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INTRODUCTION

Works concerning stability of partial differential equations began to appear in the
middle of this century. They were stimulated by the efforts to generalize the well
known results from the theory of stability of ordinary differential equations, as well
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as by technical problems connected with the motion of vibrating strings, panels,
bars, rods, etc. Such problems have been investigated for example by P. C. PARKS
[18], [19], R. R. NACHLINGER, C. D. Faust [16], H. H. E. LerpHOLZ [14]. Another
group of technical problems, where the stability plays an important role, is the
motion of fluids. In the recent years. the problems of stability of the equations of
motion of fluids have been often investigated in connection with the bifurcation of
their solutions. Such problems have been examined for example by J. SERRIN [22],
G. Propi [20], S. M. ZENKOVSKAJA [26], D. D. JosepH, D. H. SATTINGER [11], S. H.
Davis, CH. KErczek [4], D. H. SATTINGER [21].

The equations mentioned above have been sometimes investigated in the form of
abstract differential equations. The questions of stability of abstract differential equa-
tions may be divided into two groups. The first group contains problems of stability
of abstract differential equations with bounded operators in Banach spaces. In this
case, many results from the theory of ordinary differential equations were generalized.
They are summarized for example in Ju. L. DALECKI, M. G. KREIN [3]. Problems
from the second group are concerned with the stability of abstract differential
equations whose coefficients are unbounded operators in Banach spaces. In this
case the theory of stability is not so developed as in the former case. Some problems
from this field have been studied by Z. I. CHaLILOV [9], [10], Ju. I. DoMscHLAK [7],
V. 1. DErGUZOV [5], [6], J. KurzweiL [13], 1. STRASKRABA, O. VEIVODA [25], J.
P. FINK, W. S. HALL, A. R. HausrATH [8], H. KiELHOFER [12], J. NEUSTUPA [17],
J. BarTdk [1], [2].

In this paper, stability of solutions of abstract differential equations with (generally)
unbounded operators in Hilbert spaces is investigated.

In Part 1, the equation

) 2 u(t) = ¥ a4)u"0) = F()

is studied. We assume that a(A) are functions of a linear, selfadjoint, strictly positive
operator A4 in a Hilbert space, ao(4) = Id.

Section 1.1 is an introduction into the problems we shall deal with.

Auxiliary notions, namely the “type of operator £’ are introduced in Section 1.2.
Several equivalent properties are derived there.

The correctness of the Cuachy problem given by the equation (1) and by the bound-
ary conditions u‘)(t;) = ¢;, ¢, € (A", (i=0,....,n — 1), toeR", is in-
vestigated in Section 1.3. The solution of the Cauchy problem is found, its uniqueness
and certain correctness estimates are proved. The aim of this paper is not to study
correctness of the Cauchy problem. That is why. these questions are studied only in
the extent that is necessary for the stability.

Three kinds of operators (stable, exponentially stable, instable) are distinguished on
the basis of the type of operator in Section 1.4. It is proved there that every solution
of the equation (1) is globally uniformly stable, globally uniformly exponentially
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stable or instable if and only if the operator 2 is stable, exponentially stable or in-
stable, respectively.

Sufficient conditions ensuring that the operator % is of the type w are given in
Section 1.5. These conditions are formulated as properties of a certain algebraic
equation.

Part 2 deals with the stability of solutions of the equation (1) with a right hand
side F, depending on ¢, u and on the derivatives of u.

Section 2.1 contains several auxiliary results.

The equation with an exponentially stable operator % is studied in Sections 2.2,
2.3. It is proved that, roughly speaking, if the difference F(u) — F(v) is “small
enough” for all functions u near the solution v, then the solution v is (globally)
uniformly exponentially stable and uniformly stable at constantly acting disturbances
or at least (globally) uniformly stable. Further, conditions are given under which,
when investigating the uniform exponential stability and stability at constantly
acting disturbances, it is possible to restrict our considerations to the equation with
the right hand side containing the members of the first order from the original
function F only.

The equation with a stable operator is investigated in Sections 2.4, 2.5. In these
sections we derive conditions ensuring that the uniform exponential stability and the
stability at constantly acting disturbances are determined by the members of the first
order of the function F only.

In Section 2.6, conditions that are sufficient for instability are introduced. In this
case we need the operator A4 to satisfy rather stronger assumptions.

In Part 3, special cases of equations including in the abstract form some important
equations of mathematical physics, are investigated.

Conditions ensuring stability of the zero solution of the equation

(2 &L u(t) = F(t, u(t))

are found in Section 3.1. The function F is supposed to be a lineat function (with
respect to the variable u) with nonconstant coefficients.

