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Czechoslovak Mathematical Journal, 27 (102) 1977, Praha 

A MAP ASSOCIATED TO THE LEPAGIAN FORMS 
ON THE CALCULUS OF VARIATIONS IN FIBRED MANIFOLDS 

DEMETER KRUPKA, Brno 
(Received April 3, 1975) 

1. The role of the so called Lepagian differential forms in the calculus of variations 
is well known. The simplest form of this kind was introduced by E. CARTAN [1] 
(see also [3]). LEPAGE (see e.g. [7]) extended the theory to the variational integrals 
over n-dimensional domains in Euclidean spaces. Since then many authors formulated 
the foundations of the variational calculus in terms of the Lepagian forms. The 
concept proved to be useful for a modern, differential-geometric approach to the 
variational problems in fibred manifolds (see e.g. [2], [4], [5], [8]). Our remark 
to the theory of the Lepagian forms and Lepagian equivalents is based on a definition 
given by the author [5], [6], and concerns the first order variational problems, which 
are mostly used in practice. Unlike the Cartan fundamental forrn, the Lepagian 
equivalent we consider is not, in general, 1-horizontal (in the terminology of KOLAR 
[4]). An example of a Lepagian equivalent for the second order variational problems 
can be found in [6]. 

2. Let us briefly recall the main notions of the variational theory used later on. 
We assume that we are given a smooth finite dimensional^breJ manifold n : Y-> X 
(a submersion) with an orientable «-dimensional base space X. Put J^^ Y = Y and 
denote by / " T the manifold of all r-jets of local sections of тг, and by л^ : /''Y-^ X 
and n,s : ^ Т - > ^ ^ y ( 0 ^ s ^ r) the corresponding fibred manifolds defined by the 
natural projections of jets. We shall denote by R the field of real numbers. 

The following spaces of forms, important for many variational considerations, are 
introduced in [5]: The space Г2"+^(/^У) of all (n + l)-forms defined on / ^ 7 , the 
space Qy^^f^Y) of all 7r2o-horizontal {n + l)-forms on / ^ 7 (the Lagrangians), 
the space Q\Y) of all n-forms on У, and the space иь^р{/^ Y) of thè so called Lepagian 
forms, a subspace of the real vector space ß y ( / ^ 7 ) of all Tr^o-horizontal n-forms 
on f^Y, With these spaces we associate the maps h^\Qj^^J^/^Y)~^Q\[f^Y) 
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(a Ипеаг surjection), й : ß""^^(/^T)-;> ß" + ^ ( / ^y ) , and the Euler map of the 
calculus of variations [5], E : ß ^ ( / ^ У) -> иу{Р¥) with the diagram 

being commutative. We note that the left arrow in the diagram means the exterior 
differentiation of forms. Moreover, it is known that E{X) = 0 if and only if there 
is a (uniquely determined) n-form ^o ^ ^%Y) such that h^{n%Qo) = X and dq^ = 0. 
If Я e ^ x ( / ^ 7) is an n-form then each Q e ^Lep(/^ Y) such that /îi(^) = Я is called 
a Lepagian equivalent of Я. The map h^ being a surjection, to each Я there exists 
a Lepagian equivalent. 

An example of a Lepagian equivalent, often used in practice, the Cartan funda­
mental form [2], [3], [4], [8], is provided with the following. Let (x^, y^) be some 
fibre coordinates on Y, (x̂ -, y^, ẑ -̂ , Zj^J the corresponding fibre coordinates on ^ ^ 7 
{^ й i è J й n^ " = aim X, 1 ^ (7 ^ m, m = dim У - dim X). Each n-form 
Я e Qx{/^ Y) is expressed as 

X — S£ dxi л ... л dx„ , 

where =^ is a function of Xj, y^, z^ .̂ The Cartan fundamental form is then defined by 

Q = ^ dxi л ... л dx,j + YJ d-̂ i л . . . л dxi_i ^ 

^ {^y<y - E /̂c^dXfc) л dxf+i л ... л dx„. 
к 

We shall examine another type of Lepagian equivalents better adopted to the con­
ditions for the Euler form £(Я) of the Lagrangian Я to vanish. 

3. The purpose of this paper is to prove the following 

Theorem. There exists an R-Unear map I \ Q\{f^Y)-^ Qi^^J^/^Y) satisfying 
the following conditions: 

1) For each Я e Q\{f^ У), 

Ы/(Я)) = Я. 

2) If Qe £fy(/^Y) is of the form ntoQo for some во e Q"{Y) then 
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3) / / le Qx{/^ y) is a n^-horizontal Lagrangian form then the corresponding 
Euler form is given by 

£(Я) = Ä(d/(A)) . 
The equalities 

d/(;.) = 0 , E{À) = 0 

are either both true or both wrong. 

