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DIAGONALS OF CONVEX SETS

MirosLAv FIEDLER and VLASTIMIL PTAK, Praha

(Received November 17, 1975)

In the present paper the authors introduce a new notion important in the theory
of convexity, that of a diagonal of a convex set. This notion forms a natural counter-
part of the notion of a face of a convex set.

Let us state now the definition of the diagonal. If M is a convex set in a linear
space, the convex set D will be called diagonal of M if the following conditions are
satisfied:

1° Every extreme point of D is also an extreme point of M;

2° a point x € D is a relative interior point of D if and only if it is a relative
interior point of M.

Instead of setting up a number of superficial generalities about the notion of
a diagonal the authors prefer to investigate an important particular case in order to
demonstrate the usefulness of the notion by means of deeper results.

In the present paper we restrict ourselves to finite — dimensional spaces; the convex
sets to be investigated will be polyhedral cones. Suppose that the extreme rays of
a polyhedral cone K are generated by the vectors py, p,, ..., Ds; these vectors may
satisfy relations of the form

s
Yop;=0.
i=1
Connections are first discussed between diagonals of the cone K and relations for the
vectors py, ..., ps. It turns out that an indecomposable cone*) with at least two

linearly independent relations has at least three diagonals. Of particular interest are
cones with n + 1 extreme rays (n being the dimension of the cone) for which there
is exactly one nontrivial relation. Such cones are called minimal.

Using the notion of a minimal cone, the authors have shown, for instance, that the
cone of all linear operators which transform a given minimal cone into itself may

*) That is, roughly speaking, a cone whose generating vectors p; cannot be split into two
non-void subsets lying in two subspaces which form a direct decomposition of the space.
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have extreme rays generated by operators of an arbitrary rank (up to a certain bound
depending in a natural manner on the cones) with the exception of rank two. These
results are contained in the authors’ paper [1].

1. FACES, POLYHEDRAL CONES, DECOMPOSABILITY

Let E be a vector space over the real field. A cone K in E is a set such that x e K
implies Ax €K for all A 2 0. A cone K is said to be pointed if K n (—K) = (0).
Under a proper cone we shall always understand one which is convex, pointed and
different from the one vector set zero.

Given a cone K, we shall denote by span K the linear space of all vectors of the
form k,; — k,, with k; € K. We define the dimension of K as the dimension of the
linear span K.

Given a pointed cone K in E, it is possible to define a relation < on E as follows

we write x <y ifandonlyif y —xeK.

Since K is pointed, x = yand y < ximply x = y. If x < y and . = 0 then Ax < 1y.
If K is convex, this relation is transitive. If K has an inner point or, more generally,
if K — K = E, every x € E may be written in the form x = x, — x, with x; = 0,
x, = 0.

For sake of completeness, we prove the following proposition.

(1,1) Let K be a cone, F a subcone of K. Then the following conditions are
equivalent:

1°if yeFandy

2°if yeFandy = x + ... + x, with x; €K then all x; € F;

3° if xeF, zeK and x — ze€ K then z€F,

4° if xeF, zeK and z £ x thenz e F;

5° if xe K may be expressed in the form x = f — y with fe F and y € K then

x e F.

I

X, + X, with x; €K, x, € K then both x; € F, x, € F;

If one of these conditions is satisfied, F will be called a face of K.

Proof. The implication 2° — 1° is immediate and 1° — 2° may be proved easily
by induction. Now assume 1° and let us prove 3°. If xe F, zeK and x — z€K,
we have the decomposition x = z + (x — z) with z€K, (x — z) e K. It follows
from 1° that z € F. The equivalence of 3° and 4° is obvious. Now assume 3° and let
us prove 5°. Suppose that x e K and x = f — y for some fe€ F and y € K. Then
x+ yeF,xeKand (x + y) — x e K; it follows from 3° that x € F; this establishes
5°. Now suppose that condition 5° is satisfied and consider a y € F which has a decom-
position ¥ = x; + x, with x;, x, € K. Then x; = y — x, with y € F, x, € K whence
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xy € F. In an analogous manner, the equation x, = y — x, implies x, € F. The
proof is complete.

(1,2) Definition. Let K be a cone. Suppose that F is a one-dimensional face of K.
Then F will be called an extreme ray of K. We shall denote by ext K the set of all
extreme rays of K. Any nonzero vector in F will be called an extreme vector of K.

(1,3) Definition. Let K be a cone. Then K will be called a polyhedral cone if it is
a proper cone and the set of all extreme rays of K is finite.

(1,4) Definition. A set of vectors py, ..., ps is said to be convex irreducible if no
vector p; lies in the cone generated by the remaining vectors.

In the sequel we shall adopt the following convention. Given a natural number s
and vectors py, ..., ps € E, we shall consider the s-dimensional real affine space R;
and the following linear mapping V of Rginto E. If & = (ay, ..., o) is a vector in Ry,
we set

Voo =Y a;p;.
JES

Here S stands for the set 1, 2, .... s. A relation for the vectors py, ..., ps is a vector «
such that Vo = 0. A full relation for p,, ..., ps is a relation o such that all o; are
different from zero.

It is not difficult to prove the following lemma.

