Ján Jakubík
Strongly projectable lattice ordered groups

Czechoslovak Mathematical Journal, Vol. 26 (1976), No. 4, 642–652

Persistent URL: http://dml.cz/dmlcz/101436

Terms of use:

© Institute of Mathematics AS CR, 1976

Institute of Mathematics of the Czech Academy of Sciences provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these Terms of use.

This document has been digitized, optimized for electronic delivery and stamped with digital signature within the project _DML-CZ: The Czech Digital Mathematics Library_ http://dml.cz
STRONGLY PROJECTABLE LATTICE ORDERED GROUPS

JÁN JAKUBÍK, Košice

(Received April 9, 1975)

Several theorems proved at first for archimedean vector lattices have turned out to be valid also for the more general case of archimedean lattice ordered groups. As an example we can mention here the theorem on the representation of archimedean vector lattices by means of real functions and its generalization for archimedean lattice ordered groups (cf., e.g., KANTOROVIC, VULICH and PINSKER [11], Chap. XIII; BERNAU [2]).

The following theorem is well known (VEKSLER [13]; cf. also LUXEMBURG and ZAANEN [10], p. 137):

(A) Let \(X \) be a vector lattice that is strongly projectable and \(\sigma \)-complete. Then \(X \) is complete.

It is a natural question to ask whether each strongly projectable \(\sigma \)-complete lattice ordered group must be complete. In this note it will be shown that the answer is negative. The following affirmative result in this direction will be obtained for singular lattice ordered groups:

Theorem 1. Let \(G \) be a singular lattice ordered group that is strongly projectable and \(\sigma \)-complete. Assume that \(G \) fulfils the condition

(\(\alpha \)) each bounded set of singular elements of \(G \) has its supremum in \(G \).

Then \(G \) is complete.

Singular lattice ordered groups were investigated by IWASAWA [7], CONRAD and McALLISTER [5] and by the author [8]. Let us remark that singular lattice ordered groups and vector lattices are in a certain sense on the opposite sides of the spectrum of lattice ordered groups. If \(G \) is a complete lattice ordered group, then \(G = A \times B \), where \(A \) is the greatest singular convex \(l \)-subgroup of \(G \), and \(B \) is the greatest convex \(l \)-subgroup of \(G \) that is a vector lattice. Every vector lattice is divisible; on the other hand, if \(A \) is singular, then for each \(0 < a \in A \) there exists \(a' \in A \) with \(0 < a' \leq a \) such that, if \(n > 1 \) is a positive integer, then the equation \(nx = a' \) has no solution \(x \) in \(A \).
If G is a complete lattice ordered group, then it is strongly projectable (this is a theorem of Riesz; cf. [1], Chap. XIII) and obviously G is conditionally orthogonally complete. Every archimedean lattice ordered group that is singular and conditionally orthogonally complete must be complete [8]. Thus if G is a singular archimedean lattice ordered group, then the following conditions are equivalent:

(a) G is strongly projectable, σ-complete and fulfills (a);
(b) G is conditionally orthogonally complete;
(c) G is complete.

The examples given below show that for archimedean (even σ-complete) lattice ordered groups the strong projectability need not imply (b). The question whether (b) implies the strong projectability for archimedean l-groups remains open. (This question is closely related to a problem proposed by Conrad [4]; cf. § 3 below.) In the case of vector lattices the answer to the question is affirmative (Veksler and Gejler [14]).

A sequence $\{g_n\}$ of elements of a lattice ordered group G will be called a fundamental r_0-sequence, if there exists $0 < e \in G$ such that, for any positive integer n, we have $2^n|g_k - g_m| \leq e$, whenever m, k are positive integers greater than n. The lattice ordered group G will be called r_0-complete if each fundamental r_0-sequence of elements of G is o-convergent. In § 4 it will be proved (Thm. 3) that if G is archimedean, projectable, conditionally orthogonally complete and r_0-complete, then it is complete. For a related result concerning vector lattices cf. Veksler and Gejler [14], Thm. 4.

I. PRELIMINARIES

Let us recall some fundamental notions we shall need in the sequel. For the terminology, cf. Birkhoff [1], Fuchs [6] and Conrad [3].