Proof. Let us first suppose that we have an n-form Q = TÎ O^O? where ^o ^ ^"(^^)-
In some fibre coordinates (x,-, y^) on Y and the corresponding fibre coordinates 
(x,-, .y ,̂ Zi^) on / ^ y, we have 

(1) Q -= goâxi A .., A dx^ + Y.- 9l\'"X^^i л ... л dx,^_t л 
г! 

d>v, A dx,^ + i л .. . л dx,^_i л dy^^ л dx,^+i л . . . л dx„ , 

where gQ, o'̂ V-.X ^^^ functions of x^ and y^, and we sum over all sequences r, s^, ... 
. . . , ŝ , a^, ..., or̂  such that 1 ^ r ^ n, 1 ^ ŝ  < .. . < ŝ  ^ n, 1 ^ а^, ..., o-̂  g m. 
Then 

^lio) = ^ ^^\ л ... л dx„, 
where 

the range of the summation being the same as above. The following identities can 
be obtained by differentiating with respect to Z],„ (see [5]): 

^̂ ^̂ " 
(2) 9\\ 

s\...s ^ ^ \^ k\...k- ( \ 
ö^vi...Vp — ~ ~ La dai...aj T Г \^ki<Ti ' • • ^kjaj) ' 

0Z„,^, . . . ^Z„ ^ ^-^s.v. . . . ÖZ„ ^ 

In the formula for gl\\\%, we sum over all sequences satisfying p -\- I ^ j ^ n, 
I ^ k^ < ... < kj ^ n, 1 ^ ö-j, ..., (jj ^ m. With the help of the formulas (2), 
we are able to reconstruct the n-form Q from the known expression for JT. 

Let now Я be any n-form from the space Q\{f^ Y). In our fibre coordinates, 

I =^ £^ dxi л . . . л dx„ , 

where o^ is a function depending on x ,̂ y^, Zi^. Taking into account the preceding 
remark we define an n-form by the right-hand side of (l) setting 
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1 . . . П A 1 . . . « ^ " « ^ (3) 3„,....„ = -e^,...^„• 

9cru.Mr ~ " 7 ^ / ^ l - . . / c J T г L Ö ^ V , . . . V J T г V^/CKT, • • • ^/CjCTjJ I 5 

In these formulas, 8̂ ^̂ ;;; denotes the totally antisymmetric symbol equal to 1 when 
{pqr ...) is an even permutation of [ijk . . . ) , — 1 when (pqr ...) is an odd permutation 
of (ijk ...), and 0 in all the other cases. It follows from the definition that the coordi­
nate expression for /(Я) is invariant under coordinate changes which means that 
/(А)ей",(/1у). 

We shall show that the map Я -^ /(Я) satisfies all conditions of the theorem. First 
we are to prove that for each Я the n-form /(Я) is Lepagian. We use for this purpose 
a coordinate formula for к{ад), where Q G ßy(^^ У), derived in [6]. If Q is expressed 
by (l), where g^y and o'̂ V-.X ^^^ functions of all variables x,-, y„, Zi^, then 

h{àQ) = iï^^ - а , ^ Л с 1 к + ( ~ f - ^:)jàz>}j л dx, 

^^i(^) = '->^dxi л ... л dx„ 

Cl л . . . л d x „ , 

where Ж is defined by 

and 

iff "~ 2^9(Ti...<Tr . V^SiCTi • • • "-SrOr) ' 

The symbol d̂  stands for the formal derivative operator [5]. By definition, Q is 
Lepagian if and only if 

(4) ,̂v = f 
(see [6]). 

To show that this condition is satisfied by /(Я) we use the definition of ^o ^^^ Q'a 
(3) obtaining 

ТС^^. z +,--^(z z )'l 
V 5zi^ öz,.„ / dz:„ dz, 

^00 , i , V V Ŷ  „.,..... 5 , , , v'^ff^V.:" + al + T. I I 3̂ V.V.t :^ - (z.,.. • • • z,,.,,.) + E • 
C^Zj^ r = 2 si<...<sr ai,...,crr CZi^ 0Z_ 

1 ••-gr , 
•S1 0" 1 

Z . 
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which gives 

proving (4). This means that the n-form /(Я) is Lepagian. 
It remains to prove the equalities 1) —3) of the theorem. The first two of them are 

easy consequences of the definition of /(Я). Since /(Я) is Lepagian, the equality E(X) = 
= h{dl(X)) follows from the diagram of section 2. If d/(l) = 0 then this equality 
immediately implies E(X) = 0. To prove the converse let us assume that E[X) = 0. 
Then there is a unique ô ^ ^%Y) such that /îi(7rto^o) = ^ ^^^ ^Qo = 0 (see section 
2). According to 2), l(X) = /(/г 1(71*0̂ 0)) = '^toQo ^^ we get dl{X) = 0. This completes 
the proof. 
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