
Czechoslovak Mathematical Journal

Ladislav Bican; Pavel Jambor; Tomáš Kepka; Petr Němec
Generation of preradicals

Czechoslovak Mathematical Journal, Vol. 27 (1977), No. 1, 155–166

Persistent URL: http://dml.cz/dmlcz/101453

Terms of use:
© Institute of Mathematics AS CR, 1977

Institute of Mathematics of the Czech Academy of Sciences provides access to digitized documents
strictly for personal use. Each copy of any part of this document must contain these Terms of use.

This document has been digitized, optimized for electronic delivery and
stamped with digital signature within the project DML-CZ: The Czech Digital
Mathematics Library http://dml.cz

http://dml.cz/dmlcz/101453
http://dml.cz


Czechoslovak Mathematical Journal, 27 (102) 1977, Praha 

GENERATION OF PRERADICALS 

LADISLAV BICAN, PAVEL JAMBOR, TOMAS KEPKA, PETR NEMEC, Praha 
(Received April 24, 1975) 

1. INTRODUCTION 
This paper can be viewed as a continuation of the authors' previous investigations 

of preradicals [ l ] —[6] and is devoted to the methods of constructing preradicals 
from given fragments which seems to be useful in several directions, see e.g. [7] — [9]. 
It is shown that choosing arbitrary submodules of some modules gives rise to 
a preradical. The results obtained are used to investigate torsion submodules and 
ideals, in particular, conditions under which a given submodule iV of a module M 
can be equal to its torsion part with respect to a preradical г having prescribed 
properties. 

Throughout the paper, R always denotes an associative ring with unit and Я-mod 
is the category of unital left jR-modules. If M e i^-mod and A, В ^ M, X^ Y Я R 
are subsets then (A : B) = [a e R \ аВ я A} and {X : Y\ = {aeR\Ya ^ X}, 

Let j / be a non-empty class of modules. We shall say that s is a function on s^ 
if s assigns to each module Ae s^ its submodule s(A) (notice that no connection 
with morphisms is required). If t is another function on s^, we shall write s ^^ t 
(s =s^ i) if S{A) Ç t(^À) {s{Ä) = г(Л)) for each Ae s/.lî s is з, subfunctor of the iden
tity functor on j / regarded as a full subcategory of i^-mod, s will be called an s^-
subpreradical. In case s/ = Я-mod we shall omit the index at the inclusion sign and 
the prefix ' W-sub". Further, we shall denote by J^{^) the class of all injective (pro
jective) modules. 

Now let us recall some basic facts and definitions concerning preradicals which 
will be used in the sequel (a systematic treatment of the topic can be found e.g. 
in [1] and [2]). We shall say that a non-empty class s^ of modules is 

— hereditary if it is closed under submodules and isomorphic images, 
— cohereditary if it is closed under homomorphic images, 
— stable if for every MES/ there is an exact sequence 0 - > M - > Q - > K - > 0 with 

Qe si^ n J^. 
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For every preradical r, we define ^ , = {M e jR-mod | r(M) = M} and J^^ = 
= {MeR-mod | r[M) = O}. Obviously ^ , is a cohereditary class closed under 
direct sums and J^^ is a hereditary class closed under direct products. A preradical s 
is said to be 

— idempotent if r(r{M)) = r{M) for all M e R-mod, 
— a radical if г{м1г{М)) = 0 for all M e R-mod, 
— hereditary if r(N) = N n r{M) for every module M and its submodule iV, 
— superhereditary if it is hereditary and ^^ is closed under direct products. 

A preradical r is hereditary iff it is idempotent and ^^ is hereditary. Further, if r 
is hereditary then ^^ is stable. Conversely, if J^^ is stable and r is a radical then it is 
hereditary. Similarly, r is cohereditary iff it is a radical and J^^ is cohereditary. 

If r is cohereditary and / = r(R) then r(M) = IM for all M e R-mod, r is idem-
potent iff/ = P, r is hereditary iff xelx for all x e / (i.e. Rjl is flat as a right module). 
Conversely, if / is a left ideal and r[M) = IM for all M e R-mod then r is a co-
hereditary radical. 