Section 3.2 deals with the equation (2), where

=[S 5]

i=1 0x;

Conditions necessary for the linearization of the equation (2) are verified here.
Some results on stability of the so called Timoshenko operator and of the operator
of the second order are presented in Section 3.3.
The last two Sections 3.4, 3.5 are devoted to abstract differential equations with
bounded operators in Hilbert spaces.
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PART 1 — LINEAR EQUATIONS

1.1 FUNDAMENTAL DEFINITIONS AND NOTATION

In the whole paper, let R, = (— o0, + ), R" = [0, + ). Z(*) is the domain of
definition of the expression in brackets, H is a Hilbert space with a norm [H],
A:9(A) < H— H is a linear, selfadjoint and strictly positive operator with the
spectral resolution of identity E(s). We shall denote by o(4) the spectrum of the
operator A4, 6 will mean the infimum of the spectrum o(A). The strict positivity of the
operator A means that 6 > 0.

For a continuous function f : 6(A4) - R, we shall define an operator function f(4)
by the relation

f(A)x = f(s)dE(s)x for xed(f(4))=

a(A)
= {erl |f(s)[2d”E(s) x|? < +oo}.
a(4)

Remark 1.1.1. In the whole paper, we shall use two types of numeration: for
example (1.2.7) means the relation 7 from Section 2 of Part 1; simple numeration is
used in individual proofs and does not go beyond the framework of this proof.
This numeration will begin by (1) in every proof. The combined (triple) numeration
will be used in all other cases: theorems, definitions, remarks etc. will be denoted in
this way.

Remark 1.1.2. Constants with the superscript star (for example C*) will have one
meaning only in the whole article. On the other hand, constants without stars can
have different values in different situations.

Each interval will be supposed to contain at least two different points.

Let n = 1 be a fixed natural number. On the set

9(3) = U N (gi(l, @(A("_i)/")) s
I=[a,b)SR* i=0
I=[a,b]ER*

we shall define the operator &£ by the relation

K7 u(t) = E ai(A) u("'”(t) s
i=0
where

(1.1.1) ao(A) = Id, ags):0o(A) — R, are continuous functions such that there
exists a constant Cy which satisfies the inequality ]a,.(s)| < Cys'" for i =
=1,...,n, sea(A).

Let (ug, Uy, .-y Uy—y1) € D(A) x D(A"VI") x -~ x 9(A'%). Then we shall define

n- .
the norm “(uo, ul’ ceey un—l)”@(fi)x...xg(/{”") = [EEOHA("—U/"ui“2]1/2.
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n—1 3
Let us denote % = U NG, 2(A"~P™). It holds (u(t), u'(r), ...
I=[a,b))SR* i=0
I=[a,p]SR*

e u® V(1)) € D(A) x DAV x ... x D(AY") for ueU, te D(u) and so we
can define the norm ||(u(), w(2), .., u®~(t))| a¢4) ... x 241y Which we shall always
denote briefly by H|u(t)“|

Let to € R*. We shall write F € 4([t,, + ), D(A%) for F : [t;, +0) > H, & = 0
if the function |F(t)| g« = [4* F(t)| is a continuous function of the variable
t € [to, + 0).

Let I = R™ be an interval of the type [a, b) or [a, b] and let F : @(F) =
= {(t, u(), w'(1), ..., u"~ (1)) I u € such that 9(u) < I, te 9(u)} > H. We shall
write F € 6(2(u;;), 2(A%) for o = 0 if for every u e such that 2(u) < I the
function ||F(t, u(t), u'(?), ..., " *(t))] o4, depends continuously on the variable ¢
for te D(u).

Instead of F € €(2(ur+), D(A%)) we shall write briefly F € €(2(u), 2(A%)).

Let r be a positive number, let ve %, R : 9(R) - H and a 2 0. We shall write
R e G(D(u), B(v, r, D(A%)) if {(t, u(?), w'(t), ..., u" (1)) | u €%, t € D(u) such that
D(u) = D(v), [|u(t) — o(1)]|| £ r} = 2(R) and if for all ue such that D(u) <
< 2(v), |R(t, u(t), u'(?), ..., u" (t))| g(4= is a continuous function of the variable ¢
for te{te D(u)||||u(t) — o(2)]|| < r}.

We shall often write F(t, u(t)) and R(t, u(t)) instead of F(t, u(t), u'(?), ..., u™~ (1))
and R(t, u(?), w'(?), ..., u"~V(1)), respectively.

