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SECOND DERIVATIVES 

KAREL V I S M K , Praha 

(Received September 13, 1974) 

1. INTRODUCTION 

Many technical problems leading to initial-value problems for ordinary dif­
ferential equations (O.D.E.) are stiff. Using "basic" numerical methods (such as 
the linear multistep methods or the Runge-Kutta methods) we must integrate such 
equations using extremely small steps. The need for very small steps is not caused 
by the accuracy required but it results from the requirements on the stabihty of the 
numerical solution. Therefore, an efficient method for solving stiff systems of O.D.E. 
should not only have a high speed of convergence, but it should satisfy other requi­
rements among which the A-stability has often proved reasonable. It is well-known 
that, in the class of "basic" methods, A-stable methods of order higher than 2 do not 
exist, and the methods exhibiting the A-stability are implicit. 

PRÄGER, TAUFER, VITÄSEK have introduced in [2] a class of overimplicit multistep 

methods including A-stable methods of arbitrarily high orders. The implicit character 
of these methods is emphasized by the fact that, instead of computing the approxi­
mate solution at one point from the known approximate solutions at к preceding 
points, the approximate solutions at r successive points are calculated simultaneously 
from the known approximate solutions at к preceding points. A special set of these 
formulae is a class of one-step methods studied in [1], [2]. These methods calculate 
the approximate solutions at r successive points simultaneously from the known 
approximate solution at one preceding point. Only the r-th value is used again as 
a new starting value. At each step, the new r values are calculated from a certain 
(generally nonlinear) system of equations. It has been shown in [1] that an A-stable 
method calculating r new values simultaneously can be constructed for every positive 
integer r so that the speed of convergence of this method is 0(/i'"^^) for /i -> 0. 

A new class of implicit one-step methods including A-stable methods of high 
orders is introduced in this paper. The system of r (generally nonlinear) equations 
must be also solved at each step in order to obtain the new r approximate solutions 
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at r successive points. But on the contrary to the methods in [ l ] , [2], we are able 
to construct an A-stable method converging with the speed O^h^""^^) or 0(h^''^^) 
for h -^ 0 for a fixed number r. This is the contents of §§ 2 —5 of the present paper. 
Our formulae contain the second derivatives of the solution. Thix can be considered 
a disadvantage of these methods. In § 6, we show how to avoid this disadvantage. 
We shall give an efficient algorithm for solving the nonlinear systems arising at each 
step of our method. This algorithm uses only the Jacobian matrix of the right-hand 
side of the original system of O.D.E. Using this algorithm we are nearly in the same 
situation as when we solve a system of equations arising by applying the methods 
quoted in [1], [2] to the original system of O.D.E. by the Newton method. In 
addition, the algorithm uses an A-stable one-step explicit nonlinear formula quoted 
in [3] for obtaining a good initial approximation for solving the nonlinear system 
by our Newton-like iterative procedure. So we are able to integrate very stiff systems 
of O.D.E. with extremely large steps guaranteeing at the same time a satisfactory 
accuracy of the approximate solution. This is illustrated in § 7 where two A-stable 
methods are tested on a very stiff problem arising in reactor kinetics. 

2. THE BIM2^ METHODS 

Now we introduce a class of methods for solving the initial-value problems for 
systems of O.D.E. For the sake of simplicity, all statements will be formulated and 
proved for a single differential equation of the form 

(2.1) y' = f{x, y{x)), y{xo) = Уо, xe <Xo, b} . 

The changes that are to be made for systems of O.D.E. are given in remarks. 

Notation 2.1. In what follows, h denotes a real positive number, the step size. 
Further, r denotes a positive integer, ß, y are real column vectors of the length r. 
The symbol e denotes the column vector of the length r, the elements of which 
are 1; B, С are real r x r matrices. The symbol / denotes the right-hand side of (2.1) 
and the symbol / ' denotes the function d//dx = dfjdx + {dfjdy)/. Further, we 
suppose that the equation (2.1) has exactly one solution, denoted by y(x). 

Definition 2.1. Let the equation (2.1) be given and let h and r be fixed numbers. 
Let P, Y be some chosen vectors of the length r and let B, С be some given r x r 
matrices. Consider the following relation: 

(2.2) 
Уп + г 

= e.y„ + h.p.f„ + h'.y.f: + h.B 
Jn+l 

[_Jn + r _ 

+ / i ^ C 
fn+l 

Jn + f J 

where f„+j = /(%„+;, y„+j), f!,+j = f'{x„+j, y„+j) and x„+j = x„ + jh, j = 1 , . . . , r. 
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Let us put n = r . /c for /c = 0, 1, ... an let us determine y„+u •••> Уп+г from (2.2). 
Then we say that we solve the differential equation (2.1) by the Block Implicit 

Method 2 (BIM2^ method). The values Укг will be called the approximate solutions 
of the equation (2.1) at the points x,,^, /c = 0, 1, ••• and the number h will be called 
the step (or step size) of the method. 

So every BIMl^ method is associated with a fixed positive integer r which says 
how many new values are to be calculated from the known one at each step. Further, 
the BIMl^ method is described by the matrices B, С and by the vectors ß, у. 

Remark 2.1. When we have to solve a system of q O.D.E. of the form (2.1), then f 
is assumed to be a ^-dimensional vector-valued function of ^ + 1 variables. The 
symbol Y„+j denotes the ^-dimensional vector of apprpximate values of the solution 
of the system (2.1) at the point x„+j, j = 1, ..., r. Using the BIMI^ method, we now 
compute r vectors y„+j at each step. The formula (2.2) in Definition 2.1 is to be 
replaced by the following one: 

(2.3) 

where 

Yn + i 

Уп + г 

- 'ey„ - h 'Pf„ - e 'yf̂  - /г 'B 
bI+1. 

\jn + r _ 

- h^ с 
f/l+l 

_ " + ' J 
= 0, 

e = 'p = 
ßX 

^1,1'«. •••, b i , , l . 

С = 

Til , 

pr,iq'> ' ' •' ^r,r 'q 

and where 1̂  is the ^ x q unit matrix and f = dfjdx + J . f, where J is the Jacobian 
matrix of the vector-valued function f. 

Now we shall examine the properties of the matrices B, C, vectors ß, у and of the 
right-hand s ide / in (2.1) that will guarantee that the approximate solutions obtained 
by the BlMl^ method converge with a certain speed to the exact solution of (2.1) 
for /i ^ 0 . 

Definition 2.2. We say that the approximate solutions Ук^, /с = 0, 1, . . . obtained 
by means of the BlMl^ method converge to the exact solution y{x) of the equation 
(2.1) with the speed 0(/г^) for /i -> 0, p ^ 1, if 

(2.4) \y,r ~ y{xkr)\ = 0{h') for / i - ^ O , ft = (x - Xo)/(/cr) 

at every fixed point x = x̂ r̂ from <Xo, b>. 
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Now we introduce the local error and the order of the BIM2^ method. These notions 
will be used later. 

Definition 2.3. The following vector is said to be the local error of the BIM2^ 
method applied to the equation (2.1): 

(2.5) L{h,y{x)) 
y{x + h) 

y{x + rh) 
-ey{x)-hf,fo-h'yn-hB \^}' u_ - h'C 

'fг^ 

Jr\ 
where fj = f{x + jh, y{x + jh% fj = f{x + jh, y{x + jh)), ; = 0, ..., r. 

Remark 2.2. For the system of O.D.E. the symbols B, C, e, p, y are to be replaced 
by 'B, ' C , . . . in the sense of (2.3). 