Let G be a lattice ordered group. The group operation and the lattice operations in G will be denoted by $+$ and by \land, \lor, respectively. Let $A \subseteq G$. We denote

$$A^\delta = \{g \in G : |g| \land |a| = 0 \text{ for each } a \in A\},$$

$$A^{\delta^\delta} = (A^\delta)^\delta.$$

The set A^δ is called a polar of G. The l-group G is said to be strongly projectable if each polar of G is a direct factor of G; this is equivalent with the following condition:

$$(\beta) \quad \text{If } 0 < g \in G, \ A \subseteq G, \ \text{then } \sup \{b \in A^\delta : 0 \leq b \leq g\}$$

exists in G.

G is called projectable, if for each element $a \in G$, the polar $\{a\}^\delta$ is a direct factor of G. 643
A subset \(0 \neq B \subseteq G \) is called disjoint (or orthogonal), if \(0 < b \) for each \(b \in B \), and \(b_1 \wedge b_2 = 0 \) for each pair of distinct elements \(b_1, b_2 \in B \). The \(l \)-group \(G \) is called (conditionally) orthogonally complete if each (bounded) disjoint subset of \(G \) possesses its supremum in \(G \). The \(l \)-group \(G \) is said to be complete (\(\sigma \)-complete) if each bounded subset (respectively, each bounded denumerable subset) of \(G \) has a supremum in \(G \).

Let \(0 \leq s \in G \) and suppose that \(x \wedge (s - x) = 0 \) for each \(x \in G \) with \(0 \leq x \leq s \). Then \(s \) is said to be a singular element of \(G \). It is easy to verify that \(0 < s \in G \) is singular if and only if the interval \([0, s]\) is a Boolean algebra. The \(l \)-group \(G \) is called singular if for each \(0 < g \in G \) there exists a singular element \(s \in G \) with \(0 < s \leq g \). For any \(l \)-group \(G \) we denote by \(S = S(G) \) the set of all singular elements of \(G \). Then \(S^0 \) is the greatest convex singular \(l \)-subgroup of \(G \).

Let \(G \) be an archimedean lattice ordered group. We denote by \(G^\wedge \) the Dedekind completion of \(G \). Thus \(G^\wedge \) is a complete \(l \)-group, \(G \) is an \(l \)-subgroup of \(G^\wedge \) and each element of \(G^\wedge \) is a supremum of a subset of \(G \). For each \(g \in G^\wedge \) there exists \(h \in G \) with \(g \leq h \).

Let \(A \subseteq G^\wedge \). We denote

\[
A^\beta = \{ g \in G^\wedge : |g| \wedge |a| = 0 \text{ for each } a \in A \}, \quad A^{\beta \beta} = (A^\beta)^\beta.
\]

If \(A = \{a\} \) is a singleton, we put \(A^{\beta \beta} = [a]^0 \). Because \(G^\wedge \) is complete, it is strongly projectable and hence \(A^{\beta \beta} \) is a direct factor of \(G^\wedge \) for each \(A \subseteq G^\wedge \). Thus \(G^\wedge = A^\beta \times A^{\beta \beta} \) for each \(A \subseteq G^\wedge \). The component of an element \(f \in G^\wedge \) in \(A^\beta \) will be denoted by \(f(A^\beta) \). If \(A^\beta = [a]^0 \), we denote \(f(A^\beta) = f[a]^0 \).

The set \(A^{\beta \beta} \) is, in fact, the polar generated by the set \(A \) with respect to the lattice ordered group \(G^\wedge \). If \(0 \leq s_i \in G^\wedge \) (\(i = 1, 2, 3 \)), \(s_1 \wedge s_2 = 0 \), \(s_1 \vee s_2 = s_3 \), then \([s_1]^0 \cap [s_2]^0 = \{0\}\) and \([s_3]^0\) is the least polar of \(G^\wedge \) containing both \([s_1]^0\) and \([s_2]^0\) as subsets; since each \([s_i]^0\) is a direct factor of \(G^\wedge \), we obtain

\[
[s_3]^0 = [s_1]^0 \times [s_2]^0.
\]

2. SINGULAR STRONGLY PROJECTABLE \(l \)-GROUPS

In this paragraph the proof of Thm. 1 will be given. Its idea is similar to that used in [9] (in [9] it was assumed that the lattice ordered group \(G \) is \(\sigma \)-complete and conditionally orthogonally complete).

Suppose that \(G \) is a \(\sigma \)-complete, singular and strongly projectable lattice ordered group. Further suppose that \(G \) fulfills the condition (\(\alpha \)).