We shall deal with the following equations
(1.1.2) ZLu()=0,

(1.1.3) L u(r) = F(t), where F e 4(R*, 2(A'")) or F € 6([ty, + ), D(A1"),
(1.1.4) L u(r) = F(t, u(7)), where F € 4(2(u), 2(A*'")) or F € €(D(u;), 2(A*")),
((1.1.5) L u(t) = F(t, u(t)) + R(t, u(t)), where F e 4(2D(u), 2(A*")) or

F € 6(9(u;1), 2(A'")), R € 6(2(u), B(v, r, D(A'"))
(the meaning of the function v will be clear from Definition 1.1.3).

Whenever we shall speak about the equations (1.1.3), (1.1.4), (1.1.5) without any
explicit conditions on the right hand side, we shall understand that the first of the
two conditions stated above (i.e. Fe®(R*, 2(A'™), Fe%(D(u), 2(AV™)) is
fulfilled.

The Cauchy problem will be defined by one of the equations (1.1.2)—(1.1.5) and
by the initial conditions
(1.1.6)  uDt)) = ;, toeR*, @, e DA ") (i=0,..,n—1).

Under a solution of one of the equations (1.1.2)—(1.1.5) we shall understand
a function u € 9(&) fulfilling the corresponding equation for all t € D(u). In the
case of the equation (1.1.5), it must be moreover 2(u) < 2(v) and |||u(t) — ot)[|| < r
for t e D(u).
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Under the solution of the Cauchy problem we shall understand the solution of the
corresponding equation for which Z(u) < [t, + ), to€D(u) and the initial
conditions (1.1.6) are fulfilled.

Definition 1.1.1. Let v : D(v) - H be a solution of the equation (1.1.4). We say
that v is stable with respect to the norm |||+||| if for every & > 0, t, € 9(v) there exists
n(e, to) > 0 such that the implication

llato) = )] < e 10) = [Ju() = o9 S ¢ for re(w)

is valid for every solution u of the equation (1.1.4) with 2(u) < [t,, + ), to € D(u),
D(u) < D(v). If n(e, to) does not depend on t, € Z(v) we shall speak about the
uniform stability with respect to the norm HHH We say that v is globally stable
with respect to the norm H]”] if for every to € 9(v) there exists a constant K(t,) such
that the inequality

[Ju() = o]l = K(to) [[lu(to) = o(to)]

holds for all solutions u of the equation (1.1.4) for which 2(u) < [t,, + ), to €
€ D(u), D(u) = D(v) and for t € D(u). If K(t,) does not depend on t, € 9(v) we shall
speak about the global uniform stability with respect to the norm ”H”

Definition 1.1.2. Let v : 9(v) —» H be a solution of the equation (1.1.4). We say
that v is exponentially stable with respect to the norm [”H] if for every t, € @(v)
there exist positive numbers o(t,), K(to), a(to) such that the implication

lu(to) = olto)]]| < efto) = [u(r) — o) <

< K(to) e™ 7 lu(to) — o(to)]]

is valid for all solutions u of the equation (1.1.4) for which 2(u) < [t,, + ),
to € D(u), D(u) = 2(v) and for te D(u). If o(t,), K(to), o{t;) do not depend on
1o € D(v), we shall speak about the uniform exponential stability with respect to
the norm ”HH If ¢ = + o we shall speak about the global exponential stability
with respect to the norm |||-||. If e(to), K(to), a(t,) do not depend on t, € 2(v) and
¢ = + o0, we shall speak about the global uniform exponential stability with respect
to the norm [”“[

Definition 1.1.3. Let v : 9(v) > H be a solution of the equation (1.1.4). We say
that v is uniformly stable at constantly acting disturbances with respect to the
norms [H , [[ ]] p if for any n € (0, r] there exist positive numbers 7. 11 such that
the implication {[[[u(to) — v(to)[|| < 10, |R(t u(t)|p < np for such te€ D(u) for
which [|[u(t) — v(2)||| = n} = {||[u(z) — (2)||| £ n for all € D(u)} holds for every
to € 9(v) and for all solutions u of the equation (1.1.5) for which 2(u) < [{to, + ),
to € D(u), D(u) = D(v).
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Remark 1 1.3. Under the uniform stability at constantly acting disturbances with
respect to the norm HHH we shall understand the uniform stability at constantly
acting disturbances with respect to the norms |[|*|||, || - | (41, in this paper.

Definition 1.1.4. Let v : 2(v) — H be a solution of the equation (1.1.4). We say
that v is instable with respect to the norm !|||” if v is not stable with respect to the
norm |-

Definition 1.1.5. A solution of one of the equations (1.1.2)—(1.1.5) defined on an
unbounded interval will be called a maximal solution.