Now let r be a superhereditary preradical and I = f)K, К running over all left 
ideals with r{RlK) = RJK. Then / is a two-sided ideal, r{RJl) = R//, r{M) == 
= {me M \lm = 0} for all M e R-mod and r is a radical iff/ = /^. Conversely, let / 
be a two-sided ideal and r{M) = {me M \lm = 0} for every M e R-mod. Then r 
is a superhereditary preradical, r{R) = (0 : I\ and / = C\K, К Ç R with r(R/X) = 
= RJK. 

Let r be an arbitrary preradical. For every M e R-mod we define r[M) = ^iV, 
N Ç: M with r{N) = N, r{M) = fl^, L^ M with r{MlL) = 0, h{r) {M) = M n 
n r{E{M)), where E{M) denotes the injective hull of M, and ch(r) (M) = r{R) M. 
Then r(c/î(r)) is the largest idempotent preradical (cohereditary radical) contained 
in r and f(h{r)) is the least radical (hereditary preradical) containing r (cf. [1] and [2]). 

We shall use the notation M̂ *̂ ^ for the direct sum of copies of a module M over an 
index set K. Further, id and zer are preradicals with id(M) = M and zer(M) = 0 
for all M e R-mod. Finally, let us recall that a submodule iV of a module M is said 
to be characteristic i f / (N) ^ N for every / e Н о т (M, M). 

2. GENERATION OF PRERADICALS 

Let j / be a non-empty class of modules and s a function on j / . For every M e 
e R-mod we define 

p^^'^)(M) = 'of-'{s{A)), / e Н о т {M, A), Aesé , 

Pi^,s){^) = I / « ^ ) ) , f e Н о т (A, M), Aes^ . 

Proposition 2.1. /?(̂ ŝ) ^'î^ p̂ -*̂ '*) are preradicals with p^"^'^^ ^s^ s ^^ p^^s^^sy 
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Proof. Let M,NeR'moâ, geHom{M,N), хер^^^.^М) and y e / ^ ' ^ ^ M ) . 
There are AIE s^, fi e Н о т (Л,-, M) and Zi e s{Ai) with x e ^ / / (z/) so that g{x) = 
= YJ9 fi{^i) ^ P(.< ,̂s)(̂ )- Further, if Л e ja/ and h : N -^ A are arbitrary then /î̂ f G 
e Н о т (M, У4), hence h(g(y)) e s{Ä) and Ö'(J^) e p^'^'''\N). The rest is obvious. 

Proposition 2.2. Let s^ be a non-empty class of modules and s a function on s^. 
Then the following assertions are equivalent: 

(i) s is an sé-subpreradical, 
( i i ) / ^ - > = ^ . , 

Proof, (i) implies (iii). For all Л, ß e ^ and / G Н о т (A, B) it is f{s{A)) ç s(ß), 
so Pi^,siB) ^ s{B). 

(iii) implies (i). Let A, В e ^ a n d / e Н о т {A, B). Then/(5(^)) ç P(^,S){B) = S{B). 
The equivalence of (i) and (ii) is proved similarly. 

Proposition 2.3. Let r, s be functions on a non-empty class j / of modules. Then 
{i)ifr^^s then i?(^,,) Ç p^^^,^ and p^^"^ ^ p^-^'^^ 

(ii) if r, s are s/subpreradicals and either P(^,^) ^^Р(^,.,) or p^-^'*"^ Ç^^p^" '̂̂ ^ 
r/î^?i г Ç , ^ s. 

Proof, (i) is obvious and (ii) follows from Proposition 2.2. 

Proposition 2.4. Let 0 ф J / Ç ^ ^ i^-mod and let s be a function on J*. Then 

Pi^,s) ^ PiM,s) and p^^'-' ^ p^^'^K 

Proof. Obvious. 

Proposition 2.5. Let 0 Ф .я/ ^ ^ S jR-mod and let s be a function on M. Then 

(i) if s is a ^-subpreradical then P(^,s) -m^ Я:^р^'^''\ 
(ii) // either p^,^^^^ ^^ s or s ^^ p^ '̂"-* then s is an j^-subpreradical 

Proof, (i) Clearly, p^^,,) ^ p^^,,) = s = p^ '̂̂ ^ ç /^^'^^ by 2.4 and 2.2. 