Let \(0 < g \in G^\wedge \), \(h \in G \), \(h \geq g \). There is \(h_1 \in G \) such that \(0 < h_1 \leq g \). Thus there exists \(0 < s \in S \) with \(s \leq g \). Denote

\[
S_0 = \{ s \in S : s \leq g \}.
\]
We have \(S_0 \subset [0, h] \) and hence according to (x) there exists \(s_0 = \sup S_0 \) in \(G \). The set \(S \) is a closed sublattice of \(G \), thus \(s_0 \in S \) and so \(s_0 \in S_0 \). We have already verified that \(S_0 \neq \{0\} \). Since \(G^\gamma \) is complete, it is archimedean. Therefore there exists a positive integer \(n_1 \) such that

1. \((n_1 - 1) s_0 \leq g \),
2. \(n_1 s_0 \mathrm{non} \leq g \).

Let \(S'_1 \) be the set of all \(s \in S_0 \) such that \(n_1 s \leq g \). Then \(S'_1 \neq \emptyset \) because \(0 \in S'_1 \), and \(S'_1 \) is bounded in \(G \). Hence there exists \(s'_1 = \sup S'_1 \) in \(G \). We have

\[
n_1 s'_1 = n_1 \bigvee_{s \in S'_1} s = \bigvee_{s \in S'_1} n_1 s \leq g,
\]

hence \(s'_1 \) is the greatest element of the set \(S'_1 \). Put \(s_1 = s_0 - s'_1 \). Then, since \(s_0 \) is singular, \(s_1 \land s'_1 = 0 \). Therefore \(s_1 \lor s'_1 = s_1 + s'_1 = s_0 \). Thus \(s'_1 \) is a relative complement of the element \(s_1 \) in the interval \([0, s_0]\). Hence if \(0 < s \leq s_1 \), then \(n_1 s \mathrm{non} \leq g \).

Denote \(g_1 = g[s_1]_0^0 \). We have

\[
(n_1 - 1) s_1 = (n_1 - 1) s_1 [s_1]_0^0 \leq g[s_1]_0^0 = g_1.
\]

Assume that \((n_1 - 1) s_1 < g_1 \). Then there is \(0 < s \in S \) with \(s \leq g_1 - (n_1 - 1) s_1 \). Thus \(s \in [s_1]_0^0 \) and clearly \(s \leq s_0 \). Therefore

\[
s = s \land s_0 = (s \land s'_1) = (s \land s_1) \lor (s \land s'_1).
\]

Because \([s_1]_0^0 \) is a direct factor of \(G^\gamma \), we have

\[
G^\gamma = [s_1]_0^0 \times ([s_1]_0^0)\rho.
\]

Each direct factor of \(G^\gamma \) is a convex \(l \)-subgroup of \(G^\gamma \). From \(s_1 \in [s_1]_0^0 \) we infer that \(s \land s_1 \in [s_1]_0^0 \) and hence \((s \land s_1) [s_1]_0^0 = s \land s_1 \). Moreover, since \(s_1 \land s'_1 = 0 \), we have \(s'_1 \in ([s_1]_0^0)\rho \) and thus \(s \land s'_1 \in ([s_1]_0^0)\rho \).

Therefore \((s \land s'_1) [s_1]_0^0 = 0 \). Thus according to (1),

\[
s = s[s_1]_0^0 = (s \land s_1) [s_1]_0^0 = s \land s_1.
\]

Hence \(0 < s \leq s_1 \). This implies \(n_1 s \mathrm{non} \leq g \). If \(n_1 s \leq g_1 \), then \(n_1 s \leq g \), which is a contradiction. Thus \(n_1 s \mathrm{non} \leq g_1 \). On the other hand, we have

\[
n_1 s = (n_1 - 1) s + s \leq (n_1 - 1) s_1 + s \leq
\]

\[
\leq (n_1 - 1) s_1 + (g_1 - (n_1 - 1) s_1) = g_1,
\]

which is a contradiction. Hence

\[
g_1 = (n_1 - 1) s_1.
\]