Remark 1.1.4. For the sake of simplicity, we shall suppose that the solution v
from Definitions 1.1.1—1.1.4 whose stability is considered is a maximal solution.
The other solutions need not be maximal.

1.2 THE TYPE OF THE OPERATOR

Let my(t; to, s), (i = 0, ..., n — 1) be solutions of the equation
(1.2.1) m®(1) + ay(s) m* V(1) + ... + a,(s) m(t) = 0
fulfilling initial conditions
(1.2.2) mP(tg; to,s) =& (i,j=0,....,n —1), toeR*.

The symbol of the derivative will always mean the derivative with respect to the
variable ¢, s € 6(A4) being a parameter.

The functions m; (i =0,...,n — 1) exist, are uniquely determined and m¢’
depend continuously on s for j = 0, ..., n.

The function m, _ {, which will play an important role in the sequel, will be denoted
sometimes by m only. Instead of m(t; 0, s) we shall write also m(t; s).

Definition 1.2.1. Let w € Ry. We say that the operator & is of the type o if
there exists a constant C(&) such that [m®(t; s) s~V < C(£) €' for ie
€{0,...,n — 1}, teR*, se o(4).

Remark 1.2.1. If the operator £ is of the type w, then it is of the type w, for every
w, = w as well.

IIA

Lemma 1.2.1. Let f:0(A4) = R,, g:0(A) > R, be continuous functions for
which 9(f(A)) = 9(g(4)) = H. Then |f(s)| < |g(s)| for sea(A) if and only if
17(4) o]l < [|9(4) @] for all ¢ e H.

Proof. Let us suppose first that |f(s)| < |g(s)| for s € o(4). Then |f(A4) o|* =

= Joway [F5)* d]E(s) @] < focw [9() A|E(S) @] = [9(4) @ Now let
[£(4) | = ||g(A) @|| for all ¢ € H and let there exist a number s, € 6(4) such that
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|£(s0)] > |g(so)[. Let us find a number ¢ > 0 so that |f(s)| > lg(s)| + -}(lf(so)’ -
- ]g(so)l) for se[so — o, so + 0] no(A) =G and choose ¢, € [E(s, + o) —
~ E(so — o)1 H, o # 0. Then [[f(4) @o? = [z |/(s)|* d[E(s) @o* = [ (|g(s)|* +

+ 3/ (s0)| = 9(so)])?) AIE(s) @ol* = lla(4) @oll* + (| (s0)| = |a(s0)])? lloo]* >

> |lg(A) @ol?, which is a contradiction.

Theorem 1.2.1. The following statements are equivalent:

(i) The operator & is of the type w.

(ii) Let to € R* be a fixed number. Then there exists a constant C(£) such that
the inequality |m(t; 1y, ) s®7 1"V < C(£) ™™ is valid for ie
€{0,....n — 1}, seo(d), t Z t,.

(iii) There exists a constant C(£) such that the inequality
lm(i)(t; to, S) s("_i'l)’"l < C(2) et s palid for i€{0,..,n — 1},s€
€o(Ad), toeR*, t 2 t,.

(iv) There exists a constant C(Z) such that the inequality
4@~V D)1 A) @ < C(L) €| is valid for i€ {0, ...,n — 1}, 9 € H,
teR*.

(v) Let to € R™ be a fixed number. Then there exists a constant C(<&) such that
the inequality |A“™ =DM mO(t; 1y, ) @] < C(£L) e*" | @] is valid for
ie{0,...n—1}, peH, t 2 t,.

(vi) There exists a constant C(Z) such that the inequality
[[AC= = Drm D 1 1o, A) || = C(£) 2“7 @] is valid for i {0, ..., n — 1},
@oeH, toeR*, t = t,.

Proof. The theorem follows directly from Lemma 1.2.1 in virtue of the inde-

pendence of the operator % on t.

Remark 1.2.2. Using Lemma 1.2.1 we can reformulate the condition (1.1.1) as
follows: ao(A4) = Id, as):0o(4) - R, are continuous functions such that there
exists a constant Cg so that [a(4) A~""¢| < Cg|¢| is valid for ie{1,..., n},
@€eH.

1.3 CORRECTNESS OF THE CAUCHY PROBLEM
Lemma 1.3.1. If ke {0, ...,n — 1} then
n—k
myt;s) = Y a;_4(s) m"* (15 s)
i=1

Proof. Obviously, the functions m; are solutions of the equation (121) So it
suffices to prove

(1) m(0;s) =5 for j=0,...,n—1.
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Clearly
n—k

@) mP(0:9) = 3. 4,4 (s) moE(0; ).
i=1

Let us distinguish the following three cases

3) —k—-1+j<-1,
@) —k—1+4+j=-1,
(5) —k—1+4j>-1.

