < t; < t, < t; < 1) such that

1. B3(z))/[t1» ts] < D3,
2. Bz, 1) ¢ B3(z2) (i = 1, 3), and
3. Bz 12) € B3(22).
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Let
t, =inf{r:t, <t <t;and Bi(zy: 1) € B3(z,)}, and
tp =inf{r <t : Biz)/[t 1] 0 Ba(z2) = ¢}

It follows that ﬂf(zl)/(t'p t'z) N Bg(zz) = ¢. Let s be such that ﬁ%(f'-'z; S) = ﬂf(zz; t5).
We consider two cases depending on whether Bi(z,; t;) € p3(z,) or not.

Case 1. Bi(z,; 1)) € Bi(z2).
As Bi(zy; 1}) ¢ p3(z2) it must be that 1; = 0, and there is an arc I' on Bd(D,)
such that
. I(0) = Bilz,;0),
. f(l) = ﬁg(zﬁ 0)?
. I does not contain «*(z; 0) for z € S§.
Let R denote the region bounded by I', B3(z,)/[0, 5], and B3(z,)/[0, s]. As Bi(zy, t5) €

€ D, it follows that R n Dy # ¢. But if z,€ R n D5 then o?(z,) must meet the
boundary of R and this entails a contradiction.

Case 2. Bi(z; 1)) € B3(z2)

A contradiction similar to that in Case 1 is reached in Case 2, and the proof of
Claim 3 is complete.

W N =

Claim 4. If z, and z, are in S§ then Bi(z,) N Bi(z,) = ¢ and Bi(z,) N B3(z,) = ¢.

Suppose Claim 4 is false and there exist z; and z, in S§ such that either f}(z,) N
N Bi(z2) # ¢ or Bi(z,) N B3(z,) + ¢. For notational simplicity we assume the fol-
lowing
. z; is the origin,

D, is the disc of radius | centered at the origin,
D5 is the disc of radius 4 centered at the origin,
Bi(z1) = [(0,0), (1, 0)].

pi(z1) = [(=1,0), (0, 0)],

a*(z,) = [(0, 1), (0, 0)].

The arcs* B3(z,), B3(z,), and a*(z,) divide D; into three subregions:

SO S o e

1. R, is the lower half plane intersected with D,.
2. R, is the upper right quarter plane intersected with D;.
3. R; is the upper left quarter plane intersected with Ds.

We consider three subcases depending on the subregion within which z, resides.
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Case 1. z, e R,.

Either $7(z,) intersects f3(z,) or B3(z,); suppose the former and define

* = sup {t: Bi(z,; 1) € Bi(z,)} .
z* = Bi(z,; t*), and s* such that Bi(z,; s*) = z*.

There is an arc I' on the boundary of D, such that I" extends between ﬂf(zz; 0) and
B3(z5: 0), and I' does not contain «?(z,; 0). Let R, be the region bounded by the
arcs B1(z,), B3(z,), and I', and the point z,. As z, € Dy it follows that R, N R, * ¢.
Let zy3€ Ry N R, N Sg. As o?(z5) extends from the boundary of D, to R, it must
be that «?(z;) intersects the boundary of R,. As the arcs defining a portion of R,
necessarily miss «?(z3) it follows that there is a f, such that «*(z3; 1,) = z,. In an
analogous manner it is evident that z, € a*(z;) and consequently there is a t, such
that o?(z3;1,) = z,. Let R; be the region bounded by the arcs a®(z3)/[t,, t;],
Bi(z,)|[s* 1), and Bi(z,)/[t*, 1). Again, as z, € D; it follows that there is a z, €
€ Rs n S§. As Bi(z,) is on the boundary of D, and z, € Rs < D, it follows that
Bi(z4) 0 Bd(Rs) + ¢. But {z;, z,} U «?(z3) = o and thus either

Bi(za) 0 Bi(z)[[s* 1) + ¢, or Bizs) 0 BiCz)][* 1] + ¢

In either case B3(z4) does not cross the intersected arc and consequently must
contain z*. In a completely analogous manner it can be shown that 32(24) also
contains z*. This, however, contradicts the fact that f3(z,) and B3(z,) are mutually
exclusive. If 3(z,) N Bi(z,) + ¢ a similar contradiction is obtained.

Case 2. z, € R,.