645
Thus \(g_1 \in G \). If \(g = g_1 \), then \(g \in G \). Suppose that \(g \neq g_1 \). Then \(g_1' = g - g_1 > 0 \). We have \(g_1', s_1' \in ([s_1]^0)^\rho \), \(g_1 \in [s_1]^0 \), hence
\[
 s_1' \land g_1 = 0, \quad g_1 \land g_1' = 0.
\]
Moreover, since \(s_1' \leq s_0 \leq g - g_1 \), we get
\[
 s_1' \land g_1 = (s_1' \land g_1) \lor (s_1 \land g_1') = s_1' \land (g_1 \lor g_1') = s_1',
\]
thus \(s_1' \leq g_1' \). If \(s \in S \), \(s \leq g_1' \), then \(s \leq s_0 \) and \(s \in ([s_1]^0)^\rho \), hence \(s \land s_1 = 0 \), therefore
\[
 s \land s_1' = (s \land s_1') \lor (s \land s_1) = s \land (s_1' \lor s_1) = s \land s_0 = s,
\]
hence \(s \leq s_1' \). Thus \(s_1' \) is the greatest element of the set
\[
 S_1 = \{ s \in S : s \leq g_1' \}.
\]
Now by the same method as we constructed \(n_1, s_1, s_1', g_1, g_1' \) corresponding to the pair \((g, s_0)\), we can construct \(n_2, s_2, s_2', g_2, g_2' \) corresponding to the pair \((g_1', s_1')\).

From \(s_1 \land s_1' = 0, s_1 \lor s_1' = s_0 \) it follows
\[
 [s_0]^0 = [s_1]^0 \times [s_1]^0,
\]
hence
\[
 (2) \quad g[s_0]^0 = g[s_1]^0 + g[s_1']^0.
\]

The component of the element \(g \) in the direct factor \(([s_0]^0)^\rho \) of \(G^\land \) is the greatest element of the set
\[
 P = \{ x \in ([s_0]^0)^\rho : 0 \leq x \leq g \}.
\]
Assume that \(0 < x \in P \). Then \(x \land s_0 = 0 \). There exists \(0 < h_2 \in G \) with \(h_2 \leq g \) and hence there exists \(0 < s \in S \) with \(s \leq h_2 \). Thus \(0 < s \leq s_0 \land x \), which is a contradiction. Consequently, the component of \(g \) in \(([s_0]^0)^\rho \) is 0 and hence \(g \in [s_0]^0 \). Thus \(g = g[s_0]^0 \). Hence from (2) we obtain
\[
 g = g_1 + g[s_1']^0.
\]
Therefore \(g_1' = g[s_1']^0 \).

From \(n_1 s_1' \leq g \) we obtain
\[
 n_1 s_1' = n_1 s_1'[s_1']^0 \leq g[s_1']^0 = g_1'.
\]
Hence necessarily \(n_1 < n_2 \).

Analogously as above we have
\[
 g_2 = g_1'[s_2]^0 = (n_2 - 1) s_2 \in G,
\]
\[
 g_2' = g_1' - g_2,
\]
and \(s_2' \) is a relative complement of \(s_2 \) in the interval \([0, s_1']\). Moreover, if \(0 < s \leq s_0 \), \(n_2 s \leq g \), then \(s \leq s_2' \).
By a straightforward induction we can verify that either

(a) there exist positive integers k, n_1, \ldots, n_k and elements $s_1, \ldots, s_k \in S$ such that $g = (n_1 - 1) s_1 + \ldots + (n_k - 1) s_k$ (thus $g \in G$); or

(b) there exists a strictly increasing sequence of positive integers $\{n_k\} (k = 1, 2, \ldots)$ and there exists elements $s_k, s'_k \in S (k = 1, 2, \ldots)$ such that

(b_1) the system $\{s_k\} (k = 1, 2, \ldots)$ is disjoint,

(b_2) $g_k = g[s_k] = (n_k - 1) s_k$,

(b_3) $s_k \wedge s'_k = 0$, $s_k \vee s'_k = s'_{k-1}$ for $k > 1$,

(b_4) $n_k s'_k \leq g$,

(b_5) if $s \in S_0$, $n_k s \leq g$, then $s \leq s'_k$.

Suppose that (b) is valid. Assume that there exists $0 < s \leq s_0$ such that $s \wedge s_k = 0$ for $k = 1, 2, \ldots$. Then $s \leq s'_k$ and hence by (b_4), $n_k s \leq g$ for $k = 1, 2, \ldots$. As G^\wedge is archimedean, this is a contradiction. Thus for each $0 < s \leq s_0$ there exists a positive integer k with $s \wedge s_k > 0$.

We have $g_k = g[s_k] \leq g \leq h$ for every positive integer k. By (b_2), $g_k \in G$. Since G is σ-complete, the element

$$g' = \bigvee g_k$$

exists in G and $g' \leq g$.

Assume that $g' < g$. Then there is $0 < s \in S$ with $s \leq g - g'$. Clearly $s \leq s_0$, hence $0 < s^* = s \wedge s_k$ for a positive integer k. Thus

$$n_k s^* = (n_k - 1) s^* + s^* \leq (n_k - 1) s_k + (g - g') \leq g' + (g - g') = g.$$

Hence according to (b_3), $s^* \leq s'_k$. Therefore $0 \leq s^* \leq s_k \wedge s'_k = 0$, which is a contradiction. This implies that $g' = g$. Hence $g \in G$.