(ii) We have either P(.^,,) ^ p^^,,) ^^s or 5 ç ^ / ^ ' ^ ^ ç p^^''^ by 2.4 and 2.b 
2.2 complete the proof. 

From now till the end of this section we shall assume that 0 ф j / ç Я-mod and s 
is a function on j / . Further, we shall denote t = P(,^,s), и = p^'^''\ v = p^"^'^^ and 
^ = P(^,uy 

Proposition 2.6. (i) P(^,,) = t ^ v and w ^ и = p^'^'"\ 

(ii) и ^ V and w ^ t, 
(iii) if s is an s^-subpreradical then equalities hold in (ii), 
(iv) P(^,.) = t and p^ '̂̂ '> = u. 
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Proof, (i) By Proposition 2.1, и ^^s я^ t, hence p -̂̂ '«) с м and f Ç P(^,,). 
The other inclusions hold due to Proposition 2.5. (ii) and (iii) follow from 2.1, 2.3 
and 2.5, while (iv) is an immediate consequence of (i) and (iii). 

Proposition 2.7. (i) / / t{s{Ä)) = s{Ä)for all Ae ^s^ then t is idempotent, 

(ii) t is idempotent iff t{t(A)) = t{A) for all Ae j ^ , 
(iii) ifu{Als{A)) = Ofor all Ae j ^ then и is a radical, 
(iv) и is a radical iff u^AJu^A)) = 0 for all Ae se. 

Proof, (i) IÏ Ae sé,Me i^-mod a n d / e Н о т {A, M) are arbitrary then/(s(^)) = 
= f{t{s{A))) Ç t{f{s{A))) Ç t{t{M)) and so t{M) £ t(t{M)), 

(ii) follows from (i), since t is a preradical and P(^,f) = t. 
(iii) Let M G i^-mod and x + W(M) e и{М\и[М)). For all Л e j / and / e 

e Hom(M, v4),/induces a homomorphism g : М\и{М) -> ^/s(^) and 6f(x + u{M)) = 
~ 0, so that f{x) e s{À). Thus x e w(M). 

(iv) is an immediate consequence of (iii) and Proposition 2.6. 

Proposition 2.8. (i) / / all A e se are injective with respect to all natural embed-
dings U(M) -> M then и is idempotent, 

(ii) ifrS^^J' then и is hereditary, 
(iii) // all A es/ are projective with respect to all natural projections M - • 

-^ MJt^M) then t is a radical, 
(iv) ifs/^^ then t is cohereditary. 

Proof, (i) If X e u{M), Ae se a n d / e Н о т (w(M), A) then/ (x) = g{x) for some 
g 6 Н о т (M, À), so / (x) e s(^) and x e u{u{M)). 

(ii) If iV ^ M, xeN n и{М), Ae se and / e Horn (iV, ^4) then there is ^̂  G 
G Н о т (M, À) with / (x) = ^ (̂x) and hence / (x) G S ( ^ ) . Thus x G w(iV). 

(iii) Let M e Я-mod, A es/ and / G Н о т (Л, Mlt{M)). There is Ö' G Н о т (Л, M) 
wi th / = pö̂ , p being the canonical projection. Hence/(s(^)) = 0 and ï(M/r(M)) = 0. 

(iv) Let JV Ç M and X G t{MlN). Then x = ^ / . (y , ) = Е Р ( ^ . ( У О ) = РЦд^Уг)) ^ 
G p{t{M)) = {t{M) + iV)/iV, where p is the natural projection M -> M/iV and /^ G 
G Н о т (Л^, MJN), у1 G s(^i), ö'j G Н о т (Л^, M) are suitably chosen. 

Corollary 2.9. Let r be a preradical. Then h{r) = p^-^'""^ and ch{r) = P(^,,.). 