Then in the case (3), m{”(0; s) = 0 according to (2); 6] = 0 because j < k. In the
case (4), m{(0; s) = ao(s) m™~1(0; s) = 1 according to (2); 8 = 1. In the case (5),

n—k
m@(0; s) = aos) m*~*~1+(0; 5) + .Zzai_l(s) m®*~k=i0(0; 5) =

n n—k—1
= = Yas) mo k10, 5) + Y as) mem k100 5) =
i=1 i=1
== 3 a(me g = 0
i=n—k
because of n — i — k — 1 + j < n — 2; 5} = 0 because j > k. The relation (1) is
proved.
Lemma 1.3.2. Suppose that the operator & is of the type w. Then there exists
a constant C§ such that
(1.3.1) lm(")(t; s) s im VM < Cle®t
for ie{0,...,2n — 1}, t 2 0, seo(A4).

Proof. The inequality (1.3.1) is fulfilled for i = 0, ..., n — 1 by Definition 1.2.1
(with C} = C(Z)). As m solves the equation (1.2.1) it is

n
m®™(t;5) = — Y as) m®(t; s5) ;
i=1
therefore

lm(”)(t; s)| < i |ai(s)| [m®™~(t; s)l < Cs C(2) ‘Z st =Dingor < & slimget
i1 i=1

where Cq = max (C§ C(£) n, C(£)). So the inequality (1.3.1)is valid for i = 0,...,n if
we put C} = C,. Now we shall proceed by induction. So we shall suppose that there
exists a constant C, such that the inequality (1.3.1) is fulfilled for i = 0,...,n + k
(k =z 0). Using the induction assumption we get from the equation (1.2.1)

556



Im(n+k+1)(t; S)I < i lai(s)l Im(n—i+k+ ”(t; s)l < C:Ck i si/ns(k—i+2)/newt <
i=1 i=1
S Cryys®™ DMt where  Cpyy = max (CoCun, Cy) .

We have proved the validity of the inequality (1.3.1) for i = 0,...,n + k + 1 with
C% = Ciyy. Now, it is clear that it suffices to put C* = C,_, = max (C5C,_,n,
C,-,) in order to guarantee the validity of the inequality (1.3.1) for all i€ {0, ...
e 2n — 1}

Lemma 1.3.3. Let the operator & be of the type w. Then if we put C3 = nCyCT,
the inequality |m{’(t; s)| £ C3sY~9/"e®" holds for k < 0,..,n —1,j=0,..,n,
seo(d), t = 0.

Proof. By Lemma 1.3.1,
n—k
m(t; 5) = ‘Zla,-_l(s) m" k=) g )

Further,itis0 < n — k — i + j < 2n — 1 and hence by Lemma 1.3.2

n—
]m;‘,))(t; S)| § C:C’; Z S(i—l)/ns(j+l—k—i)/newt = C;‘S(j—k)/newt .
i=1

Remark 1.3.1. As the operator £ does not depend on ¢, it holds: If the operator &
is of the type w then

lm(i)(t; to, S)! < Chstmntingati=to)
|m,(‘j)(t; tos S)l < C;‘s(.i—k)/new(t"to)
fori=0,..,2n -1, k=0,...,n—1,j=0,...,n,s€0(d), treR", 1t 2 1,
Lemma 1.3.4. There exists at most one maximal solution of the Cauchy problem
(1.1.3), (1.1.6).

Proof. As to the linearity of the operator 2 it suffices to prove that if & u(t) = 0,
u®(ty) =0 (i =0,...,n — 1) then u is identically zero. Suppose on the contrary
that

1) there exists a point © > #, such that u(r) 0.
This implies that for a suitable « = J, it holds
) E(@)u(t) 0.

Let us put P = E(x), uo(f) = P u(t). Obviously u, solves the equation & u(f) = 0
and fulfils the initial conditions u$’(t;) =0 (i = 0,...,n — 1). (Cf. M. Sova [23]
pp. 217-222.)
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As to the relation £ uo(t) = ZLPu(t) = (Pu(t))™ + a;(A)P (Pu(t))" D 4 ...
...+ a,(A) PPu(t) = 0 and to the boundedness of the operators a(A)P (i =
=1,...,n), Theorem 7.2 from M. Sova [24] p. 38 yields P u(f) = 0, which con-
tradicts (2).
Lemma 1.3.5. Let the operator £ be of the type w. Then the function
n—1 t
u(t) =S mit; to, A) 0, +f mt + to — < 1o, A) F(z)dt =

i=0 to

n—1

-3

t
mi(t; to, s) AE(s) 9; + J J‘ m(t + to — 73 fo, $) dE(s) F(z) de
0 Jo(4) to J a(A)

is a maximal solution of the Cauchy problem (1.1.3), (1.1.6).