Therefore $G^\wedge = G$ and so G is complete. Thus we have proved Thm. 1 that was formulated above.

Let us remark that for a singular lattice ordered group G the condition (α) is equivalent with the following condition:

(α') each bounded disjoint set of singular elements of G has a supremum in G.

Clearly $(\alpha) \Rightarrow (\alpha')$. Assume that (α') is valid and let $\{s_i\} (i \in I)$ be a set of singular elements of G, $g \in G$, $s_i \leq g$ for each $i \in I$. The Axiom of Choice implies that in the interval $[0, g]$ there exists a set $\{f_j\} (j \in J)$ of singular elements of G such that (i) $f_j \wedge f_k = 0$ whenever j and k are distinct elements of J, and (ii) for each singular element $0 < s \in [0, g]$ there is $j \in J$ with $s \wedge f_j > 0$. Then according to (α') the supremum $\bigvee_{j \in J} f_j = f_0$ exists in G, and because $S(G)$ is a closed sublattice of G, f_0 is singular. If $f_0 = 0$, then $s_i = 0$ for each $i \in I$, hence $\bigwedge s_i = 0$. Let $0 < f_0$. Then $[0, f_0]$ is a Boolean algebra and by (α'), each bounded disjoint subset of $[0, f_0]$ has a supremum in $[0, f_0]$. Hence the Boolean algebra $[0, f_0]$ is complete (cf. Sikorski [12], 20.1).
Let \(i \in I, \ 0 < s_i \). There exists \(k \in J \) such that \(f_k \wedge s_i > 0 \), hence \(f_0 \wedge s_i = e_i > 0 \). Suppose that \(e_i < s_i \) and denote \(f' = s_i - e_i \). Then \(f' \) is singular and \(0 < f' \leq g \). Moreover, \(f_0 \wedge f' = 0 \), hence \(f_j \wedge f' = 0 \) for each \(j \in J \). In view of (ii), this is a contradiction. Hence \(s_i \in [0, f_0] \) for all \(i \in I \). Since \([0, f_0]\) is complete, there exists the supremum \(s_0 \) of the set \(\{s_i\}_{i \in I} \) in \([0, f_0]\). Clearly \(s_0 = \sup \{s_i\}_{i \in I} \) in \(G \). Therefore (a) is valid.

3. EXAMPLES

A complete lattice ordered group is a vector lattice if and only if \(S(G) = \{0\} \) (cf. Conrad-McAllister [5]). The following example shows that a \(\sigma \)-complete strongly projectable lattice ordered group \(G \) fulfilling the condition \(S(G) = \{0\} \) need not be complete.

Example 1. Let \(G_0 \) be the set of all real functions defined on the interval \([0, 1]\). For \(f, g \in G \) we put \(f \leq g \) if \(f(x) \leq g(x) \) is valid for each \(x \in [0, 1] \). Then \(G_0 \) is an additive lattice ordered group. Let \(N \) be the set of all integers. Let \(G \) be the set of all elements \(g \in G_0 \) such that

\[
\text{card} \{x \in [0, 1] : g(x) \notin N\} \leq \aleph_0.
\]

Then \(G \) is an \(l \)-subgroup of \(G_0 \). It is easy to verify that \(G_0 \) is complete and \(G \) is \(\sigma \)-complete. For each \(0 < s \in G \) there exists \(0 < x < s \) with \(2x < s \), hence \(0 < x \wedge (s - x) \). Thus \(S(G) = \{0\} \).

Let \(A \subset G \). Put

\[
s(A) = \{x \in [0, 1] : f(x) \neq 0 \text{ for some } f \in A\}.
\]

Then \(A^d \) is the set of all \(h \in G \) such that \(h(x) = 0 \) for each \(x \in s(A) \). Let \(0 < g \in G \). There is \(g_1 \in G_0 \) such that \(g_1(x) = 0 \) for each \(x \in s(A) \) and \(g_1(x) = g(x) \) for each \(x \in [0, 1] \setminus s(A) \). Clearly \(g_1 \in G \) and

\[
g_1 = \sup \{f \in A^d : 0 \leq f \leq g\}.
\]

Hence the \(l \)-group \(G \) is strongly projectable. Let \(r \) be a real, \(r \notin N \). For each \(x \in [0, 1] \) define \(f_x \in G \) by \(f_x(x) = r \), \(f_x(j) = 0 \) for \(j \in [0, 1], j \neq x \). The set \(\{f_x : x \in [0, 1]\} \) is disjoint and bounded, \(\sup \{f_x : x \in [0, 1]\} \) does not exist in \(G \). Thus \(G \) fails to be conditionally orthogonally complete. Therefore \(G \) is not complete.