Proof. Let M e jR-mod and l e t O - > i ^ - > P ^ M - > O b e a projective presentation 
of M. Then ch{r) (M) = g{r{P)) ç а(^,,)(М) and р^^'^'^М) яМ n Г{Е{М)) = 
= /i(r) (M). On the other hand, p '̂̂ '''̂  is hereditary and P(^,r) is cohereditary by 
Proposition 2.8, while Proposition 2.5 yields P(^,^) ^ r ^ p^'^''*\ 

Now we shall introduce some notation. Let J3̂  be a class of modules, M e i^-mod 
and let iV be a submodule of M. We shall denote p ^ = P(^,id» P"^ = p^'^'^^'^ Рл̂  = 
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= Рщ. and р ^ = р "̂̂ .̂ Further, if j / = {M} and s{M) = iV then we shall write 
(̂iv-M) = Pi^,s) and r - P . 

Proposition 2.10. (i) P(^,.) £ Р(.(л)ие^) «n^ р̂ /̂̂ <̂ )И-̂ > ^ p(̂ '-̂ >, 

(ii) P^^''XM) = M iff PM^^S, 
(iii) î (̂ ,s)(M) = 0 ijfs^^p^, 
(iv) г/ jRy G ̂ , {where t = p^^^^^) for all A es/ and y e s{Ä) then ^^ ^^ ^^^ble 

and t is a hereditary radical, 
(v) for every preradical f, r = p^^ and r = p^". 

Proof, (i) Denote ^ = {s{Ä) j A e ^ } , ^ = {^M^) | ^ ^ ^ ^ } , r = p^ and ^ = 
= p"^. Obviously q ^ ^ s Ç^ r and hence Propositions 2.3 and 2.5 yield P(ja?.s) ^ 
Ç P(^,,) ^ г and g ^ p^ '̂̂ > Ç p -̂̂ -̂ ). 

(ii) and (iii) follow immediately from the definitions. 
(iv) Let F G #-,, Л G j / and / e Horn {A, E{F)). If/(s(v4)) Ф 0 then there are 0 ф 

Ф X G F and ye s{A) with f{y) = x. However, Rx = f{Ry) ç t{Rx) Ç t(F) = 0, 
a contradiction. Hence E{F) G J^^ and J^^ is stable. Since J^^ = J^j and î is a radical, 
t is hereditary. 

(v) is obvious. 

Examples 2.11. (i) Let j / = {M, TV}, where M ^ iV, and s(M) = M, 5(iV) = 0 

and r{M) = 0, r(iV) = N. Then P(^,,) = p^^,,y = Ps^ = Рм = PN and p '̂̂ '̂ > = 

(ii) Let P and Q be a generator and a cogenerator of i^-mod respectively, J / = 
= {P, e } and 5(P) = P, s{Q) = Q. Then p^^'^^ = zer and p^^^,^ = id. 

(iii) If Q is the additive group of rationals and Z is the ring of integers then 
t^z^Q) Ф id = l̂ z and r(^^^^) Ф / / ^ ^ . 

(iv) Let M ^ iV and 0 Ф T Ç M with Н о т (M, Т) = 0. Define J / = {M, AT}, 
s(M) = T and s{N) = iV. Then p^^^s) = PN is idempotent and P(^,s){K^) = 
= 0 Ф s(M). 

(v) Let M ^ iV and r ^ M with Н о т {MJT, M) = 0. If j / = {М, iV} and s(M) = 
= Г, s(7V) = 0, then p^"^^'^ = ;7^ is a radical and p^"^'%MjS{M)) = MJT ^ 0. 

3. TORSION SUBMODULES AND IDEALS 

Throughout this section we shall always assume without mentioning it explicitly 
that M G i^-mod, iV is a submodule of M and / is a left ideal of R. 

Proposition 3.1. The following assertions are equivalent: 

(i) N is a characteristic submodule of M, 
(ii) there is a preradical r with r(M) = N. 
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In this case, f(^-^> is the largest and t^^^M) ^^^ ^^^^^ among the preradicals 
s with S{M) = N. 

P r o o f follows immediately from Propositions 2.1, 2.2 and 2.5. 

We shall say that N is 

— i-characteristic if r{M) = N for an idempotent preradical r, 
-- r-characteristic if r{M) = N for a radical r, 
— h-characteristic if r[M) — N for a hereditary preradical r, 
— ch-characterIstic if r(M) = N for a cohereditary radical r, 
— ir-characferistic if г[М) = N for an idempotent radical r, 
— hr~characteristic if r(M) = N for a hereditary radical r. 