Definition 2.4. The BlMl^ method is said to be of order at least p, p ^ 1, if the 
following relations are fulfilled for the components of p, y, B, C: 

(2.6) ßj + E Кл = j , 

У] + Z ^j,k .k + Y,c J,к 2! 
, J = 1, ..., ,̂ 

^ ^ (i - 1)! A ''' {i - 2)! Ä ''' i! 

f = 3, . . . , / ? , 7 = 1, ..., r . 

Now we establish the mutual relation between the order of the BiNil^ method and 
the local error of the BlNil^ method apphed to the equation (2.1). 

Lemma 2.1. Let p be a positive integer and let y(x) e C^^^[{XQ, b}). Let Li, i = 
= 1, ..., г be the components of the vector of the local error. Then there exists 
a constant К (independent of x) so that 

(2.8) \Ц{К y{x))\ йКЛР^\ / = 1, ..., r , XE <Xo, b> 

if and only if the BlMl^ method is of order at least p. Moreover, if y{x) e 
e C^"'" (̂<Xo, by) then there exist constants X^, X2 {independent of x) so that 

(2.9) \Ц{к,у{х))\ uK,.hP^\ j = l , . . . , r - 1 , 

\Llh,y{x))\uK^.h^*\ xe(xo,by 

if and only if the В//И2, method is of order at least p and the relation (2.7) is also 
fulfilled for i = p + I with j = r. 
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P r o o f follows immediately from Taylor's formula applied to the terms in (2.5). 

Remark 2.3. For systems of O.D.E., we assume the vector of the local error to be 
divided i n t o / blocks L̂  of the length q and therefore the symbols ] | mean the vector 
norm. 

Now we are able to formulate the main theorem of this section. 

Theorem 2.1. Let p be a positive integer. Let N, M be real constants such that 

| / (x, y) - fix, z)\ й N\y ~ z\ , \fXx, y) - fXx, z)\ й M\y - z| , 

for X E <Xo, by , y,zeE^. 

Let y(x) 6 C "̂*"̂ (<Xo, by) and let the BIM2^ method of the order at least p be given. 
Then 

1) the approximate solutions y^^ obtained by the BlMl^ method applied to the 
equation (2.1) converge to the exact solution y(x) with the speed 0{h^) for h -^ 0. 

2) Moreover, if y{x)e C^"'" (̂<Xo, b>) and the relation (2.7) is fulfilled also for 
i = p + I with j = r, the speed of convergence is 0{hP^^) for h -^ 0. 

Proof. We prove the second statement only. The proof of the first statement is 
analogous, but shorter and easier. 

Let us introduce the following notation: 

^ii+i = y{Xn+i) - Уп+i, 

s . - / "̂-̂ ^ 
0 for e„+i = 0 , 

f{^n..y{Xn.i))-fbn..yn.i) f̂ ^ ^ ^ ^ ^ ^ Q 

t • =/ '̂'̂ '̂ 
0 for e„ + i = 0 

for г = 1, . . . , r. 

Let us further denote by S the diagonal matrix 

S = diag(s„+i, . . . , s„+,) 

and by T the diagonal matrix 

T = diag(r„+i, . . . , r„+,). 

18 



According to the assumptions of the theorem, it holds i ; 

(2.10) K^. , |^ iV, i = l , . . . , r , 

(2.11) |r„^,| ^ M , i = l , . . . , r . 

Let us put X = x„ in (2.5) and let us subtract (2.2) from (2.5). Further, let us substi­
tute the terms introduced above into this new expression. We have 

(2.12) (I - /iBS - /î^CT) 
^n+l 

- (e + /îPs„ + h^yt„) e„ + L(/z, y{x„)) . 

In the following, we shall use the norms of vectors and matrices. For the sake of 
simplicity, we shall assume the norm of the vector u = (ŵ ) to be defined by ||u|| = 
= max |м |̂ and the matrix norm to be induced in the usual sense by this vector norm. 

i 

First of all, we show that there exists a constant /12 > 0 so that (I — /iBS — 
— h^CT)~^ exists for 0 < /i < /12 and the following estimate holds: 

(2.13) hBs - /T^CT)-'!! й 1 
h\\B\\N - й^ЦСЦМ 

Obviously j|/iBS + й̂ СТЦ ^ /j||Bl| N + h^C\\ M, and the inequality й̂ ЦСЦ M + 
+ йЦвЦ N - 1 < О holds for О < /i < /i2 where /12 is given by 

(2.14) К = 

-||B||JV + (| |BpJV^+4||C||M)' ' 
2IICII M 

1 
В ЛГ 

|C|| + 0 

l | c | | = o , ЦвЦфо, 

Hence we conclude that (I - /iBS - /i^CT)"i exists for 0 < й < /12 and (2.13) 
holds. Let us confine ourselves to 0 < ft < ^2. We multiply (2.12) by the matrix 
(I — ftBS — /i^CT)"^ and take the norms on both sides. Using the assumptions of 
the theorem and Lemma 2.1 for the estimate of ||L|| and considering (2.10), (2.11), 
(2.13) we have 

(2.15) 

where 

\e„^\uG{h)\e„\+H{h), i = \,...,r. 

G{h) 1 + fo||ß||JV + fo'llYJAf 
1 - йЦВ i V - /i^lCllM 

, H{h) Kih'-''-
1 - /i||B||iV-ft^||C||M 
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Let us take only the last, i.e., the r-th equation in (2.12). After an arrangement 
we obtain 

(2.16) 

where 

r - 1 

= (1 + hß,s„ + h\t„) e„-h hY, Uie„+i + L , , 
1 = 1 

Ui = b,js„+i + hc,J„+i, / = 1, . . , , r - 1 

and Ц is the r-th component of the vector of the local error. In a similar way as 
before, we conclude that there exists /i^ > 0 so that (1 — hb^^^^n+r — ^^ r̂,i-̂ «+r) + ^ 
for 0 < /i < /ii and 

(2.17) 
1 hbrf.s„+r h Cyytfj^f 

< 1 - h\b,JN ~ h%^,\M 

In the following, we confine ourselves to h < min(/ii, /22). In the relation (2.16), 
we divide by (1 — hb^^^s^+r ~ h^(^rjn+r) and take the modulus on both sides. Using 
(2.10), (2.11), (2.17) and Lemma 2.1, we obtain 

(2.18) 

where 

r - l 

1 = 1 
\en+r\ й ao{h) \e„\ + fo ^ «.W k/.+ .| + Ф). 

a (h) = 1 + l̂î rl N + h^\y,\ M ^ .^. ^ K^h'*^ 
""^ ^ 1 - й|Ь,,,| N - h%_,\ M ' " ' ' • ' ' ^ 1 - /i|b,_,| N - h%_,\ M ' 

a^h) =-Ы1Л_ЩМ_., .• = 1,...,.-1. 
1 - /j|b,,,| N - /i2|c,,,| M 

Substituting from (2.15) into (2.18), we have 

(2.19) \e„,,\uP{h)\e„\+Rih) 

where 

P{h) = ao{h) + h G{h)j:a,{h), R{h) = а^Щ + h H{h)Y^a,{h). 

