A GENERALIZATION OF A THEOREM OF BOOLEAN RELATION MATRICES

CHONG-YUN CHAO*), Pittsburgh, and SHMUEL WINograd, New York

(Received July 21, 1975)

The purpose of this note is to prove a theorem concerning Boolean relation matrices which is a generalization of a theorem in [2] and [1]. Let \(B = \{0, 1\} \) with the usual Boolean addition and multiplication. The matrices which we consider here are \(n \times n \) (Boolean relation) matrices over \(B \) with the usual matrix addition and multiplication. A \(n \times n \) matrix \(A \) is said to be primitive if there is a positive integer \(k \) such that \(A^k = J \) where \(J \) is the \(n \times n \) matrix with every entry being 1. Let \(A = (a_{ij}) \) and \(C = (c_{ij}) \) be two \(n \times n \) matrices over \(B \), we shall write \(A \preceq C \) if \(a_{ij} = 1 \) implies \(c_{ij} = 1 \). Let \(P \) be the following \(n \times n \) permutation matrix:

\[
P = \begin{bmatrix}
0 & 0 & 0 & \ldots & 0 & 1 \\
1 & 0 & 0 & \ldots & 0 & 0 \\
0 & 1 & 0 & \ldots & 0 & 0 \\
\vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\
\vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\
0 & 0 & 0 & \ldots & 1 & 0
\end{bmatrix},
\]

(1)

then \(P^n \) is the identity matrix \(I \), and any \(n \times n \) circulant (Boolean relation) matrix over \(B \) is in the form

\[
a_0 I + a_1 P + a_2 P^2 + \ldots + a_{n-1} P^{n-1}.
\]

(2)

Omitting those \(a_i \)'s which are zeros, and defining \(P^0 = I \), the circulant matrix can be written as

\[
P^{i_1} + P^{i_2} + \ldots + P^{i_k}
\]

(3)

where \(0 \leq i_1 < i_2 < \ldots < i_k \leq n - 1 \). The following was proved in [2] and [1]:

Theorem. The circulant Boolean relation matrix (3) is primitive if and only if

\[
\text{g.c.d.} \ (i_1 - i_1, i_2 - i_1, i_3 - i_1, \ldots, i_k - i_1, n) = 1.
\]

*) This work was done while the author was a visitor at the IBM Watson Research Center.
It is well known that the \(n \times n \) circulants are closely related to the polynomial \(x^n - 1 \), e.g., the algebra of \(n \times n \) circulants over a field \(F \) is isomorphic to the algebra, \(F[x]/\langle x^n - 1 \rangle \), of polynomials modulo \(x^n - 1 \) over \(F \). The companion matrix for the polynomial \(x^n - 1 \) is \(P \). It leads us to define

\[
C = \begin{bmatrix}
0 & 0 & 0 & \ldots & 0 & b_0 \\
1 & 0 & 0 & \ldots & 0 & b_1 \\
0 & 1 & 0 & \ldots & 0 & b_2 \\
\vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\
0 & 0 & 0 & \ldots & 1 & b_{n-1}
\end{bmatrix}
\]

as the (Boolean relation) companion matrix for the polynomial \(f(x) = x^n - b_{n-1}x^{n-1} - b_{n-2}x^{n-2} - \ldots - b_1x - b_0 \), where \(b_i \in \{0, 1\} \) for \(i = 0, 1, \ldots, n - 1 \). We will assume from now on that \(b_i \in \{0, 1\} \) for \(i = 0, 1, \ldots, n - 1 \). Omitting those \(b_i \)'s which are 0, we will write \(x^n = g(x) = x^{j_1} + x^{j_2} + \ldots + x^{j_t} \), where \(0 \leq j_1 < j_2 < \ldots < j_t \leq n - 1 \), instead of \(f(x) = 0 \).

We will consider (Boolean relation) matrices of the form

\[
A = a_0 C^0 + a_1 C^1 + a_2 C^2 + \ldots + a_{n-1} C^{n-1}
\]

where \(a_i \in B, i = 0, 1, \ldots, n - 1 \), and \(A \neq I \). Omitting those \(a_i \)'s which are 0, we have

\[
A = C^{i_1} + C^{i_2} + \ldots + C^{i_k}
\]

where \(0 \leq i_1 < i_2 < \ldots < i_k \leq n - 1 \), and \(i_k > 0 \).