Let \(G \) be a singular lattice ordered group that is strongly projectable and \(\sigma \)-complete. Then \(G \) need not be complete.

Example 2. Let \(G_0 \) be as in Example 1. Let \(G \) be the set of all \(g \in G_0 \) such that (i) \(g(x) \in N \) for each \(x \in [0, 1] \), and (ii) the set

\[
\sigma(g) = \{x \in [0, 1] : g(x) \text{ is odd}\}
\]

has a cardinality less or equal to \(\aleph_0 \).

648
Then \(G \) is singular (\(S(G) \)) consists of all elements \(g \in G \) such that, for each \(x \in [0, 1] \), either \(g(x) = 0 \) or \(g(x) = 1 \); moreover, \(G \) is strongly projectable and \(\sigma \)-complete. But \(G \) is not conditionally orthogonally complete and hence \(G \) is not complete.

Let \(G \) be a singular \(l \)-group that is strongly projectable and fulfills the condition \((x)\). Then \(G \) need not be complete.

Example 3. Let \(G_0 \) be the set of all real functions defined on the set \(N \) such that \(f(x) \in N \) for each \(x \in N \). Let \(f^1 \in G_0 \) with \(f^1(x) = x \) for each \(x \in N \). We denote by \(F_0 \) the set of all \(f \in G_0 \) such that \(f(x) \in \{0, 1\} \) for each \(x \in N \). Let \(G \) be the \(l \)-subgroup of \(G_0 \) generated by the set \(\{f^1\} \cup F_0 \). Then \(G \) is singular, strongly projectable and fulfills \((x)\). Let \(N_1 \) be the set of all positive even integers. For each \(n \in N_1 \) let \(f_n \in G_0 \) such that \(f_n(n) = \frac{1}{2} n \) and \(f_n(x) = 0 \) otherwise. Then \(f_n \in G \), the set \(\{f_n\}_{n \in N_1} \) is disjoint and bounded in \(G \) and it has no least upper bound in \(G \). Hence \(G \) is not conditionally orthogonally complete; thus \(G \) fails to be complete.

Let \(C(L), C(P) \) and \(C(SP) \) be the class of all lattice ordered groups that are respectively orthogonally complete, projectable and strongly projectable. Further, let \(C(0) = C(L) \cap C(P) \). Let \(G \) be a lattice ordered group that is an \(l \)-subgroup of a cardinal product of linearly ordered groups. Let \(X \in \{L, SP, 0\} \), \(G_1 \in C(X) \) and let \(G^X \) be the intersection of all \(H \in C(X), H \subset G_1 \) such that \(G \) is an \(l \)-subgroup of \(H \) and \(S \cap G \neq \{0\} \) for each convex \(l \)-subgroup \(S \) of \(H \). Then \(G^X \) belongs to \(C(X) \) and it is called an \(X \)-hull of \(G \) (cf. CONRAD [4]).

Conrad [4] proposed the problem whether the assertion

(i) \((G^L)^{SP} \subset G^0\)

is valid for each archimedean lattice ordered group \(G \). It was remarked above that the validity of the implication

(ii) \(G \) is conditionally orthogonally complete \(\Rightarrow G \) is strongly projectable

for each archimedean lattice ordered group \(G \) is an open question.

If (ii) holds for each archimedean lattice ordered group, then also (i) is true for each archimedean lattice ordered group. In fact, assume that (ii) is valid for each archimedean lattice ordered group and let \(G \) be archimedean. Then (cf. [4]. Thm. 2.6) \(H = G^L \) is archimedean and clearly \(H \) is conditionally orthogonally complete. By (ii), \(H \) is strongly projectable and thus \(H^{SP} = H \). Hence \(H = (G^L)^{SP} \in C(L) \cap \cap C(P) \); therefore \(G^0 \subset H = G^L \). Clearly \(G^L \subset G^0 \) and thus \((G^L)^{SP} = G^L = G^0\).

Hence (i) is valid.