Now we recall that n = rk. Solving the recurrence (2.19), we obtain 

(2.20) \e,,\ й РЩ |eo| + R{h) P%h) - 1 
P{h) - 1 

Now we shall study the behaviour of the right-hand side of (2.20) at an arbitrary 
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but fixed point x e <Xo, b} for fc -> oo and h = (x — Xo)j{rk). Let us calculate 

Hm P\{x — Xo)j(rk)). Using the I'Hospital rule, we have 

(2.21) lim P\h) = exp (N ^'-^ {\ß,\ + t \К,\)] . 
h = (x-xo)/irk) 

Further, we obtain easily 

Rih) ^^JKl+K, 
(2-22) l i m 7 - 7 ^ ,4 , p + i - ; • 

Substituting from (2.21) and (2.22) into (2.20) and taking into account that CQ = 0, 
we have 

]im |e,,/F-^^| ^ (exp iV ^ ^ - ^ (ft + X |6,,,|)) - 1 ) ^ ^ - ^ . 
'.=(.'-î :)/(H) V V r ,.1 / / iv(|ft| + x i M ) 

i = l 

This relation proves the second statement of the theorem. 

3. A-STABILITY 

Definition 3.1. A numerical method for solving initial-value problems for O.D.E. 
is said to be Astable, if the numerical solutions ŷ^ obtained by applying the method 
to the equation 

(3.1) y' = осу (a —complex constant with Re (a) < 0) 

with an arbitrary (but fixed) step size h > 0 tend to zero for /c -> 00. 
In the following, we derive some useful lemmas for studying the A-stability of the 

BIM2^ methods. We substitute from (3.1) into (2.2) and obtain a system of linear 
algebraic equations for unknown values of the numerical solution у„+^, /c = 1, . . . , r: 

(3.2) (I - zB ~ z 'C) 

where z = och. 

Уп+l 

Уп + г 

(e + ßz + yz )̂ y„ 

Notation 3.1. Let a certain BIM2^ method, i.e., matrices B, С and vectors ß, 7 
be given. We shall denote by D^, /c = 1, ..., /- the matrices arising from (I - zB -
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— z^C) by replacing the k-th column by the vector (e + ßz + yz^). Further, we 
shall denote 

(3.3) Po(z) = det (I ~ zB - z^C) 

and 

(3.4) P,(z) = det D , , k=h,..,r. 

Obviously, Py(z), j = 0, ...,r are polynomials in z of degree at most 2r and nor­
malized so that Pj{0) = 1. 

Using the above notation and Cramer's rule in (3.2), we find 

(3.5) Л + . = ^ J „ , /c = l , . . . , r . 
^o(z) 

If y„ is the value obtained after j steps of the BIM2^ method, it holds 

(3.6) y„ = y^^ = (Es(l)\'y^. 
Po{z)J 

Definition 3.1 together with the relation (3.6) immediately imply 

Lemma 3.1. Let a certain BIM2^ method be given and let PQ, P^ be the polyno­
mials defined by the relations (3.3) and (3.4). 

Then the given BIM2^ method is Astable if and only if 

H^)144 < 1 
for every z with Re(z) < 0. 

Further, we shall profit from 

Lemma 3.2. Suppose P{z) is a real polynomial such that P{z) = P( — z) does not 
hold identically. Let all the roots of P{z) which are not roots of P( — z) have positive 
real parts. Then 

(3.7) |P(-z) /P(z) | < 1 holds for all z , Re (z) < 0 . 

Conversely, let there exists z, Re (z) < 0 such that P(z) = 0 and P{ — z) ф 0. 
Then (3.7) is not true. 

Proof. The second part of the assertion is obvious. We prove the first part in two 
steps. 

1. First, we suppose that all the roots of the polynomial P have positive real 
parts. Let us write the ratio P( — z)lP(z) in the form of a product 

P{z) \ z - ai J \ z - a^ J 

\ z -ä, ) \ z - a,) \ z ~ c^ ) \ z - c^) 

11 
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where a^ for i = 1,..., s are complex roots of P with multiplicities b,-; c,- for / = 
= 1, . . . , fe are real roots of P with multiplicities di. 

According to the relation (3.7a) it remains to show that 

(3.7b) 
z — a 

holds for every z , Re (z) < 0 
and for every a , Re (a) > 0 

The relation (3.7b) can be readily proved by direct calculation. 

2. Now, let P(z) and P( —z) have a certain number of common roots and let all the 
remaining roots of P(z) have positive real parts. Then |P( —z)/P(z)[ = |к( —Z)/K(Z)| 
where the polynomial P(z) has all the roots with positive real parts and we can 
apply the assertion proved above. Q.E.D. 

Lemma 3.3. Let a certain BIM2^ method of order p '^ 2r be given. Let Po{^^) = 
2r 2r 

= YJ ^i-' ^^d Pk{z) = YJ ^kjz' for к = 1, ..., Г be real polynomials defined for 
i = 0 t = 0 

the given method by the relations (3.3) and (3.4). Then 

l) the coefficients of the polynomials Pj^ are given in terms of the coefficients 
of the polynomial PQ as follows: 

(3.8) ^k,i = Z 
A {i - j)\ 

i = 0, . . . , 2 r , /c = 1, ..., r . 

2) Moreover, if the order of the given method is p = 2r + 2, the coefficients 
of the polynomial PQ fulfil the relations 

(3.9) S ^2r-J , . . , , . = 0 , Z ^2r-j 
j = 0 0 + 1)! J = 0 (J + 2)! 

0 , к = l , , . . , r . 

3) The relations (3.9) viewed as a system of linear algebraic equations yield 
exactly one set of numbers a^, ..., a2r for fixed aQ. 

Proof. Taking into account that the method is of order at least p, we obtain 
from (2.5) and (3.1) the following relation 

(3.10) (I - zB - z^C) 
_j(x„ + rh) 

Applying Cramer's rule to (3.10), we have 

(3.11) 

= (e + zp + Z^Y) X^n) + ee»"^ ' ) -

Po(z) 
4k 
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where Pj, j = 0, ..., r are defined by the relations (3.3), (3.4) and qi, is a solution 
of the system 

(3.12) (I - zB - z^C) = 0(й''+1). 

Taking into account that (I - zB - z^C)'^ = 0(1) for /i -» 0, we rewrite (3.11) 
in the following way: 

(3.13) 
^o(z) 

Further, we put a = 1 and y{6) = 1 in (3.1). Then the exact solution of (3.1) is 
y{x) = exp (x) and, by substituting into (3.13), we obtain 

(3.14) Po(/ /)exp(/c/2)-P,( /z)= 0(/i^+^). 

Let us substitute the relations Po{h) = ^ aji' and Pk{h) = ^ <^k,ih' for /c = 1, ..., r 
i = 0 i = 0 ' 

into (3.14) and let us order the new expression according to the powers of /i. The 
right-hand side of (3.14) is of order 0{h^^^) and, therefore, the coefficients at h-^ 
for j = 0, ..., jt7 must be equal to zero. For p = 2r this immediately implies the 
assertion 1. 

For p = 2r + 2 the coefficients at h^""^^ and h^•'"^^' must be also equal to zero, 
which implies the relations (3.9). 

It remains to prove the third assertion. The relations (3.9) can be viewed as con­
ditions for the polynomial 

(3.15) P{x) = Y dj^2x''^' , dj^2 = a2r-jl{j + 2)! 
i = o 

of order at most 2r + 2 to vanish together with its first derivative at the r + 1 
points 0, 1, ..., r. Thus the desired result follows immediately from the interpolation 
theory. Q.E.D. 

Remark 3.1. We denote by M the diagonal matrix with elements а^ = i, i = 
= 1, . . . , г and by e the column-vector of length r all elements of which are 1. Then 
we can rewrite (3.9) in the following form: 

M^ e П 

(3.16) 
(2r + 1)! 

= - a n 
M 2r + 2 . 