Theorem. Let \(C \) be as in (4) and \(A \) as in (6). Then \(A \) is primitive if and only if

1) \(j_1 = 0 \), and
2) \(\gcd(i_1 - i_1, i_2 - i_1, \ldots, i_k - i_1, j_1, j_2, \ldots, j_t, n) = 1 \).

The first condition of the theorem is obvious, for if \(j_1 > 0 \) (i.e., \(b_0 = 0 \)), then all the entries in the first row of \(C^l \) are 0 for all \(l > 0 \). So we will assume \(j_1 = 0 \).

In order to prove the rest of the theorem we need the following lemmas.

Lemma 1. Let \(C \) be as in (4), then

\[C^n = g(C) = C^{j_1} + C^{j_2} + \ldots + C^{j_t}. \]

Proof. Consider the polynomial \(f(x) = x^n - x^{j_1} - x^{j_2} - \ldots - x^{j_t} \), over the reals \(\mathbb{R} \), and let \(\bar{C} \) be its companion matrix. Then, by Cayley-Hamilton's theorem, we have

\[C^n = \bar{C}^{j_1} + \bar{C}^{j_2} + \ldots + \bar{C}^{j_t}. \]
Let \(\chi \) be the map from the set of all non-negative numbers \(\mathbb{R}^+ \) into \(B \) defined by
\[
\chi(x) = \begin{cases}
0 & \text{if } x = 0, \\
1 & \text{if } x > 0,
\end{cases}
\]
then \(\chi \) can be extended to a map from the set of all \(n \times n \) matrices \(M_n(\mathbb{R}^+) \) over \(\mathbb{R}^+ \) to the set \(M_n(B) \) of all \(n \times n \) matrices over \(B \). Moreover, if \(U, V \in M_n(\mathbb{R}^+) \) then
\[
\chi(UV) = \chi(U) \chi(V) \quad \text{and} \quad \chi(U + V) = \chi(U) + \chi(V).
\]
Consequently, \(C^n = (\chi(C))^n = \chi(C^n) = \sum_{i=1}^t C^{ji} = \sum_{i=1}^t (\chi(C))^{ji} = \sum_{i=1}^t C^{ji} = g(C) \).

Lemma 2. Let \(A \) be as in (6). Then \(A \) is primitive if and only if there is a positive integer \(m \) such that \(A^m \geq C^q \) for all \(q = 0, 1, \ldots, n - 1 \).

Proof. If \(A \) is primitive then there exist \(m \) such that \(A^m = J \geq C^q \) for all \(q = 0, 1, \ldots, n - 1 \). Conversely, if \(A^m \geq C^q \) for all \(q = 0, 1, \ldots, n - 1 \), then, since \(C \geq P \), it follows that \(A^m \geq \sum_{i=0}^{n-1} P^i = J \).

Lemma 3. Let \(A \) be as in (6) with \(i_1 = 0 \), \(a = \text{g.c.d.} \left(i_1, i_2, \ldots, i_k, j_1, j_2, \ldots, j_l, n\right) \) and
\[
J_a = C^0 + C^a + C^{2a} + \ldots + C^{\left(n-1\right)a}.
\]
Then there exists a positive integer \(m_0 \) such that \(A^m = J_a \) for all \(m \geq m_0 \).

Proof. Since \(A = C^{i_1} + C^{i_2} + \ldots + C^{i_k} \) where \(0 = i_1 < i_2 < \ldots < i_k \leq n - 1 \) and \(i_k > 0 \), \(A \geq I \) and \(A^t \geq I \) for all positive integers \(l \).