Proposition 3.2. The following assertions are equivalent: 

(i) iV /s i-characteristic, 
(ii) ^/lere is a preradical s with S (M) = s(iV) = N, 

(Hi) I m / Ç N for all fe Н о т (iV, M), 
(iv) p,{M) = N, 
(v) p, ^ !<^^^>, 

(vi) P^^>(M) = N. 

In this case, t^^-^^ is the largest and p^ the least among the idempotent pre
radicals s with S{M) = N. 

Proof. Obviously (i) implies (ii) and (vi) implies (i). 

(ii) implies (iii). I f / e Н о т {N, M) then/(iV) = f{s{N)) ç S{M) == N. 
(iii) implies (iv). We have N = p^{N) Ç р^{М) = ^ f{N) ç N. 

/eHom(iV,M) 

(iv) implies (v). If Рм{^) = N then Proposition 2.5 and the idempotence of pp^ 
yield p ^ ç P ^ ^ > . 

(v) implies (vi). We have I^^-^XM) Ç iV Ç р^{М) ç Ï^'^'-^XM). 

Now, if s is an idempotent preradical with s{M) = N then s{N) = AT. Hence 
Proposition 2.5 and the idempotence of s implies p^ ^ s Ç i^^-^)^ 

Proposition 3.3. The following assertions are equivalent: 

(i) N is r-char act eristic, 
(ii) there is a preradical s with s{M) = N and S{M\N) = 0, 

(iii) N Ç K e r / for all / e Horn (M, M/iV), 
(iv) p^/^(M) = iV, 

(vi) î(N^M)(M) = N. 

/n this case, p^'^ is the largest and Цм^м) ^^^ ^^^^^ among the radicals s with 
s{M) = N. 
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Proof. Obviously (i) implies (ii) and (vi) implies (i). 

(ii) implies (iii). If / G Н о т (M, MJN) then/ (N) = f{s{M)) Ç S{MIN) = 0. 
(iii) implies (iv). Obviously, р^/^(М) ç iV and iV £ p^^^{M) by (iii). 
(iv) implies (v). We have t^^^^^ ç p^^^ by (iv) and Proposition 2.5 and con

sequently ?(̂ vçM) ^ p^^^, p^'^ being a radical. 
(v) implis'(vi). We have \^^м1М) ^ p^'I^M) ^N ^ ^(^EM)(M) Ç ?(^^м)(М). 

Finally, if 5 is a radical with S{M) = N then s(MlN) = 0 and a repeated application 
of Proposition 2.5 completes the proof. 

Proposition 3.4. The following assertions are equivalent: 

(i) N is h-characteristic, 
(ii) there is a preradical s such that S(M) = N and S{Ä) = A whenever A Ç N^^^ 

is a submodule and К is a finite set, 
(iii) I m / ^ N whenever f e Н о т [Rn, M), n G N^^^ and К is a finite set, 
(iv) for every finite subset T ^ N and me M\N there exists ae R with аТ = 0 

and am ф 0, 
(v) h{p^){M) = N, 

(vi) 4t(^^M))(M) = iV. 

In this case, h(p^) = /Î(^(]VÇM)) i^ ^^^ least among the hereditary preradicals s 
with s{M) = N. 

Proof. Obviously (i) implies (ii), (ii) implies (iii) and (vi) implies (i). (iii) implies 
(iv). If there were T = {t^, ...,tj,} ^ N and me M \N such that am = 0 whenever 
ae{0 : T), then we could define a homomorphism g : Rn -^ M by sending n = 
= (t^, ..., ti,)EN^ onto M, a contradiction with (iii). 

(iv) imphes (v). Obviously N = PN{N) ^ PN{M) ^ KPN) (^ ) - Conversely, let 
m e /?(рд.) (M). Since /Ï(J7^) ( M ) = M n р^(£(М)), there are /,- G Н о т {N, Е{М)) 
and ff G iV, / = 1, 2, ..., к, with m = Х Д ^ ) - Hence (iv) implies m G TV. 

(v) implies (vi). Using Propositions 2.1 and 2.10 (i) we get N ^ ^ ( ^ Е М ) ( ^ ) ^ 
^4^(N^M)(M)^/2(p^)(M)=^iV. 