•(2r + 2)!-l 
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where 

1! ' 2! ' '"" 2г! 

L 2! ' 3! ' * " ' (2г + 1)! 

From Lemma 3.3 we know that the matrix S is non-singular. 

4. METHODS OF THE MAXIMAL ORDER 

Definition 4.1. Let r be a fixed positive integer. Every BIM2^ method of order 
2r + 2 is said to be a method of the maximal order (the BIM2M^ method). 

Lemma 4.1. For every fixed positive integer r, there exists exactly one BIMIM^ 
method. 

Proof. Using the same notation as in Remark 3.1, we can rewrite the conditions 
(2.7) in the following form: 

(4 1) [ C B ] S = r ' ^ ^ « - î ^ ^ l 

According to Remark 3.1 the matrix S is non-singular and solving (4.1) we obtain 
exactly one pair of matrices B, C. The relations (2.6) yield exactly one pair of vectors 
P,y. Q.E.D. 

Remark 4.1. The relations (4.1) give us the possibility to construct the В//И2УИ^ 
methods and the relations (3.16) determine the coefficients of the polynomial (3.3) 
constructed for this method. 

Lemma 4.2. Let a certain BIMIM^ method be given and let PQ, P^ he real poly­
nomials defined for this method by the relations (3.3), (3.4). 

Then P^{^ — z) — Po{z) identically. 

Proof. We consider the method of the order 2r + 2, therefore the coefficients 
of the polynomial PQ satisfy the relations (3.9) and hence the polynomial (3.15) 
has roots of multiplicity 2 at x = 0, ..., r, i.e., 

(4.2) P^^) = l a , ^ _ , - f ^ = x\x~lf{x-2y...{x~rf. 
k=o [k + 2)1 

According to (3.8), the coefficients of the polynomial Pr{z) satisfy the relation 

(4.3) ör,2r-fc = E ^ 2 r - i 7 : - r : . /c = 0, . . . , 2 r . 
j=k [j - /c)! 
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Hence 

(4.4) а,,гг-, = P ^ ^ ' ^ ' W ^ . 

where the superscript denotes derivative. Let us construct the following polynomial: 

(4.5) S(x) = £ « „ , , _ , ( - 1 ) * - ^ 
k=o (fe + 2)! 

and let us substitute from (4.4) into (4.5). We obtain 

s(x) = i : g L . (_,).-. 
fc=o [k + 2j! 

Consequently S{x) = P{r — x), because P{r) = 0 and P^^\r) = 0. The relation 
(4.2) immediately implies P{r — x) = P(x) and hence P(x) = S{x). Comparing 

(4.5) and (4.2) we have a^^ir-k — ^ir-
Д - l ) ^ Q.E.D. 

Remark 4,2. The relation (4.2) can be used for a direct calculation of the coef­
ficients of the polynomial PQ. From (4.2) we can also derive relations enabling us 
to calculate the coefficients of the polynomial PQ for the ß[A12M^+i method if the 
coefficients of P^ for the В/УИ2УИ̂  method are known. 

Theorem 4.1. Let r be a fixed positive integer and let the BIM2M^ method be 
2r 

given by (4.1) and (2.6). Let Po{z) = ^ aiz\ a^ — 1, be the polynomial with a,-, 

i = 1 , . . . , 2r calculated from (4.2) or equivalently from (3.16). 
Then the BIMIM^ method is Astable if and only if all the roots of the polynomial 

Po{z) which are not roots of the polynomial Po( —z) have positive real parts. 

Proof. The statement of the theorem follows immediately from Lemma 4.2, 
Lemma 3.2 and Lemma 3.1 if we realize that Pj.{z) = Po(^) cannot hold identically 
for a convergent method. 

Remark 4.3. It has been shown by direct calculation that all roots of the poly­
nomials PQ defined for the Б/>И2Л1^ methods, г = 1, . . . , 5, have positive real parts. 
For r = 6 there exists one root of the polynomial PQ with a negative real part. This 
root is not a root of PQ[ — Z). Applying Theorem 4.1 we have 

Theorem 4.2. The BIM2M^ methods are Astable for r = 1, ..., 5 (i.e., up to the 
order 12). The BIMIM^ method is not Astable. 

The BIMIM^ method is the well-known Pade formula of the 4-th order: b = 
= ß = 0.5, с = —y = ~ il 12. The coefficients of the BIM2M2 method of the order 6 
are shown in the following table: 
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(4.7) 

г 

1 

2 

ß. 

101/240 

7/15 

b u 

8/15 

16/15 

bi,i 

11/240 

7/15 

^M 

- 1 / 6 

0 

Ci,2 

-1 /80 

-1 /15 

y» 

13/240 

1/15 

Table 4.1. The coefficients of BlNilNi^ 

5. A-STABLE METHODS OF HIGH ORDERS 

In this section it will be discussed how a В[УИ2̂  method of order at least 2r can be 
constructed to a polynomial P of degree exactly Ir so that the polynomial PQ defined 
for this method by (3.3) and the given polynomial P are identical. Further, the choice 
of P which yields A-stable В//И2^ methods will be given. 

Ir 

Lemma 5.1. Let PQ{Z) = ^ â ẑ  be a real polynomial of degree exactly 2r with 
1 = 0 

% = 1-
2r 

Let Pk{z) = YJ ^k,i^\ /c = 1, ..., r be real polynomials with ai,i defined by (3.8). 
i = 0 

{Note that a^Q = aj^.) 
Then 

(5.1) Po(z), P,{z), ..., P,{z), z Po{z), z P,{z\ ..., z P,{z) 

are linearly independent on every interval if and only if 
2r r / \ 2 и 

(5.3) I a2 . - .Z П ^ + О . 
j = o k=o \kj j \ 

Proof. Suppose that 
r r 

(5.4) Z bfe n ( z ) + Z Qz P^(z) = 0 identically. 
fc=0 fc=0 

2r 
The substitution of the expressions for P/^ produces ^ «/z' = 0 where 

k = 0 
r 

(5.5) ao = E /̂c,obfc, 
fc = 0 

r r 

(5.6) «i = Z « * , A + Za/t , i - iCt , ( = 1, . . . , 2 r , 

(5.7) 

fc=0 fe=0 

г 

« I r + l = Y^k,2rCk' 
fc = 0 
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But the hnear independence of 1, z, ..., ẑ *"̂ ^ implies that all â - are equal to zero. 
Using (3.8) we obtain from (5.5) —(5.7) successively 

(5.9a) th = 0, 
k = 0 

(5.9b) 4 t '̂'̂ ' + r ^ - 7 ^ i ^'~''>^ = 0 ' i=U.-;2r, 
i\ fe=o (/ — I j ! fe = o 

(5.9c) Zc,X^a,,_, = 0. 

We shall show that the equations (5.9) are linearly independent for every choice 
of üj satisfying the assumptions of Lemma 5.1 if and only if (5.3) holds. Hence the 
system (5.9) has exactly one solution b/̂  = ĉ  = 0 if and only if (5.3) holds. 

First we show that the 2r + 1 equations (5.9a), (5.9b) are linearly independent. 
Suppose the contrary. Then there exist real numbers Гу, not all equal to zero, so that 

(5.10) Z r , ^ = 0 , ^ r , - - . ^ - — - = 0 , k = 0 , l , . . . , r . 
j = o ]\ j = i [j - 1)! 

But the conditions (5.10) tell us that the polynomial 

(5.11) p(x) = Z o ^ ^ tj = rjij\ 
J = 0 

of degree at most 2r should have roots of multiplicity 2 at x = 0, ..., r, i.e., P{x) 
should be a polynomial of degree at least 2r + 2, and this leads to a contradiction. 

