Alois Švec

On infinitesimal isometries of surfaces in E^4

Persistent URL: http://dml.cz/dmlcz/101433

Terms of use:

© Institute of Mathematics AS CR, 1976

Institute of Mathematics of the Czech Academy of Sciences provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these *Terms of use.*
ON INFINITESIMAL ISOMETRIES OF SURFACES IN E^4

ALOIS ŠVEC, Olomouc

(Received February 25, 1975)

To a given surface in E^4, there are too many infinitesimal isometries, and we cannot expect to prove reasonable rigidity theorems. In what follows, I restrict the infinitesimal isometries by a simple condition which enables me to prove a direct generalization of the classical rigidity theorem. The calculations are restricted to E^4, the general case is to be treated in the same way.

Let $M \subset E^4$ be a surface of class C^∞ with the boundary ∂M such that there is a diffeomorphism $\varphi : D \cup \partial D \to M \cup \partial M$, $D \subset \mathbb{R}^2$ being a bounded domain. Let $T(M)$ and $N(M)$ denote the tangent and normal bundle of M resp. The map

$$II_m : N_m(M) \times T_m(M) \to \mathbb{R}, \quad m \in M,$$

be defined by

$$II_m(n_0, t) = -\langle tm, tn \rangle$$

for any local section $n : M \to N(M)$ around m such that $n_m = n_0$. It will be shown that this is a good definition; for a given n_0, $II_m(n_0) \equiv II_m(n_0, \cdot)$ is a quadratic form on $T_m(M)$. Let $v : M \to V^4$ be a C^∞ map into the vector space of E^4; v is said to be an infinitesimal isometry of M if

$$\langle tm, tv \rangle = 0 \quad \text{for each} \quad t \in T(M).$$

We are going to prove the following

Theorem. Let $n : M \to N(M)$ be a section such that, for each $m \in M$, the form $II_m(n_m)$ is definitive and the vector n_m is not orthogonal to the mean curvature vector ξ_m at m. Let v be an infinitesimal isometry of M such that, again for each $m \in M$, the vector v_m is situated in the vector space spanned by $T_m(M)$ and n_m. Further, let $v_m \perp T_m(M)$ for each $m \in \partial M$. Then $v = 0$ on M.

628
Proof. To each point \(m \in M \), associate an orthonormal frame \(\{m, v_1, v_2, v_3, v_4\} \) such that \(T_m(M) = \{m, v_1, v_2\} \). Then

\[
\begin{align*}
\mathrm{d}M &= \omega^1 v_1 + \omega^2 v_2, \\
\mathrm{d}v_1 &= \omega^2_1 v_2 + \omega^3 v_3 + \omega^4 v_4, \\
\mathrm{d}v_2 &= -\omega^2_2 v_1 + \omega^3_2 v_3 + \omega^4_2 v_4, \\
\mathrm{d}v_3 &= -\omega^2_3 v_1 - \omega^3_3 v_2 + \omega^4_3 v_4, \\
\mathrm{d}v_4 &= -\omega^2_4 v_1 - \omega^3_4 v_2 - \omega^4_4 v_3
\end{align*}
\]

with the well known integrability conditions. From \(\omega^3 = \omega^4 = 0 \),

\[
\omega^1 \wedge \omega^3 + \omega^2 \wedge \omega^3 = 0, \quad \omega^1 \wedge \omega^4 + \omega^2 \wedge \omega^4 = 0,
\]

and we get the existence of functions \(a_1, \ldots, b_3 \) such that

\[
\begin{align*}
\omega^3 &= a_1 \omega^1 + a_2 \omega^2, \quad \omega^4 = b_1 \omega^1 + b_2 \omega^2, \\
\omega^3 &= a_2 \omega^1 + a_3 \omega^2, \quad \omega^4 = b_2 \omega^1 + b_3 \omega^2.
\end{align*}
\]

The mean curvature vector of \(M \) is given by

\[
\zeta = (a_1 + a_3) v_3 + (b_1 + b_3) v_4.
\]

Let \(\nu \) be an infinitesimal isometry of \(M \),

\[
\nu = x v_1 + y v_2 + z v_3 + t v_4.
\]

Then

\[
\begin{align*}
\mathrm{d}\nu &= (\mathrm{d}x - y \omega^2_1 - z \omega^3_1 - t \omega^4_1) v_1 + (\mathrm{d}y + x \omega^2_1 - z \omega^3_1 - t \omega^4_1) v_2 + \\
&\quad + (\mathrm{d}z + x \omega^3_1 + y \omega^3_1 - t \omega^4_1) v_3 + (\mathrm{d}t + x \omega^4_1 + y \omega^4_1 + z \omega^4_1) v_4.
\end{align*}
\]

The condition \(\langle \mathrm{d}m, \mathrm{d}\nu \rangle = 0 \) reduces to

\[
\omega^1(\mathrm{d}x - y \omega^2_1 - z \omega^3_1 - t \omega^4_1) + \omega^2(\mathrm{d}y + x \omega^2_1 - z \omega^3_1 - t \omega^4_1) = 0,
\]

and there is a function \(p \) such that

\[
\begin{align*}
\mathrm{d}x - y \omega^2_1 - z \omega^3_1 - t \omega^4_1 &= p \omega^2, \\
\mathrm{d}y + x \omega^2_1 - z \omega^3_1 - t \omega^4_1 &= -p \omega^1.
\end{align*}
\]

Let

\[
n = A v_3 + B v_4.
\]