Finally, if 5 is a hereditary preradical with S{M) = N then f(]vçM) ^ 5: by Proposi
tion 2.5 and ;7jv Ç s by Proposition 3.2. Therefore /?(̂ (дгсм)) ^ s and /î(piv) ^ s 
and it remains to use (v) and (vi). 

Proposition 3.5. Denote К = C\(N : m). The the following assertions are equi
valent: "^^ 

(i) Л̂  is ch-char act eristic, 
(ii) there is a two-sided ideal Lwith LM = N, 

(iii) there is a left ideal Lwith LM = N, 
(iv) there is a preradical s with S(M) = N and s^MJKM) = 0, 
(v) N Ç K e r / for all fe Н о т (M, MJKM), 
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(vi) c/ i(p^/^)(M)=iV, 
(vii) cA(r<^^^))(M) = iV. 
In this case, ch{p^^^) = ch{6^-^>) is the largest among the cohereditary radi

cals s with S (M) = N. 

Proof. The implications (i) implies (ii), (ii) implies (iii), (iv) implies (v), and (vii) 
implies (i) are obvious. 

(iii) implies (iv). We have N = LM = LRM Ç KM Ç N, 
(v) implies (vi). Obviously, p^l^{R) = К md N = KM by (v). 

(vi) implies (vii). We have N = ch{p^^^){M) ç с/г(г(^-^^)(М) ç ^^^"^^(М) ç 
ç iV by Propositions 2.1 and 2,10(i). 

Finally, if s is a cohereditary radical with S(M) = N then an application of Propo
sitions 2.5 and 3.3 yields s ^ c/z(p^/^) = c/î(r<^-^>). 

Proposition 3.6. The following assertions are equivalent: 

(i) N is ir-characteristic, 
(ii) there is a preradical s with s{M) = s{N) = N and 5(M/iV) = 0, 

(iii) Н о т {N, MJN) = 0, 
(iv) p,{M) = N, 
(v) p^/^(M) = N. 

In this case, pp^ is the least and p^^^ the largest among the idempotent radicals s 
with s{M) = N. 

Proof. Obviously (i) implies (ii) and (ii) implies (iii). 

(iii) implies (iv). If (iii) holds then obviously p^M/iV) = 0, so p^{MlN) = 0 
and N = p,{N) = p,{N) ^ p,{M) ^ N. 

(iv) implies (i). Since pj^ is idempotent, pj^ is an idempotent radical. The implications 
(iii) imphes (v) and (v) implies (i) can be proved similarly and the last assertion follows 
from Propositions 3.2 and 3.3. 

Corollary 3.7. N is ir-char act eristic provided at least one of the following con
ditions holds'. 

(i) N is a characteristic direct summand, 
(ii) N is i-char act eristic and Ext (iV, iV) = 0, 

(iii) AT is r-char act eristic and Ext {MJN, MJN) = 0. 

Proof, (i) follows immediately from Proposition 3.6. 

(ii) If / e Н о т (iV, MJN) then Ext (iV, N) = 0 yields the existence of h e 
e Н о т (iV, M) with / = ph, where p is the canonical projection M -^ MJN. Now 
Proposition 3.2 gives f = ph = 0. 

(iii) Let / G Н о т (iV,M/iV). There is Ö̂  e Н о т (M, M/iV) with g\N =^f By 
Proposition 3.3, N ç Ker g and s o / = 0. 
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Proposition 3.8. The following assertions are equivalent: 

(i) N is hr-characteristic, 
(ii) there is a preradical s with s{M) = s(N) = N and S(E(MIN)) = 0, 

(iii) Н о т (iV, E{MIN)) = 0 , 

(iv) for all n E N and me M \N there is a e R with an = 0 and am ф N, 
(v) Н о т {Rn, MjN) = 0 for all neN, 

(vi) h{p,){M) = N, 
(vii) h{t^^^M)) (M) = AT. 

In this case, p^^ is the largest and h{pN) = А(̂ (дгсм)) ^̂ ^̂  ̂ ^^^^ among the hereditary 
radicals s with S(M) = N, where se is the class of all Te i^-mod such that p^^^{S) = 
= S for every submodule S of T 

Proof. The implications (i) implies (ii), (ii) implies (iii) and (iv) implies (v) are 
trivia]. 