It remains to show that (5.9c) is a linear combination of the equations (5.9a), 
(5.9b) if and only if the condition (5.3) is not true. The equation (5.9c) is a such a com­
bination if and only if there exist real numbers ?%-, / = 0, ..., 2r not all equal to zero, 
so that 

2r j^i 2r j^i-l IT У 

(5.11a) E ^ ' i T ^ ^ ' Yj^iJ. -;. = E «2r-y T : = «it,2r, /c = 0, ..., r . 
i = 0 l\ i=l [l — 1 ) ! j = 0 jl 

The conditions (5.11a) tell us that the polynomial (5.11) satisfies the following 
conditions: 

(5.11b) P(/c) = 0 , F(/c) = a,^2r, fc = 0, . . . , r . 

The conditions (5.11b) determine exactly one polynomial of degree at most 2r + 1 
and with t^ = ajr + 0. Hence the polynomials (5.1) are linearly dependent if and 
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only if the coefficient at x'''-+' in the polynomial given by (зщ^ч ^.^^^^^^^^ u^-^^ 
Hermitian interpolation, we obtain that the coefficient at x^^+^ [^ "^^^^^^ ^^' ^'^^ 

const. X Z ( П ^k,2r-

This yields immediately the condition (5.3). Q.E.D. 

Theorem 5.1. Let Po{z) = ^ atz' be a real polynomial of degree exactly 2r and 
i = 0 

2r 

with ao = 1. Let Pk{z) = J^a^^z^ к = l,...,r be polynomials with a^ i defined 
i = 0 

by (3.8). Let (5.3) hold. Then 

1) we can calculate exactly one set of numbers 

from 

(5.13) ßj Po(z) + t bj,, P,{z) + y,z Fo(z) + i cj,,z P,(z) = iMlllM, 
k=l k=l Z 

j = l,...,r . 

2) The numbers (5.12) define a BfMl^ method of order at least 2r. 

3) PQ(^Z) = det(l - zB - z^C) and Pk{z) = det D t̂, where D t̂, /c = 1, ..., r 
are' defined in Notation 3.1. 

Proof. According to Lemma 5.1 the polynomials (5.1) form a basis in the 2r + 2 
dimensional space of polynomials having degree at most 2r + 1. Because of ao = 
= af,^Q, /c = 1, ..., r, the right-hand term in (5.13) is a polynomial of degree at most 
2r — 1, and hence it must have a unique representation in terms of the basis (5.12), 
which implies the existence of exactly one set of numbers (5.12). Let us choose 2r + 2 
distinct real numbers Pi,,---,P2r+2 ^^^ l^t us put successively z = pi, i = 
— 1, ...J 2r + 2 in (5.13). We obtain r systems of 2r + 2 linear algebraic equations 
for the numbers (5.12). Later we shall show a better possibility how the numbers 
(5.12) can be calculated. 

Now let us prove the second statement of Theorem 5.1. The substitution of the 
expressions for Pj^ into (5.13) yields 

2 r + l 

Y, PiZ^ = 0 identically , 
i = 0 

where 
r 

(5-15) p^ = ß. + Y^bj^,- aj^, + a^, 
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^k,2r-l ? 
k=i 

(5.16) Pi = ßjüi + Y. bj^kükj + yjüi.^ + Y. ^j,k^k,i-i - ^jj+i + a ^ + i , 
k=i k=i 

r r 

(5.17) P2r = ßja2r + Z ^J,k^k,2r + 7 j « 2 r - l + Z Cj,kClk 

k=l k=i 

r 

(5.18) P2r+i = yja2r + Z О . Л , 2 г , i = 1 , . . . , r , 
/f = l 

Using the fact that Pt = О and the relations (3.8) we have 

(5-19) ßj + ibj,,-^ = 0. k=l 1! 

(5.20) -i Z b,,.fc' + - ^ i : c,,,/c'- - - Ç ^ + 

i-2 / -, r . r i + l - s \ 

s^l ' \{i - S)\ A ' ' ' (i - 5 - 1)! k^y '•" {i + 1 - S)\) 

+ «i-1 (yj + icj,, +ibj,,k -Ç\ + aJßj + tbj,, - ^ ) = 0, 
\ k=i л=1 2 ! / \ k=i v./ 

i = 1, . . . , 2r — 1 , 

(5.21) -^ Z bj,,e' + -~±— t cj,k'-' + " f a. ( - ^ I b,,,k-» + 
2rl k = i (2r — I j ! fc = i s=i \ ( 2 r — sj ! fc=i 

+,^ \ ,, Z o..fc''"''^V«2.-i(7y+ Éc,,,+ Zb,,,/c) + a,x^,+ i;b.>)=o, 
(2r—1—sj!fe=i / k=i k=i k=i 

(5.22) д^^у. + ^ с , , , £ а - ^ ^ = 0 . 
fc=i s=o (2r — s)\ 

Fur ther , we obtain from (5.19) —(5.22) successively the following r systems of 2r 4- 2 
linear algebraic equations for the unknown components of vectors ß, Y and matrices 

B , C : 

(5.23) ßj + tbj,k = {~, 
k=l 1! 

Z bj,kJ^ + Z 0,fe + 7i = r : » 
fc=i k=i 2! 

T T ^ i b.-.*fc'-' + 7 7 ^ i cj,,k'-' =^, i = 3,...,2r, 
(j — 1)! t = i (i — 2)! *=i i! 
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(5.24) ^ t bj,,e^ + - - Ц ~ t cj,.k^'-' = - E «2.-. ,-Ç-, 
2r\k=i (2r- l ) ! ) (=i s=o (s + 1)! 

(5.25) 7,a2. + i Ол E «2Г-. ̂  = 0 for i = l , . . . , r . 
fc=i s = o s! 

We see that the matrix of each of this systems (j = 1, . . . , r) is the same as the matrix 
of (5.9) and therefore it is non-singular. Moreover, it is obvious that every solution 
of (5.23)—(5.25) is also a solution of (5.13) and vice versa. Now the second statement 
is proved by the conditions (5.23). (Cf. (2.7).) It remains to prove the third assertion. 
The first two statements imply that the numbers (5.12) found from (5.13) or equi-
valently from (5.23) —(5.25) define a BIM2^ method of order at least 2r. Let us define 
the polynomials P*, P^ , . . . , P* by the relations (3.3) and (3.4). According to (3.2) 
we have 

(5.26) (I - zB ^ z^C) 

1РЫ 

- (е + zß + ẑ y) 

for z, Po(^) + 0. By an easy arrangement of (5.13) we can show that the functions 
Pi(z)/Po(z),..., P,(z)/Po(z) also fulfil the relations (5.26) for z, Po(z) Ф 0. This 
implies that P*(z)/Po(z) = P/z)/Po(z) for z, Po(z) Ф 0, Po(z) Ф 0. Further, it 
follows that there exists a non-zero polynomial R such that Pj{z) = P(z) Pj{z), 
J = 0, ..., r. The linear independence of the polynomials (5.1) immediately yields 
R{Z) = const. The coefficients at z^ are the same for PQ and P*. Hence P(z) = 1 
and we obtain Pj{z) = P*(2), j = 0, ..., r. Q.E.D. 

In the proof of Theorem 5.1 we have shown a suitable way of determining the 
matrices B, С and the vectors ß, у. Hence we can reformulate Theorem 5.1 in the 
following more convenient form. 