(1,5) Let py, ..., ps be given nonzero vectors. Denote by K the set of all vectors
of the form Y a;p; with nonnegative o;. Then K is a pointed cone if and only if the
Jjes

only nonnegative relation for the vectors p; is the zero relation. Suppose that K is
a pointed cone. Then the following conditions are equivalent:

1° the vectors py, ..., ps form a convex irreducible set;

2° the positive multiples of the vectors py, ..., ps are exactly the extreme rays
of the cone K;

3° any non-zero relation Y, a;p; = 0 contains of least two positive and at least
Jjes
"two negative coefficients.

In the present paper we shall frequently make no distinction between the extreme
rays of a cone and vectors by which they are generated. There does not seem to be any
danger of misunderstanding.

Let K be a polyhedral cone in E with extreme rays generated by the vectors
Dis .--» Ps. Let S be the set of natural numbers 1,2, ...,s. For the sake of brevity
we shall write K = cone S to describe this situation. If T = S we denote by span T
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the linear space generated by the vectors pj»J € T and by cone T'the set of all vectors
of the form
Y. %P;

JjeT
with a; = 0.

We shall need the following observation.

(1,6) Suppose that K = cone S. Let My and M, be two nonvoid subsets of S.
If cone M, = cone M, then M, = M,. In particular, the abbreviation K = cone S
and the notation cone T are consistent.

Proof. According to (1,5) and to the convention regarding the notation cone S
there exists a convex irreducible set of vectors p;, j € S such that the rays generated
by the p; are exactly the extreme rays of K. Suppose now that i € M, it follows that
pi € cone M; = cone M, so that p; = ) a;p;for suitable o; > 0.If i does not belong

JeM2
to M, the above equation expresses p; as a convex combination of the remaining p;
which is impossible. This proves M; = M,. The inclusion M, = M, may be proved
in the same manner.

We give next a characterization of faces of polyhedral cones in terms of the cor-
responding index sets.

(1,7) Let K be a polyhedral cone, K = cone S and let M = S, F = cone M.
Then the folowing conditions are equivalent

1° F is a face of K;
2°if Y y;p; = 0 withy; 2 0 for je S\M then y; = 0 for je S\ M.
Jjes

Proof. Suppose first that F is a face of K and that ) y;p; = 0 for some coef-
Jjes
ficients y such that y; = 0 for je S\ M. Set x = Y. y;p; so that x e K. Also, let
JES\M

u={=YypsjeM,y; <0}, v={Yyp;jeM, y; = 0} sothat x = u — v. Since
both u and v belong to F and F is a face of K, it follows from condition 5° of proposi-
tion (1,1), that x € F. According to 2° of the same proposition, y;p; € F for each
je€SNM.If y; > 0 for some j € S\ M it follows that the corresponding p; belongs
to F which is a contradiction. Consequently all y; = 0 for je S\ M.

To prove that 2° implies 1°, suppose that an f€ F may be written in the form
} = a + b with a, be K. Thus

f=Yopis a=Y ap;, b=2 Bp;,
JjeM Jes Jes
where all coefficients are nonnegative. We have the following relation

D (e +B)p+ (o +Bi—9)p; =0 ©
JjeS\M JjeM
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with o; + B; = 0 for je S\ M. If 2° is assumed, it follows that a; + f; = O for
Jj€SN\M sothat a; = f; = 0 for j e S\ M. Hence both u € F, v € F and 1° is estab-
lished.

In the remainder of this section we collect some material concerning the notion of
indecomposability for polyhedral cones which will be needed in the sequel.

The notion of indecomposability is analogous to that used in the theory of non-
negative matrices and has been introduced for cones independently in [2] and [3].

(1,8) Definition. Let E be a linear space over the real field. Let S be a finite set of
indices. For each s € S we are given a vector p;€ E. A non-void subset M < S is
said to be minimal if the vectors p,,, m € M are linearly dependent but each proper
subset is linearly independent. We define a relation R on S as follows: [i, i] € R for
all i € S; if i = j then the pair [i,j] € R if and only if there exists a minimal subset
M < S such that both i and j belong to S.

(1,9) If a non-void set S' = S has the property that the p;, i€ S’, are linearly
dependent then S’ contains a minimal subset.

Proof. The proof is immediate if we consider among all linearly dependent sub-
sets of S’ one having the least number of elements.

The system of vectors { Ds; S € S} is said to be decomposable if there exists a subset
M, < S different from @ and S such that

RM, = M, .

Otherwise the system {p,; s € S} is said to be indecomposable.

(1,10) Theorem. These are equivalent:

1° the system {pg; s € S} is decomposable;
2° there exists a non-trivial decomposition S = M; U M, such that
span {p,, s € S} = span {p,, s€ M,} @ span {p,, s € M,};
3° there exists a non-void proper subset Sy < S such that any relation Yy a;p; =
= 0 implies Y a;p; = 0; Ies
JeSo
4° there exist numbers ,, s € S, not all equal to each other such thai
Y a;p; =0 implies Y a;d;p; =0.
JjeS JjeS
Proof. 1° — 2°: By 1°, there exists a subset My, = S, ® = M, * S, such that
RM, = M, .

