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TOLERANCE RELATIONS 
ON PERIODIC COMMUTATIVE SEMIGROUPS 

BoHDAN ZELINKA, ЫЬегсс 
(Received April 25, 1975) 

A tolerance relation (or shortly tolerance) is a reflexive and symmetric binary 
relation on a set. The definition of a tolerance compatible with a given algebra was 
given in [1] and [2]. In these papers also some theorems concerning compatible 
tolerances on semigroups were proved. Among others, a theorem was proved stating 
that if a semigroup is a group, then each tolerance compatible with it is a congruence 
(even if we suppose that this tolerance is compatible only with the multiplication and 
do not suppose a priori that it is compatible with the operation of inversion). 

Here we shall prove that for periodic commutative semigroups also the converse 
assertion is true. 

Let S be a semigroup, let (̂  be a tolerance on its set of elements. We say that ^ 
is compatible with S, if and only if for any four elements x^, ^2, Уъ Уг of S for which 
(xi, j ' l ) G (̂ , (^2, y^ e^wQ have {x^X2, У1У2) e •̂ 

Theorem 1. Let S be a periodic commutative semigroup with at least three 
elements. Then the following two assertions are equivalent: 
(1) S is a group. 
(2) Each tolerance compatible with S is a congruence. 

Proof. The implication (l) => (2) was proved in [2]. We shall prove (2) => (l). 
As is well-known, every periodic semigroup contains at least one idempotent. First 
suppose that S has at least three idempotents. Let pi, P2, Ръ be three pairwise distinct 
idempotents of S. Let q = PiP2P3- As S is commutative, q is also an idempotent. 
It may be equal to some of the elements p^, p2, Рз', without loss of generality suppose 
Pi Ф q Ф P2' Let (̂  be a tolerance on S consisting of the pairs (jOj, q), {q, pi), {p2, q), 
(^. Pi)^ (ptPi^ ч\ {ъ PiPi)^ {^^ Л (^1^'' ^•^)' Ĉ -̂ ' Vi^). {pi^, qx), {qx, P2X), 
{PiPi^^ q^\ {q^^ PiPi^) for all elements xe S. The proof that ^ is compatible with S 
is left to the reader. Suppose that (pi, P2) e ^. As p^, ^2, q are pairwise distinct, the 
pair (puPi) is distinct from the pairs {p^ q), {q, Pt), {p2, q\ {q, Pil (PiPi, q). 
{q. PiPi) and (x, x) for all xeS. Suppose (pi, P2) = (p^x, qx) for some xe S. This 
implies p2 = qx. Multiplying by q we obtain q == p^q = q^^ = qx = p^, which is 
a contradiction. Analogously we prove that {py, p^) is distinct from (qx, p^x), 
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{Р2^^Я^\ {ч^^Р2^\ {PiP2^^Q^\ (QX^PIPI^)' We have {p^,q)E^, {q,p2)e^, 
but (pi, P2) Ф i and ^ is not transitive. Thus ^ is not a congruence. 

Now suppose that S has exactly two idempotents p, q; without loss of generahty 
suppose pq = q. To each element of a periodic semigroup there exists exactly one 
idempotent which is a power of this element. Let S[p) (or S{q)) be the set of all 
elements of S with the property that some of their powers is p (or q respectively). 
We have S{p) u S{q) = S, S{p) n S{q) = 0. Evidently S{q) is an ideal of S. Suppose 
that S[p) has at least two elements. Let ä, consist of all pairs (x, x), (x, y), [y, x), 
where x e S, y e S{q). We shall prove the compatibility of ^. Let (xi, y^) e ^, (x2, y2) ^ 
e ^ for some elements Xj, X2, J i , b2 of S. If x^ = j j , X2 = y2^ then X1X2 = У1У2 
and (xiX2, 3'iJ2) ^ '̂ ^ ïf this is not the case, then some of the four elements con­
sidered must be in S{q). If some of the elements x^, X2 is in S{q), then X1X2 e S(g), 
because S{q) is an ideal of S, and (xiX2, У1У2) ^ 6 Analogously if somiC of the elements 
у I, у 2 is in S{q). Now let a be an element of S[p) différent from p. We have (p, q) e ^, 
(q, a) E ^ because q e S(q), but (p, a) ф ^ because p ф a and none of the elements p, a 
is in S(q). Thus (̂  is not a congruence. Now suppose that S{q) has only one element; 
this means S(p) = {p}. As S has at least three elements, there exists at least one 
element b e S(q) different from q. Let ^ consist of the elements (p, p), (p, q), (q, p) 
and (y, z) for each >• e S{q), z e S(q). It is easy to prove that С is compatible with S, 
by virtue of the fact that S{q) is an ideal of S. Now we have (p, q) G ^, [q, b) e ^, but 
(p, b) ^ ^, because Ь ф p, Ь ф g and p ^ 5(^). The tolerance ^ is not a congruence. 