4. \(r_0 \)-COMPLETE LATTICE ORDERED GROUPS

Lemma 1. Let \(G \) be a lattice ordered group that is archimedean, projectable and conditionally orthogonally complete. Let \(0 < g_1 \in G^\wedge, 0 < e_1 \in G, e_1 \leq g_1 \) and suppose that \(e_1 \) is a weak unit of the \(l \)-group \([g_1]_0\). Then there is \(0 \leq u_1 \in G \) such that \(u_1 \leq g_1 \leq u_1 + e_1 \).
Proof. The assertions and the proofs of Lemmas 7–11 and those of Theorem 2 in [9] remain valid if the assumption of the σ-completeness of \(G \) is replaced by the weaker assumption that \(G \) is projectable; hence the assertion of Lemma 1 holds.

Lemma 2. ([9], Lemma 7.) Let \(G \) be a conditionally orthogonally complete archimedean lattice ordered group, \(0 < g_1 \in G^\wedge \). Then there is \(e_1 \in G \) such that \(e_1 \) is a weak unit of the \(l \)-group \([g_1]^0\) and \(e_1 \leq g_1 \).

Lemma 3. ([9], Lemma 12.) Let \(G \) be a conditionally orthogonally complete archimedean lattice ordered group and let \(S(G) = \{0\} \), \(0 < e_1 \in G \). Then there is \(e_2 \in G \) such that \(e_2 \) is a weak unit of \([e_1]^0\) and \(2e_2 \leq e_1 \).

Let us remark that if \(e_1 \) is a weak unit of \([g_1]^0\), then clearly \([g_1]^0 = [e_1]^0\).

Theorem 2. Let \(G \) be a lattice ordered group that is projectable, conditionally orthogonally complete and archimedean. Let \(S(G) = \{0\} \), \(0 < g_1 \in G \). Then there are elements \(z_n, e_n \in G \) (\(n = 1, 2, \ldots \)) such that for any positive integer \(n \),

1. \(0 \leq z_n \leq g_1 \leq z_n + e_n \),
2. \(0 \leq 2e_{n+1} \leq e_n, \quad z_n \leq z_{n+1}, \quad e_n \in [g_1]^0 \),
3. \(\forall i = 1, z_i = g_1 \) holds in \(G^\wedge \).

Proof. According to Lemma 2 there is \(0 < e_1 \in G \) such that \(e_1 \) is a weak unit of the \(l \)-group \([g_1]^0\). Let \(u_1 \) have the same meaning as in Lemma 1. Put \(z_1 = u_1 \). We proceed by induction on \(n \). Assume that we have defined, for a positive integer \(n \), elements \(u_1, \ldots, u_n, e_1, \ldots, e_n \in G \cap [g_1]^0 \) such that

\[
0 \leq u_k, \quad 0 \leq e_k, \quad u_1 + \ldots + u_n \leq g_1 \leq u_1 + \ldots + u_n + e_n
\]

for \(k = 1, \ldots, n \), and if \(n > 1 \), then

\[
2e_k \leq e_{k-1}
\]

for \(k = 2, \ldots, n \). Denote \(z_n = u_1 + \ldots + u_n \). Then \(z_n \in G \cap [g_1]^0 \). In the case \(g_1 = z_n \) we put \(u_k = e_k = 0 \) for each \(k > n \). Let \(z_n < g_1 \). By Lemma 2, there is \(0 < e' \in G \) such that \(e' \) is a weak unit in \([g_1 - z_n]^0\) and \(e' \leq g_1 - z_n \). Clearly

\[
[g_1 - z_n]^0 \subset [e_n]^0,
\]

hence \(e' \wedge e_n \) is a weak unit of \([g_1 - z_n]^0\). According to Lemma 3 there is \(0 < e'_{n+1} \in G \) with \(2e'_{n+1} \leq e_n \) such that \(e'_{n+1} \) is a weak unit in \([e_n]^0\). Denote

\[
e_{n+1} = e'_{n+1} \wedge (g_1 - z_n).
\]

Then \(e_{n+1} \) is a weak unit of \([g_1 - z_n]^0\). Moreover, \(e_{n+1} \in G \cap [g_1]^0 \) and \(2e_{n+1} \leq e_n \).