Put M, = My, M, = S\M,. Assume there exists a vector z + 0, z € span {p,,
s€M,} nspan {p,, s € M,}. For k = 1, 2 there exists a subset M, = M, such that
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the vectors p;, i € M,, form a basis for span {p,, s € M;}. Thus
= Z aipi >
ieM
as well as

z = Z %ipi
ieM>

so that the vectors p;, i€ M, U M,, are linearly dependent. By (I, 9), there exists
a minimal subset T < M, U M,. Clearly T ¢ M,, T ¢ M,. Consequently, there
exists an index i € M, and an index j € M, such that [i, j] € R, a contradiction with
RM, = M,. This proves that span {p,, s € M} N span {p,, s€ M,} = 0.

2° > 3% Put Sy = M,. If Y o;p; =0 then Y a;p; + Y, a;p; = O implies
Jes

ieMy ieM>
Z“il’i= Z“ipi= 0 by?2°.
ieMy ieM2
3° - 4°, It suffices to put A; = 1 for i € Sy, 4; = 0 otherwise.

4° - 1°. Define My = {i; A; = 4;}. Assume there exists an index i € M, and an
index j ¢ M, such that [i, j] € R. Let T be a minimal subset containing both i and j.
Thus

Z oupe =0
keT
where at least one of the «, is different from zero. Then
Z P = 0
keT

as well. Consequently,
Y ol = 2)pe =0,

keTN{i}

which implies, by the minimality of -7, that A; — A; = 0, a contradiction with
J ¢ M,.

2. DIAGONALS

In this section we introduce the notion of a diagonal. For the sake of simplicity
and brevity we shall limit ourselves — throughout this section — to closed cones in
finite dimensional spaces. By making obvious changes in the conditions the notion
(and some of the results) may be extended to more general situations.

(2,1) Definition. If K is a proper cone we shall denote by rint K (relative interior
of K) the set

{x e K; for each pair y, €K, y, €K there exists an &¢ > 0, x — &(y; — y,) €K}
and by rb K (relative boundary of K) the set

b K = K\rintK.
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(2,2) Definition. Let K and D be two proper cones in the linear space E. The cone D
will be called a diagonal of K if the following three conditions are satisfied

1° ext D < ext K;
2° rint D < rint K;
3°rbD = rbK.

It is not difficult to see that condition 3° may be replaced by the equivalent con-
dition
4° rint K n D < rint D.

In other words, the extreme rays of D are also extreme rays of K and a vector
x € D is a relative interior vector of D if and only if it is an interior vector of K.

In the rest of this section we shall clear up — for the case of polyhedral cones -
the meaning of the notion of a diagonal. To help build up a geometric intuition we
include here the following proposition although a part of it cannot be proved until
later.

(2.3) Let K be a proper cone in a linear space E. Then

1° K 15 a diagonal of K;
2° if D is a diagonal of K then D = K;
3° if D is a diagonal of K which is different from K then

1 <dim D <dimK.

Proof. The first two assertions are obvious. Now let D be a diagonal of K. Sup-
pose that dim D = 1 so that D is the ray generated by a vector p + 0. According
to condition 1° of the definition, this ray is also an extreme ray of K. Suppose that K
has at least one extreme ray different from D; it follows that D is not contained in
rint K so that condition 2° cannot be satisfied. Hence dim D = 1 implies dim K = 1
and, indeed, D = K. This proves the inequality 1 < dim D if D £ K. The second
inequality is a consequence of 32° in theorem (2,11) to be proved later.

(2,4) Let K be a proper cone in E. If D is a diagonal of K and H is a diagonal
of D then H is a diagonal of K.

Proof. Obvious.

(2,5) Definition. Let D be a diagonal of the proper cone K. Then D will be called
a proper diagonal of K if D % K; it will be called a minimal diagonal of K if there
exists no diagonal D’ of K properly contained in D.

Our first observation consists in showing that we may limit ourselves to the in-
vestigation of diagonals of indecomposable cones only.
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Indeed, we shall show that the diagonals of decomposable cones can be found
easily from the knowledge of the diagonals of the indecomposable components. Let
us recall that a cone K is called decomposable if the identity operator I of the linear
space spanned by K can be written as a sum I = P; + P, of nontrivial mutually
orthogonal projectors P, P, in such a way that

K=K, ®K,

where K; = P,K, i = 1,2.
Otherwise, K is called indecomposable. The following proposition has been proved

in [2]:

(2,6) Any two-dimensional proper cone is decomposable. For any cone K, there
exist indecomposable cones K, ..., K, such that

K=K, ®K,®..®K,.

This decomposition of K is unique (except for a possible renumbering).
The following lemma is easily checked.

(2,77 Lemma. Let K be a decomposable cone, K=K, @K, ® ... ® K, its
decomposition as a sum of indecomposable cones K; i =1,...,r — 1.

Then

1° rint K = rint K; @ rint K, ® ... ® rint K,
2° extK = extK; vextK, u... uextK,,

3 rbK=1bK, ®K,®... 2K, UK, ®bK, ®... ®K, uU...
..UK, ®K,®... ®rbk,.