Proof. Lemma follows.directly from Lemma 1.3.3 and Remark 1.3.1 (See also
1. Straskraba, O. Vejvoda [25] pp. 638 —639, Propositions 1.1.2—1.1.5.)

Lemma 1.3.6. Let the operator &£ be of the type w. Then
n—1 n—1
IH Z mi(tQ to, A) (P;]” = nC:( Z ”A("—i)/"q’iuz)l/z et
i=0 i=0

for @,eP(A"P"), (i=0,...,n—1), t,eR", t21,.

Proof: By Lemma 1.3.3 and Remark 1.3.1 it holds

n—1

n—1
A= w85 1, A) @i 2 < n Y | PO mO(e; 10, 5)|? d]| E(s) 04 <
i=0 i=0 Jg(4)
< nczzem(t—ro)"il §2n=i/n 2(i=i)/n d”E(s) ‘/’i”2 =
i=0 a(A) .

n—1
= nC32e**( "1 Y 4@~ Vg |2 for j=0,...n—1.
i=0
Summing this inequalities from j = 0to j = n — 1 we get

n_zl IIA(n—j)/nnilm({)(t; tos A) (piul § nZC:ZniIHA(n—i)/n(PiHZ eZw(r—-to) .
i=o i=0 i=o

Lemma 1.3.7. Let the operator £ be of the type ®, F € %([ty + ), D(A'")).
“Then

t
<nC(2) f 29 411 B(2)| de
to

t
J m(t + to — 15 o, A) F(r) dt

to

for toeR*, t=t,.
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Proof. This lemma is a special case of Lemma 2.1.1. That is why we omit the
proof here.
From Lemmas 1.3.4, 1.3.5, 1.3.6, 1.3.7 we obtain easily

Theorem 1.3.1. (Correctness Theorem) Let the operator &£ be of the type o,
F € 6([to, +0), Z(A'")). Then the maximal solution u of the Cauchy problem
(1.1.3), (1.1.6)

(i) is determined uniquely,

n—1
(i) has the form u(t) =Y m{t; 1o, A) @; + [i, m(t + to — 75 1o, A) F(r)dz for
t g tO’ =0

(iii) fulfils the estimate ||[u(t)||| < C3|[Ju(to)]|| €*“~™ + C% fi, 224" F(7)| dz
for t = to, where C3 = nC3, C; = n C(£).

1.4 STABILITY, EXPONENTIAL STABILITY, INSTABILITY OF THE OPERATOR

Definition 1.4.1. We say that the operator & is stable (exponentially stable,
instable) if & is of the type 0 (& is of the type @ < 0, & is not of the type 0, respec-
tively).

Remark 1.4.1. Obviously, an exponentially stable operator is stable, too.

Let I be an interval of the type [a, b) = R, or [a, b] = R*. Under the symbol O,
we shall understand the function O,y € 2(¥), for which 2(0,) =1, 0;; = 0.

Lemma 1.4.1. If the operator & is stable (exponentially stable) then the zero
solution Oygo, 4wy of the equation (1.1.2) is globally uniformly siable (globally
uniformly exponentially stable) with respect to the norm ”]Hl

Proof. Lemma follows immediately from Theorem 1.3.1.

Lemma 1.4.2. Let us suppose that the zero solution O, .. of the equation
(1.1.2) is globally uniformly stable (globally uniformly exponentially stable)
with respect to the norm |”|]| Then every maximal solution v of the equation
(1.1.3) is globally uniformly stable (globally uniformly exponentially stable)
with respect to the norm ”[”[

Proof. Obviously, if the zero solution Oy, 4 is globally uniformly stable
(globally uniformly exponentially stable), then for every t, € R the solution O, 4 )
is globally uniformly stable (globally uniformly exponentially stable).

Now, let v be a maximal solution of the equation (1.1.3). Let us write all other
solutions u of the equation (1.1.3) for which 2(u) = 2(v) in the form u = v,g(,, + W.
Then w fulfils the equation (1.1.2) on 2(u). Lemma follows directly from the relation
W= U= Vg
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Lemma 1.4.3. Let the operator & be stable (exponentially stable). Then every
maximal solution v of the equation (1.1.3) is globally uniformly stable (globally
uniformly exponentially stable) with respect to the norm m”]

Proof. Lemma is an easy consequence of Lemmas 1.4.1, 1.4.2.