Let \(l \) be any positive integer and \(A^t = C^{l_1} + C^{l_2} + \ldots + C^{l_p} \) where \(0 = l_1 < l_2 < \ldots < l_p \). Since each \(l_q \) is in the form
\[
\sum_{s=2}^{k} r_s i_s + \sum_{\beta=2}^{t} s_{\beta} j_{\beta} + vn
\]
for some integers \(r_s, s_{\beta} \) and \(v \), each \(l_q \) is divisible by \(a \) for \(q = 1, 2, \ldots, p \). Consequently, \(J_a \geq C^{l_q} \) for \(q = 1, 2, \ldots, p \), and \(J_a \geq A^t \) for any positive integer \(l \).

Since \(a \) is the g.c.d., there exist integers \(r_2, r_3, \ldots, r_k \) and \(s_2, s_3, \ldots, s_t \) and \(v \) such that
\[
a = \sum_{s=2}^{k} r_s i_s + \sum_{\beta=2}^{t} s_{\beta} j_{\beta} - vn,
\]
i.e.,
\[
\sum_{s=2}^{k} r_s i_s = a - \sum_{\beta=2}^{t} s_{\beta} j_{\beta} + vn
\]
where \(v \) is positive, and where, without loss of generality, we can assume that each of \(r_s \) and \(s_{\beta} \) is non-negative, for otherwise, we can replace each \(r_s \) by \(r_s + w_s n \),
each s_β by $s_\beta + w_\beta n$, and v by $v + \sum_{\alpha=2}^{k} w_\alpha' \lambda_\alpha + \sum_{\beta=2}^{t} w_\beta' f_\beta$. Also, we may assume that

$$v = \sum_{\beta=2}^{t} s_\beta + v'$$

where $v'n \geq \sum_{\beta=2}^{t} s_\beta f_\beta$, for if not, in (8), after we replace r_2 by $r_2 + wn$ and v by $v + w_2$, we choose w so that $v + w_2 = \sum_{\alpha=2}^{k} s_\alpha + v'$ and $v'n \geq \sum_{\beta=2}^{t} s_\beta f_\beta$.

Let $h_0 = \sum_{\alpha=2}^{k} \rho_\alpha$. Then, by using (8) and Lemma 1, we have

$$A^{h_0} = A^{\sum_{\alpha=2}^{k} \rho_\alpha} \geq A^{\sum_{\alpha=2}^{k} \rho_\alpha i_\alpha} = A^{\sum_{\alpha=2}^{k} \rho_\alpha} \cdot C^{n} = A^{\rho_\alpha} \cdot C^{n} \cdot C^{v'n} \geq A^{\rho_\alpha}.$$

Hence, $A^{h_0} \geq A^a$. Since $A^l \geq I$ for all positive integer l, $A^{h_0} \geq I + A^a$. Now we can choose $m_0 = h_0 \cdot (n/a)$, and we have $A^{m_0} = A^{h_0(n/a)} \geq (I + A^a)^{(n/a)} \geq J_a$. Hence, $A^m = J_a$ for all $m \geq m_0$.

Now the proof of our Theorem: We consider the cases of $k = 1$ and $k > 1$.

For the case of $k = 1$, A can be written as

$$A = C^{i_1}(C^{i_1-i_1} + C^{i_2-i_1} + \ldots + C^{i_k-i_1}).$$

Let $a = \text{g.c.d.} (i_1 - i_1, i_2 - i_1, \ldots, i_k - i_1, j_2, \ldots, j_n)$. Then, by Lemma 3, we have $A^m = C^{i_1m} J_a$ for sufficiently large m. By Lemma 2, A is primitive if and only if $a = 1$.

For the case $k = 1$. Let $a = \text{g.c.d.} (i_1 - i_1, j_1, j_2, \ldots, j_n) = \text{g.c.d.} (j_1, j_2, \ldots, j_n)$. Then, by Lemma 1, we have $A^n = C^{i_1n} = (g(C))^{i_1}$. So A is primitive if and only if A^n is primitive, i.e., if and only if $g(C)$ is primitive. But, by Lemma 3, $(g(C))^m = J_a$, and $g(C)$ is primitive if and only if $a = 1$.

References

Authors’ addresses: Chong-Yun Chao, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, U.S.A.; Shmuel Winograd, IBM Thomas J. Watson Research Center, Yorktown Heights, New York 10598, U.S.A.