Again, either Bi(z,) n Bi(z,) #+ ¢ or B3(z,) N Bi(z1) + ¢. As in Case 1 these
subcases are similar and we consider only the latter. Let

t* = sup {t:Bi(z; 1) € B3(z)} »
z* = Bi(z,;1*), and s* = be such that z* = B3(z,; 5%).

As both o’(z,: 0) and «?(z,; 0) lie on 0, there is an arc I' on 0 which extends from
a*(zy;0) to a*(z;0). Let R, be the region bounded by the arcs f3(z,)/[s*, 1),
Bi(z,)/[t*, 1), I',o*(z,), and the points z, and z,. (If a*(z,) N a*(z,) + ¢ then
subarcs of «?(z,) and a*(z,) must be used to define R,. For definiteness we have
supposed «*(z,) and o*(z,) to be disjoint.) As Ry N D # ¢ there is a point z, €
€ R, n S§. Further, as f3(z,4; 0) €y, and consequently is exterior to R, it follows
that Bi(z,) intersects the boundary of R,. But, B}(z,) misses the arcs a*(z,) and
«?*(z,) and as both z, and z, lie on arcs contained in .o/ neither z, nor z, is on B3(z,).
It follows that either

Bi(zs) 0 Biz1) + ¢ or Bi(za) 0 B3(z2) *+ ¢
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In either case B{(z,) does not cross the intersected arc and hence must contain z*.
In a similar manner we obtain that z* also lies on $3(z,) contradicting the fact that

Bi(za) 0 Bi(z4) = ¢
Case 3. z, € R;.

This case is disposed of in a manner quite analogous to Case 2, and the proof of
Claim 4 has been completed. Claim 4 then provides that the sets 4% and A7 are
pointwise disjoint, and together with that which was previously noted we conclude
that the sets «/*, B%, and %% are pointwise disjoint. Further, every point of the
second category set Sg is accessible via each of o/*, 7, and #3. However, in [4,
Corollary 2, page 447] McMillan proves that the set of points accessible via three
mutually exclusive sets is a set of first Baire category and the theorem obtains.

2. In the remainder of this paper we will extend Theorem [ to a result concerning
arbitrary functions from P into the Riemann sphere Q. (Although our proof requires
only that the range be a second countable compact Hausdorff space our primary
interest is the special case where the range of f is a subset of Q.) Let f(z) = w be an
arbitrary single valued function of z € P with values on the Riemann sphere. If A
is an arc at z € P then the cluster set of f at z along A, denoted C(/, z), is defined
to be the set of all points we Q having the property that there exists a sequence,
{z,} on A converging to z such that {f(z,)} converges to w. It is easily seen that
C(f., z) is a compact subset of Q.

A point z € P is said to be an ambiguous point of the function f if there exist
arcs A and I' at z such that C,(f, z) n C/(f, z) = ¢. The arcs A and I are called
arcs of ambiguity at z. Tt is evident that the arcs of ambiguity at a point z € P may
be taken to be disjoint. A point z € P is termed a doubly ambiguous point of the
function f if there exist three arcs A, I'y, and I', at z such that

L. Cu(f, 2) 0 [Cr(f,2) U Cr(f. 2)] = ¢,

and
2. C,,(f, z) * C,-Z(f, z).

Theorem 2. If f is an arbitrary function from P into the Riemann sphere, then
the set of doubly ambiguous points of f is a set of first Baire category.

Proof. We use a technique similar to that developed by Bagemihl in [1]. In this
paper Bagemihl defined an open spherical cap of Q whose bounding circle is a rational
disatance from the center, and whose center is either the point at infinity or a point
with both rational real and rational imaginary parts to be a rational cap. We adopt
his notation.

If 4 is the set of finite unions of rational caps, then % is enumerable and we can write
% as a sequence

4G =G, Gy Gy
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Denote by Q the set of doubly ambiguous points of f, and let z € Q. As z e Q there
are arcs A(z), I'y(z), and I'y(z) at z such that

L Cae(fs 2) 0 [Crio(fs 2) © Cry(f. 2)] = ¢

2. Crefs 2) * Cryef, 2).

Consequently, there are two indices n(z) and m(z) such that

1. Cyofs 2) © Gpiays

2. Creof, 2) € Gpo,s

3. Guzy N Gy = 9,

4. Cr,(f, 2) = Int [2 — G,(,)] [Int = interior],
5. Cryo(/f, 2) & cl(G,ysy) [€] = closure].

There are subarcs A*, I'* and I'} or A, I',, and I, such that
1 2 1

. f(A*) < Gn(z)a
S(TY) € Gy
f(r%) < nt[Q = G,y]

—

39

w

Note that as Cp,..,(f, z) ¢ cl(G,,) it follows that f(I'}) ¢ G,,.). Define
A(n, m) = {A*z):n(z) = n and m(z) = m},
B(n, m) = {I'}(z):n(z) = n and m(z) = m},
By(n, m) = {I'3(z):n(z) = n and m(z) = m},
O(n,m) ={zeQ:n(z) =n and m(z) = m}.