Lemma 1.4.4. If the operator % is instable, then for every t,e€ R* the zero
solution Oy, 4 ) of the equation (1.1.2) is instable with respect to the norm ||-||.

Proof. We shall prove the instability of the solution Oy, .., of the equation
(1.1.2). Taking into account the assumption of the lemma we obtain by the relation
(#i) of Theorem 1.2.1:

(1) For an arbitrary natural number k there exist s, €a(4), # > t,,
ie{0,...,n — 1} suchthat |m™(t; 1, s,) sg RO > K
Without loss of generality we may suppose i, = i €{0,...,n — 1}.
Let us find a number o, > 0 so that
(2 |m Oty 1o, s) s@7DM >k for se[s, — op, 5 + 0] N a(4).

Further let us choose ¢, € [E(s, + o;) — E(s, — ;)] H, ¢, 0 and put ¥, =
= A™'"p,. BEvidently ¥ € D(A'"). Let us put uyt) = m(t; to, A) Y /(k[| A", ).
Then:

(3)  The function u, is a maximal solution of the equation (1.1.2) such that
(el = =1
By (2) it holds
() ]| 2 140" me; to, A) ]| (kA ])~* >
| > Klou (k|4 [)~* = 1.

Lemma follows at once from (3), (4).

Lemma 1.4.5. If for every t, € R* the zero solution Oy, 4+ of the equation
(1.1.2) is instable with respect to the norm ”[]H, then every maximal solution v
of the equation (1.1.3) is instable with respect to the norm ]Hm

Proof. Let v bz a maximal solution of the equation (1.1.3). Let us write all other
solutions u of the equation (1.1.3) for which 2(u) = 2(v) in the form u = v;4,) + W.
Then the function w solves the equation (1.1.2) on 2(u) and the statement of the
lemma follows directly from the relation w = u — v,g,).

Lemma 1.4.6. Let the operator & be instable. Then every maximal solution v of
the equation (1.1.3) is instable with respect to the norm ]H”]

Proof. Lemma is an easy consequence of Lemmas 1.4.4, 1.4.5.
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Theorem 1.4.1. The following statements are true:

(i) The operator & is stable if and only if every maximal solution of the equation
(1.1.3) is globally uniformly stable with respect to the norm ”II”
(i) The operator & is exponentially stable if and only if every maximal solution
of the equation (1.1.3) is globally uniformly exponentially stable with respect
to the norm H[]H
(iii) The operator & is instable if and only if every maximal solution of the equa-
tion (1.1.3) is instable with respect to the norm |-

Proof. The statements (i), (iii) are easy consequences of Lemmas 1.4.3, 1.4.6
and Remark 1.4.1. According to Lemma 1.4.3, in order to prove (ii) it suffices to
prove:

(1) If the operator & is not exponentially stable then there exists a maximal solution
of the equation (1.1.3) that is not globally uniformly exponentially stable with
respect to the norm IH

So let us suppose that the operator & is not exponentially stable. Then by (iv) of
Theorem 1.2.1 it holds:

(2) For an arbitrary @ < 0 and k a natural number there exXist t(,z) = 0, i) €
€{0,...,n — 1}, ¢y 1) € H in such a way that | 4@~ e Dm pl@mo)(y o A),
Pl > ke gy

Without loss of generality we can suppose iy = i€{0,...,n — 1}. Putting

U it) = M(t; A) Yo py, Where Yoy = 471" 1), We get

(3) ot )| Z A7 m 2015 A) Y@,y >
> ke @B 90| = ke o (O)|

and by Theorem 1.3.1

4) U(q ) is a maximal solution of the equation (1.1.2).

Using (2), (3), (4) we obtain:

(5) The zero solution Oj,+«) Of the equation (1.1.2) is not globally uniformly
exponentially stable with respect to the norm |||-|]|.

According to Theorem 1.3.1 it holds:
(6) There exists a solution v : [0, + ) — H of the equation (1.1.3).
Obviously,

(7) if the solution v is globally uniformly exponentially stable with respect to the
norm |H . |“, then the solution 0o, + ) of the equation (1.1.2) is globally uniformly
exponentially stable with respect to the norm ”[ [H

Now, (1) follows directly from (5), (6), (7).
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1.5 CONDITIONS FOR THE TYPE OF THE OPERATOR

The aim of this section is to find sufficient conditions ensuring the operator % to
be (or not to be) of the type .
If + oo is a limit point of 6(4) we shall suppose in addition:

(1.5.1) There exist numbers a} such that lim a(s)s™ /" =a}, (i=1,...,n),
s>+
sec(A)

in this section.
Let 4; = A(s) (i = 1, ..., n) be the roots of the equation

(1.5.2) A(s) + ay(s) A" 1(s) + ... + a,(s) = 0.
Further, let 4; (i = 1, ..., n) be the roots of the equation
(1.5.3) A" + @A 4+ .+ af=0.