Because of \(\langle \zeta, n \rangle \neq 0 \),

\[
(a_1 + a_3) A + (b_1 + b_3) B \neq 0.
\]
Now,
\begin{equation}
\frac{dn}{\omega_1} = -(A\omega_1^2 + B\omega_1^4)\, v_1 - (A\omega_2^2 + B\omega_2^4)\, v_2 + \\
+ (dA - B\omega_3^4)\, v_3 + (dB + A\omega_3^4)\, v_4 ,
\end{equation}
i.e.,
\begin{equation}
II(n) = \omega^1(A\omega_1^2 + B\omega_1^4) + \omega^2(A\omega_2^2 + B\omega_2^4) = \\
(Aa_1 + Bb_1)(\omega^1)^2 + 2(Aa_2 + Bb_2)\, \omega^1 \omega^2 + (Aa_3 + Bb_3)(\omega^2)^2 .
\end{equation}
The form (14) being definitive, we have
\begin{equation}
(Aa_1 + Bb_1)(Aa_3 + Bb_3) - (Aa_2 + Bb_2)^2 > 0 .
\end{equation}
Because of \(v \in \{ v_1, v_2, n \} \), there is a function \(q \) such that \(z = Ag, t = Bq \), and the equations (10) reduce to
\begin{equation}
\begin{align*}
dx - y\omega_1^2 &= (Aa_1 + Bb_1)\, q\omega^1 + \{(Aa_2 + Bb_2)\, q + p\} \, \omega^2 , \\
dy + x\omega_1^2 &= \{(Aa_2 + Bb_2)\, q - p\} \, \omega^1 + (Aa_3 + Bb_3)\, q\omega^2 .
\end{align*}
\end{equation}
Over \(M \), choose the isothermic coordinates \((u, v)\) such that
\begin{equation}
l = r^2(du^2 + dv^2), \quad r(u, v) > 0 ; \quad \omega^1 = r\, du , \quad \omega^2 = r\, dv .
\end{equation}
Then
\begin{equation}
\omega_1^2 = r^{-1}(-r_v\, du + r_u\, dv)
\end{equation}
because of \(d\omega^1 = -\omega^2 \wedge \omega_1^2, \, d\omega^2 = \omega^1 \wedge \omega_1^2 \), and we have
\begin{equation}
\begin{align*}
\frac{\partial x}{\partial u} + r^{-1}r_v y &= (Aa_1 + Bb_1)\, qr , \quad \frac{\partial x}{\partial v} - r^{-1}r_u y = (Aa_2 + Bb_2)\, qr + pr , \\
\frac{\partial y}{\partial u} - r^{-1}r_u x &= (Aa_2 + Bb_2)\, qr - pr , \quad \frac{\partial y}{\partial v} + r^{-1}r_v x = (Aa_3 + Bb_3)\, qr
\end{align*}
\end{equation}
from (16). The elimination of \(p \) and \(q \) yields
\begin{equation}
\begin{align*}
(Aa_3 + Bb_3)\, \frac{\partial x}{\partial u} - (Aa_1 + Bb_1)\, \frac{\partial y}{\partial v} &= \\
&= (Aa_1 + Bb_1)\, r^{-1}r_u x - (Aa_3 + Bb_3)\, r^{-1}r_v y ,
\end{align*}
\end{equation}
\begin{equation}
2(Aa_2 + Bb_2)\left(\frac{\partial x}{\partial u} + \frac{\partial y}{\partial v}\right) - (A(a_1 + a_3) + B(b_1 + b_3))\left(\frac{\partial x}{\partial v} + \frac{\partial y}{\partial u}\right) = \\
&= -2(Aa_2 + Bb_2)(r_u x + r_v y)\, r^{-1} - \\
&- (A(a_1 + a_3) + B(b_1 + b_3))\, (r_v x + r_u y)\, r^{-1} .
\end{equation}
Recall [1] that the system

\[a_{11} \frac{\partial x}{\partial u} + a_{12} \frac{\partial x}{\partial v} + b_{11} \frac{\partial y}{\partial u} + b_{12} \frac{\partial y}{\partial v} + c_1 x + e_1 y = f_1, \]

\[a_{21} \frac{\partial x}{\partial u} + a_{22} \frac{\partial x}{\partial v} + b_{21} \frac{\partial y}{\partial u} + b_{22} \frac{\partial y}{\partial v} + c_2 x + e_2 y = f_2 \]

is called elliptic if

\[\Delta := 4(a_{12}b_{22} - a_{22}b_{12})(a_{11}b_{21} - a_{21}b_{11}) - (a_{11}b_{22} - a_{21}b_{12} + a_{12}b_{21} - a_{22}b_{11})^2 > 0. \]

In our case,

\[\Delta = 4\{(Aa_1 + Bb_1)(Aa_3 + Bb_3) - (Aa_2 + Bb_2)^2\}. \]

\[\Delta = \{A(a_1 + a_3) + B(b_1 + b_3)\}^2. \]

and \(\Delta > 0 \) because of (12) and (15). On the boundary \(\partial M \), we have \(x = y = 0 \), and the maximum principle for the solutions of (20) implies \(x = y = 0 \) on \(M \). The equations (16) imply

\[(Aa_1 + Bb_1)q = (Aa_2 + Bb_2)q = (Aa_3 + Bb_3)q = 0; \]

because of (15), \(q = 0 \), i.e., \(z = t = 0 \). Thus \(v = 0 \) on \(M \). QED.

\textit{Bibliography}

\textit{Author’s address:} 771 46 Olomouc, Leninova 26, ČSSR (Přírodovědecká fakulta UP).