(2,8) Theorem. Let K be a decomposable cone, K=K, ® K, ® ... ® K, its
decomposition as a sum of indecomposable cones K;, i = 1, ...,r. Then D is a dia-
gonal of K if and only if

D=D,®D,®...®D,
where all D;,i = 1, ..., r are diagonals of K;.
Proof. First let D; be a diagonal of K; for i = 1, ..., r, and let

D=D,®D,®..®D,.
By 1°,

r r
rint D = Y rint D; = Y rintK; = rint K .
i=1 i=1
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By 2°,
ext D =UextD; c JextK;, =extK.
By 3°,
tbD=U(@bD; +3 D)= U(bK; + Y K,)=rbK.
j=1 KFJ i=t K¥j
Consequently, D is a diagonal of K.

To prove the converse part, suppose D is a diagonal of K. Let P, i = 1, ..., r, be
projectors of the space spanned by K on the subspaces spanned by K; so that P;
form an orthogonal complete system of projectors and

the identity.
Dzfine D; = P;D, i = 1, ..., r. We have then clearly

D=D,®D,®...®D,.
Let us first show that D; £ 0 for i = 1, ..., r. Assume, say, D, = 0. Then

D=(I-P)Dc(I-P)K=K,+..+K,crbk.
Since
rint D < rint K ;

we have
rint D=rint DNnDcrintKnNnrbK =0,

a contradiction with D = 0.
Let us show now that for i = 1, ..., r, D;is a diagonal of K.
By 1° of lemma (2,7)
rint D = ) rint D;.
i=1

Since

r
rint D crint K = Y rint K;,
i1

i=

it follows that
(%) rint D; crintK;, i=1,..,r.
Let now x €ext D;for a fixed i so that x # 0. By 2°, x eext D so that x e ext K.

Since x = P;x, it follows that x € P;ext K = ext K; U 0. Consequently, x € ext K
so that

€] ext D; < extK;.
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Assume that 0 # x; erb D; for a fixed i. Since rint D, + @ for all k, there exist
vectors x;, j = 1,...,r, j % i, such that

xjerint D; .

The vector

x=)x¢€rbD
=1

by (**); therefore, x € rb K. By (),

x;erintK; for j#i.
Consequently,
x¢U(bK; + Y K)):
J¥i

s*i
by (*),
xerbK; +.ZK,-
so that "
x; = PxerbK;
and
rb D; =« b K;.

The proof is complete.

In the rest of this section we intend to describe diagonals of polyhedral cones in
terms of the index sets of their extreme rays and discuss the connection between
diagonals and relations. We shall need several lemmas.

(2,9). Let K be a polyhedral cone, K = cone S. Let M < S. Then these are
equivalent:
1° cone S N span M < cone M;
2° cone (S\ M) nspan M < cone M;
3° whenever Y y;p; = 0 is a relation such that y; 2 0 for je S\M then there
JjesS
exists a relation
2 vibi + Y @;p; =0
JjeS\M JjeM
with
®; £0 for jeM.

4° The order relation defined on span M by cone M coincides with that induced
on span M by the order relation defined by cone S.

Proof. May be left to the reader. -
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(2,10) Let K be a polyhedral cone, K = cone S. Let M = S and set D = cone M.
Then the following two conditions are equivalent:
1° rint D < rint K;

2° there exists a relation Yy y;p; = 0 such that y; > 0 for je S\ M.
Jjes
Proof. To prove that 1° implies 2°, set x = , p; so that x e rint D. Since

rint D < rint K, there exists a representation of x oM
x =2 Bip;
Jjes

with all f; > 0. It follows that
> Bpi+ 2 (B —1)pi=0
JjeS\M jeM

is a relation with positive coefficients §; for j € S\ M.
Suppose now that 2° holds. If x erint D then x = Y, ;p with all B; positive. Tt
ieM

follows that there exists an ¢ > 0 such that f§; + &y; > O for all i e M. Then
x =3 Bip; + &) 1P
jeM jes N
shows that x € rint K as well. The proof is complete.

(2,11) Theorem. Let K be a polyhedral cone, K = cone S. Let M be a non-void
subset of S and let D = cone M. Then the following conditions are equivalent:
1° D is a proper diagonal of K;
2° the following three conditions are satisfied:
21° rint D < rint K,
22° rint K n D < rint D;
23° M + S;
3° the following three conditions are satisfied:
31° rint D < rint K;
32° Knspan M < D;
33° M % S;
4° the following three conditions are satisfied

41° there exists a relation Y o;p; = 0 such that oa; > 0 for all ie S\ M;
ieS
42° whenever Y, o;p; = 0 with a; > 0 for all ie S\M then there exists a
ieS
relation Y aip; = O such that a; = o} forie S\M and o; £ 0 for i e M;
icS
43° M + S.
Another set of four equivalent conditions may be obtained if we leave out the
word proper in 1° and the third condition in each of 2°, 3°, 4°.
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Proof. By the definition of a proper diagonal 1° and 2° are easily seen to be
equivalent.

Let us show now that 2° implies 3°. Since 21° implies 31° and 23° implies 33°, it
remains to prove 32°. Let x € K n span M and suppose x ¢ D. By 23°, there eXists
a y erint D. Since x € span M and x ¢ D, there is a vector z of the form z = ax + fy,
oa>0,f>0,a+ f§ =1such that z¢rb D. However, y erint K by 21°, xe K so
that z erint K. By 22°, z erint D, a contradiction.