Finally, let 5 have exactly one idempotent p. Suppose that there exists an element 
a e S such that ax ф a for each x e S. Obviously a ф p, because p = p^- Let aS 
be the set of all elements ax, where x G 5. This is an ideal of S. We have p e aS, 
because p must be a power of a. Suppose that aS contains at least two elements. 
Let ^ consist of the pairs (a, p), (p, a), (x, x), (y, z) for each x e 5, j^ G aS, z G aS. 
Let Xi, X2, Ух, У2 be elements of S, let (x| , y^) G (̂ , (x2, У2) ̂  -̂ f̂ ^1 = Уь ^2 = >'2. 
then X1X2 = У1У2 and (xiX2, У1У2) ^ <̂- f̂ -̂ i + Уъ then either x^ = a, or x^ G aS 
and the same for v^. As aS is an ideal, X1X2 G aS, У1У2 e aS and (х|Х2, У1У2) ̂  •̂ 
Analogously if X2 Ф у2- We have supposed that aS contains at least two elements. 
Thus let b e aS, Ь ф p. The pair (a, b) is not in ^, because a ^ p, b 4= p, a ^ b 
and a Ф aS. We have (a, p) G ^, (p, b) G (̂ , but (a, b) ^ (̂  and (̂  is not transitive. Now 
suppose that aS has only one element; this means aS = {p} and thus ax = p for 
each xe S. Then also px = ax^' = p and p is the zero element of S. Now let (̂  
consist of the pairs (x, x), (x, p), (p, x) for each xe S. The compatibility of ^ is 
evident. If b, с are two different elements of S - {p} (they exist, because S has at 
least three elements), then (b, p) G ^, (p, c) G (̂ , (b, c) ^ (̂  and (̂  is not a congruence. 

Now only one case remains: S has only one idempotent p and for each aeS 
there exists an element x e S such that ax = a. By induction we can prove ax" = a 
for each positive integer n. There must be a power of x which is an idempotent; 
as S has only one idempotent, there exists a positive integer m such that x'" = p. 
Then ap = ax"" = a. As a is an arbitrary element of S, the element p is the unit 
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élément of S. To each a e S there exists a positive integer n such that a" = p; thus 
there exists an inverse element a"^ = a"'^ such that aa~^ = p. We see that S" is 
a group. The proof is complete. 

We have excluded the case when S contains only one or two elements, because on 
every set with one or two elements each reflexive and symmetric binary relation 
is an equivalence. 

This result is not true for non-commutative periodic semigroups, not even for those 
in which the product of two idempotents is again an idempotent. 

Theorem 2. Let n be an arbitrary cardinal number greater than one. Then there 
exists a non-commutative periodic semigroup S with In elements which is not 
a group and on which each compatible tolerance is a congruence. 

Proof. Let G be a periodic group of the order n. Let G ,̂ G2 be two disjoint groups 
which are both isomorphic to G. Let e^ (or ^2) be the unit element and Oi (or O2) 
the multiplication in Gj (or G2 respectively). Let (p be an isomorphic mapping of Ĝ  
onto G2. We shall construct a semigroup S. The support of .S is the union of the 
supports of Gj and G2. The multiplication in S will be denoted by juxtaposition. 
Let X e S, y e S. If x e G^, y e G^, then xy = x Oi У- If ^^ G2 y ^ G2, then xy = 
= X O2 У' îf X e Gl, ye G 2, then xy = (p{x) O2 У- If ^ e G2, y e G^, then xy = 
= cp~^(x) Oi У- It is easy to see that e^x = xe^ = ^2^ = ^^ ^^2 — ф(^) for x G GJ 
and 2̂% = xe2 = e^x = x, xe^ = <P~\^) for x e G2. The group G^ is a left ideal 
of S, the group G2 is a right ideal of S. Let ^ be a tolerance compatible with S, 
let ^1 (or ^2) be the restriction of ^ onto Ĝ  (or G2); evidently ^^ (or ^2) is compatible 
with Gj (or G2 respectively). First suppose that (x, у)е ^ only if either x e Gj, 
у 6 Gl, or X 6 G2, у E G2. Here ^ = ^i KJ '̂2, ^i c: Gj x Gj, (̂ 2 "= ^2 >̂  ^2 ^^'^^ 
Gl n G2 = 0. Since ^i {i = 1, 2) is compatible with the group G/, it is a transitive 
relation. Hence (̂  is a congruence. Now suppose that there exist elements x e G^, 
y e G2 such that (x, y) e ^. Let m be the order of x in G| and n the order of y in G2. 
We have (x'"'\ y'"") e ^ But x'"" = (x'")" - e\ = e^, y"^" = ( / ) ' " = e^ = ^2, thus 
(ej, ^2) e ^ and from the symmetry (^2, ei)e ^. Given a pair a, Ь of elements of G^ 
such that one of the pairs (a, b), (a, <p(b)), {q){a), b), (ф(а), ф(Ь)) is in ĉ , then all others 
are also in (̂ ; this can be proved using the pairs {е^, e^), (e^, ^2), (^2, ^i), (^2, ^2) 
which are all in ^. Thus ^ consists of all the pairs (x, y), (x, (p{y))-> {(p{x), y), (ф(х), 
ф(у)), where (x, y)e ^i. As (̂ 1 is a congruence, ^2 is also a congruence. We have 
proved that each tolerance compatible with S is a congruence. Evidently the semi­
group S is not a group. 
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