Theorem 5.2. Let Po{z) ^^YJÜIZ^ be a real polynomial of degree exactly 2r such 
i = 0 

that «0 = 1. 

Let Pk{z) = YJ ^k,i^\ к = 1, ..,,r be real polynomials with a^j defined by (3.8). 
1 = 0 

Let (5.3) hold. 
Then there exists exactly one BIM2^ method of order at least 2r {i.e., matrices 

B, С and vectors ß, у) so that Po(z) = det (I - zB - z^C) and Pk{z) = det D^, 
к = 1, ...,r {cf. Notation 3.1). The matrices B, С and the vectors ß, у are given 
by (5.23)-(5.25). 
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Corollary 5.1. For every polynomial P satisfying 

Ya^r-i^ = 0 
J = o ' ij + 1)! 

there exists exactly one BIM2^ method of order at least 2r + 1 such that P[z) = 
= det(l — zB — z^C) and Pk{z) = det D;̂  where Dj^ are defined in Notation 3.1. 

Proof. In this case, the condition (5.23) hold for i = 2r + 1, too. The system 
(5.23) —(5.25) is equivalent to that with the non-singular matrix S (see (3.16) for the 
matrix S). 

Remark 5.1. We see from the proof of Theorem 5.1 that if the condition (5.3) is 
not fulfilled and the system (5.23) —(5.25) has a solution, we obtain a set of methods 
of order at least 2r. All the polynomials Pf defined for these methods by (3.3) and 
(3.4) fulfil P*(z)/Po(z) = PXZ)/PO(Z), but P* = Pj need not be true. It can be 
guaranteed that this case occurs if (5.3) is not true and the condition of a quadratic 
form 

2r 2r 2r 

j = 0 k = 0 j = 0 

holds. It is somewhat complicated to obtain Pj, q^ Uj in a general form (i.e., as func­
tions of r); therefore we omit it here. We shall only illustrate on examples for r = 1, 2 
that all the possibilities can occur. 

For r = 1 the condition (5.3) assumes the form 

«2 + 0-5ai + 0-25 Ф 0 . 

For every polynomial not satisfying it, we obtain a set of rational functions 

Pt(z) ^ (2yz + 1) (1 + 0'5z) 
p{{z) (2yz + l ) ( l - 0 . 5 z ) 

where y is an arbitrary real number. On the other hand, for r = 2 the condition of 
singularity assumes the form 

0̂4 + «3 + 2a2/3 + ai./3 + 5/36 = 0 . 

If this condition is satisfied, we obtain the following condition for the existence of 
a solution of the system (5.23) —(5.25). 

б(аз + «2 + 2ai/3) {a^ + Ö2 + 7ai/12) + 2H ^3 + 2 ^ ^ «2 + iff «1 + D ^ = 0 . 

Therefore, for the polynomial Po{z) = — 5z'^/36 + 1, no BIM22 method of order 
at least 4 exists so that P*/Po = PJIPO-
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For our further investigation it will be essential to show a suitable choice of the 
polynomial PQ which yields an A-stable method. First, we recall the definition of the 
Padé approximation of the exponential function (cf. [5]). 

Definition 5.1. Let P^ ^ be a real polynomial of degree at most к and let Qj j , be 
a real polynomial of degree at m o s t / Let 

e x p ( z ) ô ; , , ( z ) - P , , , ( z ) = 0 ( | z p ^ ' ^ ' ) for Z - . 0 . 

Then the rational function Pj^,,{z)lQj^k{z) is said to be the ( / kyPadé approximation 
of the exponential function. 

Further, we shall use 

Lemma 5.2. Let Pj+ij{z)lQj + i,j{z) be the {j + IjyPadé approximation of the 

exponential function. Then 

Pj.uÂ^) < 1 for every z , Re (z) < 0 . 

P r o o f can be found in [5]. 

Remark 5.2. The polynomials Pj + tj and Qj+tj are explicitly given by 

/ Ч d. (2j + 1 - k)ljlz^ 
(5.27) P , , , , , (z ) = I ; . ' / / 

k = o [2j + 1)! kl[j - k)l 

^'^''^^ h {2j + i)iki{j + i-k)i • 

Now we are able to formulate the main theorem. 

Theorem 5.3. Let Qir^r-ii^^) denote the polynomial {5.21) for j = 2r — 1 and 
for the argument rz. Let the relation (5.3)/or the coefficients â  of the polynomial 
Qir^r-iif^) he fulfilled. 

Then solving (5.23) —(5.25) we obtain the matrices B, С and vectors p, у defining 
a BIM2^ method of order at least 2r. The method obtained in this way is Astable. 
Moreover, if the solution of (2.1) belongs to C^'^^^XQ, b>), the speed of con­
vergence of this BIM2^ method is 0{h^^'^^) for h -^ Q, 

Proof. We see from Definition 5.1 that 

( 5 . 2 8 ) P2r,2r-l{r^) = Q2r,2r-l{rz) CXp {rz) + 0{\2^') , Z -^ 0 . 

Let us write 

Q2r,2r~iirz) = X a,z' and P2.,2r^i(rz) = у a, ,z', 
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and let us substitute these relations into (5.28). Ordering this new expression according 
to the powers of z and using the fact that all the coefficients at z\ z = 0, ..., 2r + i 
must be equal to zero, we finally obtain 

(5.29) 

(5.30) 

«r,i = Z 77 
• r ' - i 

«;. A( ( -7 ) ! ' 
2'- ^j + l 

Д ^ ( j + 1)! 

We put Po(z) = ß2r,2r-i('^^) in Theorem 5.2. The relation (5.29) shows that the 
polynomial Pr(^) constructed in accordance with the assumptions of Theorem 5.2 
coincides with P2r,ir-\ij'^- Theorem 5.2 and Lemma 5.2 prove the existence of an 
A-stable В!М2^. method of order at least 2r and they also show the way how the 
method is to be constructed. Considering (5.30) and (5.24) we obtain the rest of the 
statement from Theorem 2.1. Q.E.D. 

As an example, we show the BSM22 method obtained by means of Theorem 5.3. 
The speed of convergence of this method is 0{h^) for h -^ 0. 

(5.31) 

a = 105, b = in.a 

Remark 5.3. It is obvious that every BIM2^ method constructed according to 
Theorem 5.3 has the following property useful for stiff systems: 

i 

1 

2 

ßi 

4463/Ь 

Slja 

bi,i 

59/a 

mja 

bi,2 

689/b 

61/a 

Ji 

447/b 

3/a 

^i,i 

-2384/b 

- 1 6 / a 

^i,2 

-169/b 

-11 / a 

(5.32) 

Remark 5.4. For Padé polynomials the condition (5.3) assumes the form 

'^ ^^ ^2r - 1 +j\f2A 

fe=o \ V j=o 
: )r^''-jk\-iy Ф 0, 

It has been proved for г = 1, . . . , 20 by direct calculation that the above condition 
holds. 
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6. AN APPROPRIATE STRATEGY FOR SOLVING SYSTEMS 
OF NONLINEAR EQUATIONS 

When we have to solve a system of O.D.E. by an implicit method, the efficiency 
of the computation is essentially influenced by the choice of the numerical method 
for solving the systems of (generally nonlinear) algebraic equations arising at each 
step of the method. 

The use of an unsuitable method or of an unsuitable initial approximation can 
cause that the iterations are not convergent for larger values of the integration step. 
This can be so bad with nonlinear stiff systems that we can loose the advantage of the 
A-stability and have to integrate with steps so small as if any "basic" method were 
used. We suggest here a technique to avoid such difficulties. First of all we introduce 
the following notation. 