(iii) implies (iv). If (O : и) Ç (N : m) for some neN and me M \N then the homo-
morphism f : Rn -^ MJN given by an \-> am + N can be extended to g : N -^ 
-^ E^MJN) and hence / = 0, a contradiction. 

(v) implies (vi). Let Ш = {Rn \neN}. By Proposition 2.10(iv), p^ is a hereditary 
radical. Further, N = p^{N) Ç p^iV) ^ N, so p^ Ç p^, and consequently h(p^) Ç 
Ç p^. On the other hand, (v) yields p^{MlN) = 0, so pJj\i\N) = 0. Thus 
^(Piv) {Щ^) = 0 and hence h{p^) (М) ç AT ç р^{М) я h{p^) (М). 

(vi) implies (vii). This follows immediately from the obvious equality p^(£(M)) = 

(vii) implies (i). It is well-known that if r is hereditary then r is a hereditary radical 
(see e.g. [2]). 

Now let s be a hereditary radical with S(M| = N and denote r = p^'^. With 
respect to Propositions 3.3 and 3.4, й(р^у) = R{t(N^M)) ̂  s ^ r. Hence <^^ ̂  s/ 
(since s is hereditary), and so s = 5 = p^-^ Ç p^. Thus it remains to prove that p^ 

is a hereditary radical and р^(М) = N. Obviously, j / is a hereditary class and 
j / ^ ^^^ Ç ^P^- Further, r is a radical (see [1]) and Proposition 2.10 (iv) implies 
that p^^ is hereditary. Since s/ Ç ^^ , it is р^(М) Ç г[М) Ç N and p ^ Ç р̂ г̂  = 
= г = r ^ r, so that ^p^ ç c^^. As p ^ is hereditary, .^^^ is hereditary and there
fore ^p^ я se. Thus se = ^p^ = ^ p ^ . Since both p^ and p ^ are idempotent, 
we conclude that p^ = p ^ is a hereditary radical. Finally, (v) yields r{T) — T for 
all T я N, hence iV e j / , so iV Ç р^(М) and the proof is complete. 

Corollary 3.9. Let N be h-characteristic and Ext (Rn, N) — 0 for all neN. 
Then N is hr-characteristic. 

Proof. Let neN and / e Н о т (jRn, M/iV). Since Ext (Rn, iV) = 0, there is h e 
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G Н о т {Rn, M) w i th / = ph (p being the canonical projection M -^ MJN). However, 
N is /î-characteristic so that Im h ^ N = Ker p and consequently / = 0. 

Proposition 3.10. (i) / / / is projective and I = r(^R)for an idempotent preradical r 
then I is idempotent, 

(ii) // Ra is projective for all a el and I = r(R) for a hereditary preradical r 
then X elx for all x el, 

(iii) // / is maximal and I = r[R) for an idempotent radical r then I is idem-
potent, 

(iv) if I = r(R) = Rx ^ xR for an idempotent radical r and x e R then I is 
hr-characteristics. 

Proof, (i) Since r is idempotent and / is projective, / = r{R) = r(r(R)) = r(/) = 
= r{R)I=l\ 

(ii) If X G / then Rx = r{Rx) = IRx = Ix. 
(iii) Obviously, IjP is a vector space over RJI. Hence if / Ф /^ then 

Н о т {Ijl^, Rjl) Ф 0 and consequently Н о т (/, RJl) Ф 0, a contradiction with 
Proposition 3.6. 

(iv) If 0 Ф / G Н о т {Ra, RJl) for some a el then (O : a) ç (0 : / (a)) . However, 
a = xy for some y e R, so (0 : x) ^ (O : a) and Н о т [Rx, RJl) ф 0 which contra
dicts Proposition 3.6. 

For the sake of completeness we present the following well-known assertion. 

Proposition 3.11. The following assertions are equivalent: 

(i) / is hr-characteristic, 
( i i ) / = ( 0 : ^ i ) ) , 

(iii) / . E{Rll) = 0. 