650
According to Lemma 1 there is \(0 \leq u_{n+1} \in G \) such that
\[
u_{n+1} \leq g_1 - z_n < u_{n+1} + e_{n+1}.
\]
Denote \(z_{n+1} = z_n + u_{n+1} \). Then \(z_{n+1} \in G \cap [g_1]^0 \) and
\[
0 \leq z_{n+1} \leq g_1 \leq z_{n+1} + e_{n+1}.
\]
The set \(\{z_n\} \) is bounded in \(G^\wedge \), hence \(\bar{z} = \bigvee z_n \) exists in \(G^\wedge \) and \(\bar{z} \leq g_1 \). Suppose that \(0 < y = g_1 - \bar{z} \). According to (i) we have \(y \leq e_n \) and hence by (ii), \(2^n y \leq e_1 \) is valid for every positive integer \(n \). This is a contradiction, since \(G^\wedge \) is archimedean. Thus \(\bigvee z_n = g_1 \) holds in \(G^\wedge \).

Theorem 2'. Let \(G \) be a lattice ordered group that is projectable, conditionally orthogonally complete and archimedean. Let \(0 < g_1 \in G^\wedge \). Then there are elements \(z_n, e_n \in G \ (n = 1, 2, \ldots) \) such that the conditions (i), (ii) and (iii) of Thm. 2 are fulfilled.

Proof. Put \(A = (S(G))^\delta, B = (S(G))^\delta \). According to Thm. 1 of [9] we have
\[
G = A \times B
\]
and both \(A \) and \(B \) are projectable, conditionally orthogonally complete and archimedean. Moreover, \(A \) is singular and hence by [8], \(A \) is complete. Clearly \(S(B) = \{0\} \).

Denote \(g_2 = g_1(A), g_3 = g_1(B) \). In the case \(g_3 = 0 \) we put \(z_n = g_2, e_n = 0 \) for every positive integer \(n \). Let \(g_3 > 0 \). According to Thm. 2 there are elements \(z'_n, e'_n \) such that (i), (ii) and (iii) are valid if we replace \(g_1, z_n, e_n, G \) by \(g_3, z'_n, e'_n, B \). Put
\[
z_n = g_2 + z'_n, \quad e'_n = e_n.
\]
Then the conditions (i), (ii) and (iii) are valid.

Theorem 3. Let \(H \) be an l-group that is projectable, conditionally orthogonally complete and archimedean. Assume that each fundamental \(r_0 \)-sequence \(\{h_i\} \) of \(H \) with \(0 \leq h_i \leq h_{i+1} \ (i = 1, 2, \ldots) \) is \(\sigma \)-convergent in \(H \). Then \(H \) is complete.

Proof. Put \(G = (S(H))^\delta \) (the symbol \(\delta \) is considered with respect to the l-group \(H \)). According to Theorem 1 of [9], \(G \) is a direct factor of \(H \), hence \(G \) is archimedean, projectable and conditionally orthogonally complete. Clearly \(S(G) = \{0\} \). If \(\{h_i\} \) is a fundamental \(r_0 \)-sequence in \(H \), \(\{h_i\} \subset G \), then \(\{h_i\} \) is a fundamental \(r_0 \)-sequence in \(G \).

Let \(g_1, z_i, e_i \) have the same meaning as in Thm. 2. Let \(i, k, m \) be positive integers, \(i < k \leq m \). Then
\[
z_i \leq z_k \leq z_m \leq g_1 \leq z_i + e_i.
\]
Hence
\[
|z_k - z_m| \leq e_i, \quad 2^{i-1} e_i \leq e_1.
\]

651
holds. This implies that \{z_i\} (i = 2, 3, 4, \ldots) is a fundamental \(r_0\)-sequence in \(G\), thus it is a fundamental \(r_0\)-sequence in \(H\) and hence, according to the assumption, the sequence \{z_i\} \(o\)-converges to an element \(z\) of \(H\). Obviously \(z \in G\). Since \(z_i \leq z_{i+1}\) for \(i = 1, 2, \ldots, \) we have \(z = \bigvee z_i\). Now by Thm. 2 we obtain that \(z = g_1\). Thus \(G\) is complete.

We have \(H = (S(H))^\aleph_0 \times G\). The \(l\)-group \(A = (S(H))^\aleph_0\) is singular, archimedean and conditionally orthogonally complete. Therefore by [8], \(A\) is complete. Hence the \(l\)-group \(H\) is complete as well.

References

Author's address: 043 84 Košice, Svermová 5, ČSSR (Vysoké učení technické).

Added in proof. Bernau (J. London Math. Soc. (2) 12 (1976), 320 — 322) proved that each archimedean orthogonally complete lattice ordered group is projectable, and Rotkovič (Czech. Math. J., to appear) showed that each archimedean conditionally orthogonally complete lattice ordered group is projectable. Hence in Thms. 2, 2' and 3 the assumption of the projectability can be omitted.