To prove that 3° implies 4°, we observe that 33° implies 43° trivially and
that 31° implies 41° by (2,10). Hence it remains to prove 42°. Let ) a;p; = 0 and

ieS
suppose that o; > 0 for all i e S\ M. The vector x = ) a;p; belongs to K and,
jeS\M

since x = — Y oyp,, xespan M as well. It follows from 32° that x e D so that
keM .

x =Y y;p; with y; = 0 for i € M. Hence
ieM .

) Y. %D, ‘Z v;p; =0
jeS\M JeM

is a relation which satisfies the requirement of 42°.

To complete the proof, we shall show that 4° implies 2°. By (2,10), 41° implies 21°.
Now let 42° be satisfied and suppose that x e rint K n D. Thus, x = Y f;p;, f; > 0
jes

as well as x =) y;p;. Consequently,
jeM
2 Bipj — Y. vp; =0
jes jeM
is a relation which is positive on S\ M. By 42°, there exists a relation

2, %p; =0
Jjes
such that «f = B; for ie S\ M and «; < 0 for i € M. Therefore,

X = z;ﬁjpj - Z;“:’Pj = Z(ﬂ; - 0‘2) Pi
JE 1€,

ieM
shows that x e rint D since f8; — o; > 0 for i € M. This proves 22°. Since 23° follows
from 43°, the proof is complete.
The rest is proved analogously.

(2.12) Let K be an indecomposable polyhedral cone of dimension greater than
one. Let D = cone M be a proper diagonal of K. Then S\ M contains at least
two indices.

Proof. According to (2,11), condition 41° and 42°, there exists a relation the set
of positive coefficients of which corresponds to indices in S\ M. By 3° of (1,5), the
number of these coefficients is at least two.
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(2,13) Suppose that K = cone S is indecomposable. Then there exists, for each
k€S, a relation Y a;p; = 0 for the vectors py, ..., p, such that
ieS

o > 0.

Proof. Suppose, on the contrary, that every relation z o;p; = 0 for the vectors

Pis ---» Ps has @, = 0 and let us prove that span {k} and span (S \ {k}) form a direct
decomposmon of the space E for which both projections are positive. First of all,
let us show that

span {k} nspan (S\{k}) = (0).

If x belongs to this intersection, we have x = Ap, and x = ) y;p;. Hence
JjeS\{k}

Y. y;p; — 2p = O'is a relation for the vectors p;, j € S. According to our assump-
jeSNik}

tion we have 4 = 0 so that x = 0.

Denote by P, and P, the decomposition projections on span {k} and span (S \ {k})
respectively. We show first that P, is nonnegative. To see that, it suffices to prove
that if zeK, z =) B,p; then ) f;p; again belongs to K. Hence suppose that

A
Y Bip; = Y o;p; with o; = 0. It follows from assumption that 8, = , whence
JjeS Jjes

> Bip; = 2“11’1‘51(-
Jje

JjeS
J*k J*k
T'his proves that P, is nonnegative.

To prove that P, is nonnegative consider a point z € K;; if z is expressed in the form

z = Mpp + Y, A;p; we are to show that 4, = 0. Since = € K it also has a represen-
JjeSN\k

tation of the form
z=oup+ Y, op;
JjeS\k
with all coefficients nonnegative. Now 4,p, = P,z = P,(Yo,p,) = ap,. Thus
I 2 0.
The proof is complete.

(2,14) Let K be an indecomposable polyhedral cone of dimension >1 generated
by the vectors py, py, ..., ps. Then there exists at least one full relation for the
vectors p;.

Proof. Since K is indecomposable, K is not simplicial. Accordingly, there exists
at least one relation

oop; + ... +op. =0
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such that at least one of the o; is different from zero. Suppose that the number of
nonzero coefficients in this relation is maximal and that at least one of them, ¢, say,
equals zero. It follows from lemma (2,1 3) that there exists at least one relation

ﬁlpl + ...+ /}rpr = 0

with f, # 0. If ¢ is chosen small enough, the relation Z(ai + ¢f;) p; = 0 will have
nonzero coefficients for all i where o; & 0 and for the index k as well. This is a contra-
diction with the maximality of the o’s. It follows that the relation Y o;p; = 0 is full.

(2,15) Notation. Suppose that pg, s € S is a convex irreducible set of vectors. Let r
be a relation for the vectors p;. Let us denote by «;, j € S the coefficients of the rela-
tion r so that ) o;p; = 0. We shall denote by p(r) the set of all indices i € S for which

Jjes
a; > 0. Clearly p(r) is nonvoid and different from S.

(2,16) Let K be an indecomposable polyhedral cone of dimension greater than
one. Then there exists at least one proper diagonal D of K.

More precisely: Let K = cone S and let r be any nontrivial relation for the
vectors ps, s € S (such a relation exists since K is indecomposable and its dimension
is greater than one). Then there exists a diagonal D = cone M such that M <

< S — p(r).