Proof. Since (O : £ ( R / / ) ) Ç / always holds, (ii) is equivalent to (iii). Now suppose 
that / . E{Rll) = 0 and / G Н о т (/, £(i^//)). Then / can be extended to Ö̂  G 
G Н о т (я , ^ ( ^ / 0 ) ^^^ / (^ ) "^ ^д{^) = Ö for all а el. Thus / is /îr-characteristic 
by Proposition 3.8. Conversely, if / = r(R) for a hereditary radical r then / . E^RJl) ç 
я ,-(£(«//)) = О 

Proposition 3.12. The following assertions are equivalent: 

(i) there is a superhereditary preradical r with r(jR) = / , 
(ii) there is a subset X ^ R such that / = (O : X\, 

(iii) for every ae R\I there is b e R with bl = 0 and ba Ф 0, 
( i v ) / = ( 0 : ( 0 :/)) , . 
Moreover, z / / Ç (0 : (0 : Y)\for a finite subset Y ^ I then the above conditions 

are equivalent to 
(v) / is h'char act er istic. 
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Proof. The equivalence of (i) —(iv) is clear (with respect to the correspondence 
between superhereditary preradicals and two-sided ideals). If there is a finite subset 
У ^ / with / Ç (0 : (0 : Y)\ then (v) implies (iii) by Proposition 3.4(iv). 

Proposition 3.13. The followinq assertions are equivalent: 

(i) there is a superhereditary preradical r with I = r[R) and ri^RJl) = 0, 
(ii) for every a e R\I there is b e R with bl = 0 and ba ф/, 

( i i i ) / = ( / : ( 0 :/)), . 
Moreover, if I ^ (0 : Y)\for a finite subset Y ^ I then the above conditions are 

equivalent to 
(iv) / is hr-characteristic. 

Proof. As above, the equivalence of (i) —(iii) can be easily derived. 

(ii) implies (iv) by Proposition 3.8. If / ^ (O : (0 : Y)\ where У = {y^, ..., y j ç / 
and aG R\I, then, with respect to Proposition 3.8 (iv), Ь^у^ = 0 and b^a ф1 for 
some b^G R. Using induction, we obtain a sequence b^, ..., Ь̂^ such that bj... b^yj = 
= 0 and bj ... b^a ФI for SiW j = 1, ..., k. Thus b,,... b^I = 0 and (ii) holds. 

Proposition 3.14. There is a finite subset У Ç / with / ^ (0 : (0 : У)) ,̂ provided 
at least one of the following conditions holds: 

(i) / is two-sided and finitely generated as a right ideal, 
(ii) R satisfies the maximal condition for right annihilators, 

(iii) R satisfies the minimal condition for left annihilators. 

Proof, (i) is obvious. 

(ii) Let a^ e / be arbitrary. If / ф (0 : (0 : a^\ then there is a2Gl with «2 ф 
^ (0 : (0 : a,))^, i.e. (O : (O : a^)\ ^ (O : (0 : {a^, aiYfjr- Now we may proceed by 
induction and use the maximal condition. 

(iii) We shall prove that this condition is equivalent to (ii). Indeed, let (0 : X-^) 2 
^ (0 : X2) ^ ..., where Xt are subsets of R. Then (0 : (0 : X^)\ ^ (O : (0 : X2)), ^ 
^ . . . . If (0 : (0 : X„)\ = (0 : (0 : X^ + ^)\ for some n ^ 1 then X„+ ^ ç (O : (0 : X„))„ 
hence (0 :Xj)X„^i — 0 and (0 : X„) ç (0 :X„+i). The converse can be treated 
similarly. 

Proposition 3.15. If I contains no non-zero nilpotent two-sided ideal then I = 
= (0 : (0 : / ) ) , / ^ 7 = ( / : ( 0 :/)), . 

Proof. Let / = (0 : (0 : /)), and a e (i : (0 : /)),. Then (0 :1) aR is a nilpotent 
two-sided ideal contained in /. Hence (O : I) a = 0 and the proof may be considered 
complete, the converse imphcation being trivial. 
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Corollary 3.16. Let R be a semiprime ring with the maximal condition for right 

annihilators. Then the following assertions are equivalent: 

(i) / is hr-characteristic, 

(ii) / is h-characteristic, 

(iii) there is a subset X ^ R with / = (0 : X\. 

Proof. Follows immediately from Propositions 3.12, 3.13, 3.14 and 3.15. 
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