Notation 6.1. We suppose that the right-hand side f of (2.1) is a ^-dimensional 
vector-valued function of ^ H- 1 variables. The symbol y„+j denotes a ^-dimensional 
vector of approximate values of the solution of the system (2.1) at the point x„+ -̂
j = 1, . . . , r. We shall denote the value of the vector function f at the q + 1-dimen-
sional point (x„+j, Yn+j) by f„+j. Further, we shall deal with sequences of ^-dimen­
sional vectors ''Yn+j where к denotes the /c-th member of the sequence. The values off 
at the points (x„+j,''y„+j) will be denoted by ^^n+j- Analogously, ^i„+j denotes the 
value of the Jacobian matrix of the function f taken at the point {x„+j, ^Yn+j)-
Further, ^}x,n+j ^^^ ^iyi,n+j denote the partial derivatives of the Jacobian matrix 
of the function f with respect to the variable x or yi, i = 1, ..., ^ respectively, the 
value of which is taken at the point {x„+j, ^Yn+j)- Analogously, the symbol ^f^,„+i 
denotes the partial derivative of f with respect to the variable x taken at the point 
{^n+j, ''Yn+j)' Further, for /c = 0, 1, . . . we introduce the following qr x qr matrices: 

^ D = d i a g ( ^ J „ + i , . . . / J „ + . ) , 

'̂ G = diag {^ix,n+ и • • •» ^ix,n+r). 

'̂ H = diag(^H„^i, . . . ,^H„^,) 

where ^H„+jJ = 1 , . . . , r are the ^ x ^ matrices 

feu _ Al '̂ f '̂ l .̂ f ^ 

The symbol diag denotes the diagonal block matrix, the elements of its diagonal 
following the symbol diag. 

The left-hand side of the system (2.3) will be denoted by F and its value at the 
(^ + 1) X r-dimensional point (x„+i, ..., x„+^,'^y^ + i, ..., Vu+r) will be denoted 
by ^F. The Jacobian matrix of the function F with respect to ^r variables Yn+j> 
j = 1 , . . . , г will be denoted by DF and its value at the (^ + l) x r-dimensional 
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point {x„+i, ..., x„+r^^Yn+i^ •••? V/i+r) by ^DF. Finally, ''A is the q x r —dimensional 
vector 

^Ä = 
ïn+l. ïn+l 

7n+r Jn+r 

The symbols 'В, 'С, 'ß, 'у have the same meaning as in (2.3). 
Now we try to solve the nonlinear system (2.3) by Newton's method, i.e., we try 

to construct a sequence of approximations from the formula 

(6.1) 'DF'A = - * F , fc = 0, 1 , . . . 

with a starting vector (°y„ + i , . . . , °y„+r)- The Jacobian matrix *DF has the exphcit 
form 

(6.2) ^DF = '[ - h 'B{^D) - h^ 'CĈ G + (̂ D)̂  + ^H). 

From (6.2) it is immediately seen that the use of Newton's method is expensive 
for solving the system (2.3) because the matrices 

1̂ . 1̂ 1̂ / = 1 г 

must be also calculated. 
We suggest other methods resembling Newton's one. These methods require only 

that the Jacobian matrix of the function f be evaluated. 

Method I. We construct the sequence of approximations from the relation 

(6.3) T(^Ä) = - ' F , /c = О, .. . 

where 

(6.4) T = '\ -h 'B(OD) - h^ X(^D)2 . 

Method II. The sequence of approximations is calculated from 

(6.5) ^T(^A)= - ' ^ F , /c = 0 , . . . 

where 

(6.6) n = '[ - h 'B(^D) - /i^ 'C{^Dy . 

From the relations (6.2), (6.4) and {6.6) we see that 

(6.7) T - ^DF = /î^X(«G + ^H), 

(6.8) ^T - ^DF = h^ X(*G + '̂ H) . 
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Now we show conditions needed for the convergence of the iterations (6.3). As 
far as the iterations (6.5) are concerned a similar theorem can be proved. However, 
we did not succeed in proving that the speed of convergence is better than that of the 
iterations (6.3) even though the computations showed this phenomenon. Therefore, 
we present only the theorem on the convergence of the iterations (6.3) as an illustra­
tion. The following lemma will be of great importance for it. 

Lemma 6.1. Let R, S be Banach spaces. Let F be a mapping from R into S and let YQ 
be a fixed element of the space R. Let QQ be the following set: QQ = { Y G R , 
, IIY — YQ|| ^ p], where p is a certain number. Let there exist a continuous second 
derivative of the mapping F at each point Y e QQ. (It will be denoted by F"(Y).) 
Let T be a linear mapping from R into S such that T~^ exists. Further, let us sup­
pose that there exist constants at, i = 1, ..., 4 so that 

(6.9) ЦТ-'Ц S a, , ||F(Yo)|| й й2 , ЦТ - F'(Yo)|| й «з , 

|F"(Y)|| Sa^ for Y e ß o -

Let us write E = a^a2, К = a^a^, L = a^a^, U = iCE/(l — L)^ and let U < 0.5, 
L < 1. 

/ / the number p fulfils 

1/(1 - L) t/(l - L) 

then there exists exactly one element Y* e QQ SO that F(Y*) = 0 . The sequence 
of the approximations Y,^ obtained from 

(6.10) Y,+ i = Y , - T - ' F ( Y , ) , fc = 0 , . . . 

converges to Y* in the norm of the space R and the following estimate is true: 

(6.11) IIY* - Y,|| S U~\l - (1 - L)(l - 2Uf'J^' £/(1 - Lf . 

Proof. The conditions (6.9) imply that the assumptions of Theorems 1,2 in 
Chapter XVIII, §2 in [6] are fulfilled. The statement follows from Theorems 1, 2 
and from the remark after Theorem 2. 

Theorem 6.1. Let a system of q O.D.E. of the form (2.1) be given and let the right-
hand side f o/(2.l) have continuous partial derivatives with respect to all variables 
up to the third order in a certain domain Q = I x Q, where <Xo, by a I and the 
domain Q contains the solution of the system (2.1). 

Then there exists /IQ > 0 so that the system (2.3) can be solved for every 0 < h < 
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< HQ by iterations (6.3) with the initial approximation ^Yn+j ~~ У«' J — l? •••? ^ 
and the speed of convergence is given by 

IIY* - Y;,|| = 0(/i'+^). 

Proof. Let R be the set of ^ x r — dimensional real vectors and let the norm of 
the vector Y = (y^, ..., j^^) be defined by ||Y|| = max jy^j. The left-hand side F 

j 
of (2.3) can be regarded as a mapping from the Banach space R into itself. Let us 
further denote by YQ the column vector of the length qr, composed of the r-dimen-
sional vectors y„ (approximate values of the solution of (2.1) at the point x„). Let the 
norm of any mapping from R into R be defined in the usual sense by the norm in R. 

The assumptions of the theorem imply the existence of a sphere QQ with its centre 
at the point YQ such that F'(Y) and F''(Y) exist for every Y e QQ (The symbols 
F'(y), F''(Y) denote the Fréchet derivatives of the mapping F.) Moreover, there 
exist constants 04 and h^ so that 

(6.12) ||F't^)il ^ ^4 fo^ ev^i'y ^^^0 and 0 < /i < /?4 . 