Then every point of Q(n, m) is accessible via /(n, m), #,(n, m), and %,(n, m).
But, (/(n, m), #(n, m), B,(n, m)) is an accessibility triple and hence Q(n, m) is
of first Baire category. It is evident that Q = (JQ(n, m) where n and m are natural
numbers, and it follows that Q is the enumerable union of first category sets and is
itself of first Baire category.

A number of examples of functions having ambiguities at a “‘large” set of points
have been constructed (e.g. see [ 1, Theorem 2, page 206] where the function to which
we refer is the characteristic function of the constructed set, S.) Many of these
functions, however, map into either the real numbers, the unit interval, or a finite
set considered as subsets of Q. For these functions, and for those whose range is
linearly orderable in a fashion compatible with the subspace topology inherited
from Q, certain natural multiple ambiguities are impossible at a second category
subset of P. The following definitions and corollaries are to this point.
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Let S < Q be linearly ordered by <. Then we say < is a compatible order if
(a,b) = {se S :a < s < b} is an open subset of S whenevera < bin S. If f: P —
— S < Qand S is linearly ordered by < then a point z is called a separated ambig-
uous point of f relative to < if there are arcs a and B at z such that C,(f, z) <
< Cy(f. z) (i.e. If x e C,(f, z) and y € Cy(f, z) then x < y.) A continuously ambig-
uous point of a function f is an ambiguous point where f is continuous along the
arcs* of ambiguity. As the thrust of this paper is to discuss multiple ambiguities we
make the following definition. If f is function and m is a cardinal number, a point
z€ P is a m-ambiguous point of f if there are m pairs of arcs at z {(x,, f,) : x€ X
and |X| = m} satisfying

a) C:xx(f’ Z) a Cﬂi\,(f, Z) = (l) for xe X,
b) C,(f.2) # C,(f. 2) and Cy (f. z) # Cp(f. z) for x +
¢) C,(f.2) + Cyp(f, z) for x + y.

In addition, we will combine these terms so that a m-separated ambiguous point, z,
of a function f is a m-ambiguous point of f and z is a separted ambiguous point with
respect to each of the m pairs of arcs at z.

Corollary 1. If S = Q is compact and has a compatible ordering < and f is
a function from P onto S then the set 2-separated ambiguous points of f is of the
first Baire category.

Proof. Let z be a 2-separated ambiguous point of f. Then there are pairs of arcs
(x, ) and (a*, Bx) at z such that

(i) i) < Cylf. =)
(i) Cuxlf.2) < Cyu(fs z).

It follows that z is a doubly ambiguous point of f using either the arcs (x, 8, B*),
or (ax, B, f*) and hence the 2-separated ambiguous points of f is a set of the first
Baire category.

As every m-separated ambiguous point, m = 2, is also a 2-separated ambiguous
point we obtain the following.

Corollary 2. If S < Q is compact and has a compatible ordering < and f is
a function from P into S then the set of m-separated ambiguous points is of the
first Baire category for m = 2.

Bagemihl has shown [1, p. 206, Theorem 2] (under the convention that we use the
characteristic function of the constructed set S) that there is a function h such that
every point of P is a l-separated ambiguous point relative to h. Indeed, h has the
additional property that every point of Q is continuously ambiguous relative to h.
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However, if f: P —» S and S is a compact subset of Q with a compatible ordering <,
and [ is continuous along an arc, «, at z, then C(f, z) is a closed interval in S or
a point in S. Consequently, a continuously ambiguous point is a separated ambiguous
point and we have the following corollary.

Corollary 3. If S < Q is compact and has a compatible ordering < and f is
a function from P into S then the set of m-continuously ambiguous points is of the
first Baire category for m = 2.

To be published elsewhere is an example of a function f: P — Q such that the set
of Ny-ambiguous points of f is a dense G, set of full measure in every disc.
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