Proof. Denote by 7 the family of all sets of the form p(r') such that r’ is a relation
and p(r') = p(r). Let p(r") be a maximal element of 7. Let r” be a relation such
that :

p(r") = p(r")

and that the number of negative coefficients of r” is maximal. Let us show that the
coefficients of r” are all different from zero. Suppose on the contrary that there
exists an index k such that r;’ = 0. By lemma (2,14) there exists a relation r*’ such
that {2 > 0. Consider now the relation r” — &r‘® for a small ¢ > 0. If ¢ is small

enough, " — &% will stay positive on p(r ") was
g yp 4

"

a

) and will stay negative where p(i
negative. Now p(r” — %) = p(+") = p(r") because of the maximality of p(r").
The remaining coefficients will be nonpositive; they will be negative where r” was
negative and for the index k, we shall have another negative coefficient. This is
a contradiction. Hence p(—r") = S\p(r”). Set M = S\p(r”) so that M =
= S\ p(r") = S\ p(r). Let D = cone M and let us show that D is a diagonal of K.
We shall do that using condition 4° of (2,11). Since S\ M = p(r") condition 41° is
satisfied trivially. To prove 42°, consider a relation 7 such that p(F) > S\ M = p(r").
It follows from the maximality of p(r”) that p(¥) = p(r"") so that 42° holds. Since p(r)
is nonvoid, we have also M # S. Hence D is a proper diagonal of K.
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(2,17) Corollary. A cone K has no proper diagonal if and only if it is simplicial;
or, in other words, if and only if there exist n linearly independent vectors py, ..., p,

such that the cone consists of all elements of the form Y. o;p; with nonnegative o;.
i=1

Proof. According to (2.6) the cone K may be written in the form of a direct sum
K=K, ®..®K,

with indecomposable cones K; = P;K where P; are the projection operators of the
direct sum. Suppose first that K is simplicial; then » = n and each K is one dimen-
sional. If D is a diagonal of K then the projections P;D are diagonals of K; hence
P;D = K;forall jso that D = K.

Conversely, suppose that K has no proper diagonal. It follows from (2,8) that
none of the K; can have a proper diagonal. Since the K ; are indecomposable, it follows
from the preceding lemma (2,16) that dim K; = 1 for all j. This proves that K is
simplicial.

(2,18) Theorem. An indecomposable cone of dimension greater than one has at
least two proper diagonals.

The same conclusion holds for a decomposable cone provided at least one of its
indecomposable components has dimension greater than one.

Proof. Let K = cone S be an indecomposable cone of dimension greater than one.
By lemma (2,14) there exists a full relation for the vectors p;, i€ S. If we apply
lemma (2,16) to the relations r and —r, we obtain two different proper diagonals
of K. The rest follows from theorem (2,8).

(2,19) Theorem. Let K be polyhedral cone, K = cone S. Let M' =« M < S, let
cone M be a diagonal of K. Then the following are equivalent:
1° cone M’ is a diagonal of cone M,

2° cone M’ is a diagonal of K.

Proof. The implication 1° — 2° follows from the definition. Suppose now that 2°
is fulfilled. If M = M’ or M = S, the assertion is trivial. Let thus K % cone M =
%+ cone M'. By 21° and 22° of (2,11)

rint cone M’ < rint K,

rint K n cone M = rint cone M .

Since also

rint cone M’ < rint K |
and

rint cone M’ < cone M ,
we have

rint cone M’ < rint K n cone M < rint cone M .
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Furthermore
rint cone M N cone M" < rint K n span M’ < rint cone M’ .
By (2,11), cone M" is a proper diagonal of cone M and the proof is complete.

Remark. It follows from theorem (2,19) that the set of all diagonals of cone S
possesses the following property analogous to a property of the set of all faces:

if both cone M, and cone M, are diagonals of cone S then cone M, is a diagonal
of cone M, if and only if M| < M,.

(2,20) Let K be a polyhedral cone, K = cone S, let M be a non-void subset of S,
D = cone M. Then the following conditions are equivalent:

1° D is a minimal diagonal of K,
2° D is a diagonal of K which is a simplicial cone;

3° the following two conditions are satisfied:

31° there exists a relation Y, o;p; = 0 such that a; > 0 for all i e S\ M;
ieS
32° whenever Y a;p; = 0 is a relation such that o; > 0 for all ieS\ M then
ieS
o, < 0 forall ke M.

If K is indecomposable, then these conditions are also equivalent to the following
condition:

4° the following two conditions are satisfied:
41° there exists a relation Y a;p; = 0 such that o; > 0 for all i e S\ M;
ieS
42° whenever Y oa;p; = 0 is a relation such that «; > 0 for all ie S\M
ieS
then o, < 0 for all ke M.

Proof. The implication 1° — 2° follows from corollary (2,17) and from Theorem
(2,19).

Now assume 2° and let us prove 3°. Condition 31° of the present theorem follows
immediately from condition 41° of Theorem (2,11). To prove 32°, let us observe
that according to 42° of (2,11) every relation ) a;p; = 0 which is positive on S\ M

ieS

may be completed by nonpositive numbers on M. Since cone M is simplicial, the set
of coefficients o; on M is unique. This proves condition 3°.