The relation (6.4) implies (in a similar way as in the proof of Theorem 2.1) that the 
matrix T is non-singular for every h > 0 less than a certain h^ and 

(6.13) ||T-M| < ~~~~^—^- —-; = ai(/î) , 0<h<hi, 
^ ^ " " ~ 1 - / 1 | | В | | Л - /t^||C|| Л^ ^^ 

where A = max pj„+j||- Further, we see from the relation (2.3) that 
j 

(6.14) |Р(^о)| | ^ hK, + еК2 = a^ih) 

where K^, К2 are constants. Let us recall that F'(Yo) = ^DF. Then using (6.7), we 
have 

(6.15) | | F ' ( Y o ) - T | | ^ / , ^Хз = аз(/1). 

Let us put L = ai{h) a^Qi), E = a^^h) a2{h), U = a^[hy a2{h) «4/(1 — L)^. 
In virtue of (6.12) —(6.15) we have lim C/ = 0, which implies the existence of 

/î3 > 0 so that и < 0-5 for 0 < h < h^. ïn the same way we estabhsh that there 
exists /î2 > 0 so that L < 1 for 0 < /г < /12- Let us put /ÎQ = min {hi, ..., /14). Then 
for every 0 < /Î < /ÎQ, the assumptions of Lemma 6.1 are fulfilled and hence our 
statement is proved. By substitution from (6.12) —(6.15) into (6.11) we obtain the 
estimate for the speed of convergence. 

Remark 6.1. Solving practical problems we have used both Method I and Method 
II. The speed of convergence of Method II was in all test problems better than that 
of Method I. The iterations in Method II were convergent also for those h for which 
the iterations of Method I did not converge. Method II needed less iterations than 
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Method I to achieve a given accuracy, so that the total time for computations needed 
for Method II was somewhat less than that needed for Method I. 

Using a better initial approximation than ^Jn+j = Ую J = 1, ..-, ?' we have ob­
tained an algorithm working with extremely large step size h. 

We suggest to use the following one-step explicit nonlinear A-stable method quoted 
in [3] for obtaining a good initial approximation ^Yn+j' 

(6.16) (I - /7(°J„) + O-S/î C Ĵ,,)̂ ) (y „ , 1 - y„) = 

= lix) + o-5h\x,.. - m X - ч°1.) X.) • 
We use the formula (6.16) r-times and the values obtained are used as an initial 

approximation ^y„+y, j = 1, ..., г for the iterations (6.3) or (6.5). This algorithm 
worked on a very stiff system with extremely large steps (see § 7). 

The use of Method I and Method II requires the evaluation of the Jacobian matrix 
of the right-hand side f of the system (2.1) and the evaluation of the vector f̂̂̂  only. 
So we are nearly in the same situation as if we applied the methods defined in [1] on 
the system (2.1) and solved the arising systems of nonlinear equations by Newton's 
method. Nevertheless, the convergence of the BIM2^ method can be twice as fast. 

Example. The iterations (6.5) for a ßlM22 method are given by the matrix 

(6 17) *T=r^' - ''''^Ä'h^u - h'c.^.i'h^.y), -ihb,,2%.2 + h'c,A'l„,2y) "I 

where bij, Cij are the elements of the matrices B, С respectively, and I is the q x q 
unit matrix. 

7. NUMERICAL EXPERIMENTS 

Many successful numerical experiments have been done with the formula (4.7) 
and with the formula (5.31) on about 15 stiff systems of O.D.E. In this section we 
present only the results obtained by solving the following system of O.D.E. arising 
in reactor kinetics (see [7]): 

(7.1) y[ = -0'04y,, + 10^У2Уз^ 
y^ = 0-04j;i - 10^У2Уз - 3 • 10^2 , 
Уз= 3 . 10'yl , 
v,(0) = 1 , У2{0) = Уз(0) = О . 

The system is nonlinear, therefore its stiffness is described by the behaviour of the 
eigenvalues of the linearized system. One of these eigenvalues is always equal to zero, 
the remaining eigenvalues differ sufficiently from each other and vary very rapidly in 
the range <-0-04, -10"^^> for x e <0, 10>. Thus the system is very stiff. 
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Both the formula (4.7) and the formula (5.31) are used with the algorithm (6.5) 
described in § 6. The initial approximation for iterations is obtained by means of the 
formula (6.16). Computations were performed on an IBM 370/135 computer in 
REAL*8 precision. The results obtained by the formula (5.31) with different steps 
are shown in Table 1, where the symbol § denotes a reference solution obtained 
by the Runge-Kutta method of order 4 with the automatic step-size control. 

X = 10 

h 

2-0 
1-0 
0-4 
0-2 
01 
004 
§ 

УI 

0-841863 
0-841500 
0-841391 
0-841375 
0-841371 
0-841370 
0-841370 

10^., 

0-162729 
0-162442 
0-162356 
0-162343 
0-162340 
0-162339 
0-162339 

Уз 

0-158121 
0-158484 
0-158593 
0-158609 
0-158613 
0-158614 
0-158614 

Time in sec. 

1-85 
2-42 
4-20 
5-98 
9-66 
22-86 

Table 1. Solutions of the system (7.1) by the formula (5.31). 

The relative errors of the solution shown in Table 1 are given in Table 2. 

h 

20 
10 
0-4 
0-2 
0-1 
004 

erri 

6.10"^ 
2. 10"^ 
3.10"' 
6. 10-^ 
1.10"^ 

0 

егг2 

3.10"^ 
1.10"' 
2 . lO"'^ 
3. 10"' 
6. 10"^ 

0 

еггз 

3.10"' 
8.10"^ 
1 . lO"'" 
3.10"' 
6. 10"^ 

0 
Table 2. The relative errors of the solution from Table 1. 

The formula (4.7) has been also tested on the system (7.1). The results obtained 
are shown in Table 3 and the relative errors in Table 4. 

X = 10 

J î 10^2 Уз 

0-4 
0-2 
§ 

0-842071 
0-841521 
0-841370 

0-163715 
0-162552 
0-162339 

0-157912 
0-158463 
0-158614 

Table 3. Solutions obtained by the formula (4.7). 
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h 

0-4 
0-2 

erri 

8 .10"^ 
I . I O " ' ' 

егг2 

2 . 10"^ 
1 . 1 0 - ' 

егсз 

4 . 10" ' 
1 . 1 0 " ' 

Table 4. Relative errors of the solution in Table 3. 

A comparison of Tables 1 — 4 shows that the formula (5.31) approximates all com­
ponents of the solution better than the formula (4.7). The computing time was for the 
formula (5.31) also somewhat shorter. The formula (5.31) fits the exponential 
function not only for small values of the argument x, but for x -^ — со, too. (See 
(5.32).) The formula (4.7) has not this property. Therefore we recommend rather to 
use the formula (5.31) for stiff systems, even though (5.31) converges only 0(/?^), 
h ->0. 

From Table 1 we see that also for extremely large steps as 1 or 2 we obtained the 
solution with a sufficient accuracy. The following Table 5 shows the time comparison 
with the Runge-Kutta method of order 4 with the automatic step-size control and 
with the controlling constant, giving the requested accuracy at one step, chosen 
equal to 10"^. We note that for the value lO""*" of this constant the method was 
unstable. 

X = 10 err^ err2 err^ time {in sec) 

formula (5.31) 6 . 10"^ 3 . 10" ' 3 . 10" ' 1-85 
/z = 2 

R~K method 5 .10"^ 2 .10"^ 3 .10"^ 87-24 
eps = 10"^ 

Table 5. Time and accuracy comparison. 

We see that the formula (5.31) used with the iterative procedure (6.5) and with the 
formula (6.16) has worked about 50 times faster and with 10—100 times better 
accuracy. 
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