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Czechoslovak Mathematical Journal, 28 (103) 1978, Praha 

x-DOWKER SPACES 

MARY ELLEN RUDIN, Madison 

(Received October 5, 1976) 

In a written communication to the Prague Topology Symposium of 1976, K. 
MoRiTA proposed the following: 

Conjecture 1. / / a Hausdorff space Y has the property that X x Y is normal for 
all normal Hausdorff spaces X, then Y is discrete. 

In an abstract and talk at this symposium M. ATSUJI pointed out that Morita's 
conjecture follows from: 

Conjecture 2. For each infinite cardinal x, there is a normal Hausdorff space X^ 
which has a decreasing family {D^^<^ of closed sets such that Ç\ D^ = 0 and, if 

{U(^ai<K ^^ a family of open sets with D^ с U^for each a, then OU^ ф ф. 

A space X^ having the properties described in Atsuji's conjecture could be called 
a x-Dowker space since X^ would be an ordinary Dowker space. The purpose of this 
note is to prove that there are x-Dowker spaces for all cardinals x, thus proving 
conjectures (1) and (2). 

I. Assume that x is an infinite cardinal; we construct X^ by simply generalizing 
the construction given in [ l ] of an ordinary Dowker space. 

We begin by choosing an increasing family {Aa}a<x of regular cardinals such that 
XQ < x'^ and 1^ = A .̂ Let À = sup {Я̂  | ^<^}. 

Let F = {/: X -^ Я | / ( a ) ^ À^ for all a < x}. 

Let G = (ö̂  e F I g{(x) < X^ for all a < x}. 

Let X = X^ = { / G F I 3j5 < X such that x+ g cf(/(a)) ^ Xp for all a < x}. 

If У and g belong to F we say ^ < / if ^ (̂a) < / (a ) for all a, and we sdiy g S f if 
g{a) S / (a ) for all a. If f̂ < / , define Ug^ = {heX \ g < h й f}-Щ topologize X 
by using {Ugf \g < / i n F} as a basis. 
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To check that X^ — X has the properties desired in Conjecture (2), the reader 
acquained with [1] will probably have no difficulty. Significant changes needed 
other than replacing CD by к are indicated below. 

II. For each a < x, let D^ = {feX\f{ß) = Aß for all ß йос}. Clearly П ^a = 0 

and each D^ is closed. Assume that for each oc < x, D^ c: U^ which is open. We 
want to prove: 

Lemma (3). f)U^=^ (D. 
a<x 

As in [1] it would suffice to prove: 

Lemma (2). Suppose that a < x. There is a term f of G such that [g e G n 
nX\f<g} CiL/,. 

Since {̂  < a} need not be finite if x Ф со, we need a different proof of Lemma (2) 
than that given in [ l ] . This is again relevant in the proof of Lemma (6). In both 
proofs we make use of Я« = Я,. 

P roo f of L e m m a (2). For each ô < Я ,̂ we choose /ẑ  e f | Я̂  in such a way that 
ßaoc 

S < À^ and ^ e f l Я̂  imply that there is a у < Я̂  with ô < у and hy == h. This is 

possible since {^ß}ß^oc ^^^ increasing and Я̂  = Я̂  imply that Я̂  and Я̂  and Yl ^ß ^^^ 
ßa<x 

have cardinality À^. 
Assuming there is no / satisfying Lemma (2), we define terms g^ and fs of G for 

all ô < Я̂  by induction on 3. If/^ has been defined for all у < ^, define gs by g^iß) = 
= h^[ß) for ß S oi and go{ß) = sup {fy{ß) | У < ^} for a < ß < x. Then choose 

/^ e {X n G) - U^ with g s < fô as guaranteed by assumption. Let / be the term of F 
with /(/?) = Яд for î  g a and f{ß) = sup {fs{ß) | ^ < Я J for a < ß < x. Since 
/ e üjfe U^ and there is ^ < /w i th U^j- с U^, For oc < ß < x, {foiß)}o<x. is strictly 
increasing. So there is a ^ < Я̂  such that/5(i9) > g{ß) for all a < ^ < x. Thus there 
is a }' < Я, with ô < у and hy{ß) = g(ß) for all ß й a. But then/^ e Ugf contradicting 

III. It remains to prove that X is normal. We might as well prove that X is col-
lectionerise normal. So assume that . ^ is a closed discrete family of closed sets. 
By exactly the same proof given in [1], we can find disjoint open sets separating the 
members of Ж provided we can prove: 

Lemma (4). The intersection of any family of less than x open sets is open. 

Lemma (5). Suppose that te F and x"̂  ^ cf(^(a)) for all a < x. There is an 
f e F such that f < t and {heX\f<h^t} intersects at most one member of Ж. 
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Lemma (4) is proved exactly as in [1]; and, as in [1], Lemma (5) follows from: 

Lemma (6). Suppose that a < x and define U^ = {hEX\h:^t and cf(h{ß)) g À^ 
for all ß < к]. There is an fe F such that f < t and {h eU^\f < h] intersects at 
most one term of Ж. 

Proo f of L e m m a (6). Let 

AT - {/i < X I cf«i?)) ^ AJ and M ^{ß <K\ cf{t{ß)) > Я J . 

As in the proof of Lemma (2), for each ô < k^ we choose ^^ e 0 t(ß) in such a way 

that Ь < k^ and ^ e [][ t{f) imply there is a >' < л̂^ with Ь < у and g < gy. The 
ßeN 

fact that the cardinality of iV is at most x and k^ is 2^ makes this possible. 

Assuming there is no / satisfying Lemma (6), we define h^ e U^, k^ e U^, and /^ e F 
for each ^ < Я̂  by induction on ô. Assuming that hy and ky have been defined for 
all 7 < S, define / , by fs{ß) = g^iß) for ßeN and f,{ß) = sup {{hy{ß)}y^s u 
u {ky{ß)}y<o) for ß e M, Then choose h^ and k^ to be terms U^ with /^ < h^ and 
/5 < ks belonging to different terms of Ж. 

Let / e F be defined by f{ß) = t{ß) for ßeN and f(ß) - sup {/,(j5) | ô < к,} 
for ß e M. There h g < f such that (7̂ y intersects at most one term of Ж. Also 
there is a (5 < Я̂  with fs{ß) > g{ß) for all ßeM. So there is 7 < k^ with ^ < 7 and 
/y(jö) > gy{ß) for all i? e iV. Hence fy e Ugj. But fy < hy and /^ < /ĉ  and thus 
/ly e (7̂ y. and /ĉ  e t /^j . However this contradicts t/^j intersecting only one term of Ж, 

Bibliography 

[1] M. E. Rudin: A normal space Xïox which X X / i s not normal, Fund. Math. ЬХХШ{\91\), 
179-186. 

Author^s address: Mathematics Department, University of Wisconsin-Madison, Van Vleck 
Hall, 480 Lincoln Drive, Madison, Wisconsin 53706, U.S.A. 

326 


		webmaster@dml.cz
	2016-04-06T16:45:10+0200
	CZ
	DML-CZ attests to the accuracy and integrity of this document