Let us show now that 3° implies 1°. First of all, using 4° of (2,11) it is easy to see
that D is a diagonal of K (for M = S this is obvious, for M # S we use condition 4°).
Suppose now that D’ = cone M’ < D is a diagonal of K. By 41° of (2,11) there
exists a relation Y B;p; = 0 such that f8; > 0 for j€ S\ M’. Since S\ M > S\ M,

Jjes

&

we have 8, < 0 for ke M. Hence M’ = M.
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This establishes the equivalence of the first three conditions.
To complete the proof, observe that 4° — 3° immediately. Let us now prove the

implication 3° — 4° under the assumption of indecomposability. Let ) o;p; = 0
ieS
be a relation with o; > 0 for j € S\ M. By 3°, we have g; < 0 for j € M. Now sup-

pose that g,, = 0 for some m € M. According to (2,13) there exists a relation ), f;p; = 0
ieS

such that f,, < 0. Consider the relationt = o —¢f. If ¢ > 0is small enough, we shall

have 7; > 0 for je S\ M. At the same time 7,, > 0. This is a contradiction, since,

again by 3° 7; > 0 for j € S\ M implies 7; < 0 for j e M.

(2,21) Definition. Let F be a family of relations. Then M < S is called maximal
with respect to F if the following two conditions are satisfied:

1° M = p(r,) for some ry € F;
2° whenever re F and p(r) > M then p(r) = M.

(2,22) Let K = cone S be an indecomposable polyhedral cone of dimension
greater than one. Let S; < S. Denote by F the set of all relations such that p(r) o S,
and by F' the set of all full relations r such that p(r) > S,. Then M is maximal
with respect to F if and only if M is maximal with respect to F'.

Proof. Let us show first that every subset M maximal with respect to F is also
maximal with respect to F'. Let M be maximal with respect to F. There exists a rela-
tion ro € F such that p(ry) = M. By lemma (2,14), there exists a full relation .
If ¢ > 0 is small enough, the relation r, = ro + & belongs to F" and p(r,) > M.
Thus r, € F so that p(r;) = M. We have found a relation r, € F' such that p(r,) =
= M. Let now r € F" and p(r) > M. Then r € F so that p(r) = M by the maximality
of M with respect to F.

To prove the converse, let M be maximal with respect to F'. Since M = p(r,)
for some r, € F' = F, 1° is fulfilled. Let now r € F be such that p(r) o> M. If ¥ is
a fuil relation, there exists sufficiently small ¢ > 0 such that r, = r + &’ is in F’
and satisfies p(r,) = p(r). By maximality, p(r;) = M so that p(r) = M as well. The
proof is complete.

(2,23) Let K = cone S be an indecomposable polyhedral cone of dimension
greater than one. Let ry be a nontrivial relation, p(ry) = S;.

Let F be the family of all relations r' such that p(r') > Sy. Let Q < S be maximal
with respect to F. Then cone (S\ Q) is a minimal diagonal of K.

Proof. Follows immediately from (2,20) and (2,4).
(2,24) Theorem. Let K be an indecomposable polyhedral cone. Suppose that the
vectors p; satisfy at least two linearly independent relations. Then K has at least

three different minimal diagonals.
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Proof. Since there are at least two linearly independent relations, dim K > 1.
Let r, be a relation for the vectors p; such that the set p(r,) is maximal. According
to the preceding observation (2,22) we may assume that ry is full. Set M = S\ p(r,).
It follows from (2,20) that D, = cone M, is a minimal diagonal of K = cone S.
Denote by F the family of all full relations r such that p(r) > M,. Since —r; € F
there exists a full relation r, such that the set p(r,) is maximal in the family F. Set
M, = S\p(rz) and D, = cone M,. Hence D, is a minimal diagonal according to
(2,20). Since My " M, = M, 0 S\ p(r;) < p(ry) 0 (S — p(r,)) = 0 the diagonals
D, and D, are different from each other by (1,6). Let us show now that it is possible
to assume that r; and r, are linearly independent. Indeed, if r, is a multiple of r,
we consider r, + &F where 7 is linearly independent of #,. If ¢ is small enough we shall
have p(r, + &) = p(r,) and p(—(r, + ¢F)) = p(—r,) hence r, + &Fis a full relation.
Therefore we shall consider the following situation: r; and r, are two linearly in-
dependent full relations such that My = S\ p(r,) and M, = S p(r,) are disjoint.

Denote by r(2) the relation
r(A) =ry + Ary.

Since r, is full there exists only a finite number of values of 4 such that at least one
coordinate of r(4) is zero. Since M, and M, are disjoint there exists a positive A and
an index k € M, such that r(1), = 0. Let 4, be the minimal positive A such that at
least one coordinate of r(4) is zero. Let Z be the set of all j € S such that r(4,); =
= 0. We have Z <« M, U M, since both relations r, and r, are positive on
SN(M; uM;) = (S\M;) n(S\M,) = p(r,) 0 p(r,). Let us prove now that

(o) Z M, isnonvoid.

Suppose, on the contrary that Z n M, = 0. Then Z < M;. Since A, is minimal
we have r(2,); > 0 for j € S\ M, and r(4,); = 0 for some j € M. This is impossible
according to 42° of (2,20). .

Now we intend to prove that

(ﬁ) M,\Z isnonvoid .

Suppose, on the contrary, that M, = Z. Since S\NZ < S\M,; and r(0) =r; is
positive on S\ M, it follows from the minimality of 4, that r(2,); > 0 for je S\Z
and r(4,); = 0 for j € Z which is impossible. This proves (B).

Summing up (o) and (B) we see that there exists j € M, with r(4,); = 0 and an
index k € M, such that #(4y), < 0. If ¢ > 0 is small enough the relation (1, + &)
will satisfy

(o + € <0, r(lg +¢);<0.

Let M be the set of all indices i such that r(lo + s),-.< 0 and F” the family of all
relations r such that p(r) > M. Since —r(2, + ¢) € F", F" is non-void. Let r; be
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a relation for which p(r) is maximal in the class F”. Set My = S\ p(r;) and Dy =
= cone M so that D is a minimal diagonal according to (2,23).
Since k€ M, and ke M < p(r;) = S\ Mj it follows that Dy is different from D,.
Since je M, and je M = S\ M, it follows that D; is different from D,. The
proof is complete.

(2,25) Theorem. Let K be an n-dimensional cone, K = cone S. Then these are
equivalent:

1° K is indecomposable and has exactly n + 1 extreme vectors;
2° K has exactly n + 1 extreme vectors py, ..., p,+1 Which satisfy — up to
a multiple — exactly one relation

Py + oo F Uy Prr =0

and in this relation all coefficients a; are different from zero;

3° K is indecomposable and has exactly two proper diagonals;

4° K is indecomposable and has exactly two minimal diagonals.

Proof. Suppose that 1° is satisfied. Since the dimension of K is n, there exists
exactly one relation

rioagpy o+ Uy Purg =0

such that at least one «; + 0. Let us show that all a; are different from zero. Denote

by M the set of all j for which a; = 0. Suppose that M is nonvoid. Set K; = cone M,

K, = cone (S\ M) and let us show that K = K; @ K, is a direct decomposition.

Suppose that x = Z B;p;= Y. y;p; and x & 0. We have then a nontrivial relation
JjeM jeS\M

_Zﬁfpj - Y vp;=0.
jeM JjeS\M

Consequently, this relation is a non-zero multiple of ) «;p; = 0 which implies
Jjes
B; = 0 for all j € M. 1t follows that x = 0, a contradiction. This proves 2°.
Now suppose 2° satisfied. Let us show first that K is indecomposable. Suppose on
the contrary that K is decomposable. According to (1,10) there exists a proper non-
void subset M of S such that

Zsﬁjpj =0

implies ZMﬁ .p; = 0. This, however, is impossible since there is only one relation (up
Je

to a multiple) and this relation has all coefficients different from zero. Hence K is
indecomposable.
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According to (2,18), K has at least two proper diagonals Dy, D, such that D, =
= cone p(r), D, = cone p(—r) = cone (S p(r)).

We observe first that these diagonals are necessarily minimal since any diagonal con-
tained in D; or D, would yield another (Iinearly independent) relation. Suppose D5
is a diagonal of K. We may assume that D is minimal. If D; = cone M3, there eXists
a relation r; such that p(r;) = S\ Mj, p(—r;) = Ms. However, r; = gr so that
either M3 = M, or M5 = M,. Thus D3 = D, or Dy = D,. This proves 3°.

To prove that 3° implies 4°, we shall use the following simple observation:

Given a proper diagonal D = cone M of an indecomposable cone K = cone S,
there exist two minimal diagonals D, D, such that D, < D and D, = cone M,
where M, is contained in S\ M.

This observation follows immediately from (2,4).

By 3°, K has exactly two proper diagonals D,, D,. Using the observation just
mentioned applied to D;, we see that there exist two minimal diagonals D;, D,
such that D, = D, and D, = D,. Since cone™! D, is disjoint with cone™! D,, the
equality D; = D, is impossible. Consequently, D, = D, and D, = D,. Both proper
diagonals are thus minimal; since no other minimal diagonals can exist, 4° is proved.

To complete the proof, we shall show that 4° implies 1°.

By 4°, K is indecomposable. One of the minimal diagonals yields one relation
among the extreme vectors of K; if there were two linearly independent relations,
K would have, by (2,24), at least three minimal diagonals, a contradiction. Thus the
number of extreme vectors of K is n + 1 and the proof is complete.

Concluding remarks. We have observed already in the introduction that the notion
of a diagonal and its properties are by no means restricted to the case of cones. The
theory developed for polyhedral cones makes it possible to obtain analogous results
for polyhedra using the classical technique of constructing convex polyhedra as inter-
sections of polyhedral cones and suitable hyperplanes. Although the main difficulties
have already been overcome in the theory of polyhedral cones, the case of convex
polyhedra is sufficiently interesting to deserve a separate paper. This will form the
subject matter of another publication of the authors.

References

[1] M. Fiedler, VI. Ptik: The rank of extreme positive operators on polyhedral cones. Czech.
Math. J. 28 (103), (1978), 45—55.

[2] E. Haynsworth, M. Fiedler, VI. Ptdk: Extreme operators on polyhedral cones. Lin. Alg. Appl.
13 (1976), 163—172.

[3] R. Loewy, H. Schneider: Indecomposable cones. Lin. Alg. Appl. 11 (1975), 235—245.

Authors’ address: 115 67 Praha 1, Zitna 25, CSSR (Matematicky ustav CSAV).

44



		webmaster@dml.cz
	2020-07-03T01:12:39+0200
	CZ
	DML-CZ attests to the accuracy and integrity of this document