With help of Laplace transformation we obtain
Lemma 1.5.1. It holds
L Th-2
m(t; S) = J. J‘ . f M=) A28 —12)  pAn-1(8) (-2~ Tn=1) pAn(S)Tn-1 dt,_y...dt,
0JO 0

for sea(A). Besides, for such se o(A) for which A(s) % A(s) for i + j it holds

m(t; s) = '211 _—
T4 - 44)

i
J¥i

e}.i(s)t

Lemma 1.5.2. Let @ < w be constants and let either Re A(s) < @ fori =1, ..., n,
sea(A)n[5,S0] or Redfs) S, {i+j=>2(s)+Afs)} (Li=1,....n), se
€0(A) N [6, So]. Then there exists a constant K (depending on Sy and w — @)
such that [m(i)(t; s)l SKe” fori=0,...,n—1,sed(4)n[d S] t=0.

Lemma 1.5.3. There exists a constant K such that |A(s)| < Ks'™" for i =1, ..., n,
s € o(A).

Proof. Put A(s) = A(s) s™*/". Then 2"(s) + a,(s) s™ /" 2"~ *(s) + ... + a,(s)s™' =
= 0. As the coefficients at the powers of A(s) are bounded for s € o(A4) we can find
a constant K fulfilling the inequality |Ii(s)| < K. This yields Ili(s)] < Ks'/* for
i=1,...,n, seo(A).

Lemma 1.5.4. Let + oo be a limit point of o(A). Suppose that the equation (1.5.3)
has simple roots only. Then for certain constants Sy = 6, K > 0 the relation

A((s) = 24(s)| = Ks*" holds for i + j, (i,j = 1,...,n), s € o(4) 0 [So, + ).
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Proof. Denoting suitably the roots we have lim A(s) s~ /" = A,. The statement

ss:o'-:Au))
of the lemma follows easily from min lA,. - Ajl > 0.
i,j=1,...,n
i*j

Theorem 1.5.1. Let @ < o, Sy € [0, +]. Suppose that Re A(s) £ @ for i =
=1,...,n, seo(A) N[, Sy) and Re Afs) £ o, {i + j= A(s) * A(s)} for i,j =
=1,...,n, s€o(A) N [Sy, + ). Besides, if +co is a limit point of 6(A) we shall
suppose that the equation (1.5.3) has simple roots only. Then the operator & is
of the type w.

Proof. Lemmas 1.5.1, 1.5.2, 1.5.3, 1.5.4 yield the existence of a constant C for

which lm(i)(t; s)| £ CsGHITmmeot for j=0,...,n — 1, seo(A). This proves the
theorem.

Theorem 1.5.2. If the relation Re A,(so) >  is valid for some numbers s, € o(A4),
io €{1,...,n}, then the operator & is not of the type .

Proof. We shall investigate the equation (1.2.1) at the point s, i.e. the equation

(1) m®™(t) + a,(so) m®~ (1) + ... + a,(so) m(t) = 0.
Instead of my(t; sy) we shall write my(t) only. The system of functions m, (k =
=0,...,n — 1) forms a fundamental system of solutions of the equation (1) Thus,

it is possible to write every solution of the equation (1) in the form 2 B.m, for
a suitable choice of constants f.

Let us introduce the following condition:
(2 There exists a constant C, such that imk(t)l S Ce fort=0.

Suppose that the condition (2), is fulfilled for all k € {0, ..., n — 1}. Then, because
the function exp (4;,(so) ?) solves the equation (1), it holds

(3) lexp (Ai(s0) )| = |1—;:[3k m(1)] £ Ce*

for a certain constant C and every t = 0.

Because [exp (4;,(s0) £)| = exp (Re A;(s0) 2), (3) yields exp ((Re A;(so) — @) 1) < C,
which is not possible. So we have proved

(4) There exists ko €1{0,...,n — 1} for which the condition (2),, is not fulfilled.

Let us introduce the another condition:

(5) There exists a constant C, such that lm(")(t)| < Ce® for t = 0.
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n—ko

By Lemma 1.3.1, my(t) = Y’ a;—1(s0) m" *~(r). Supposing that (5), is fulfilled
i=1

for all ke{0,...,n — 1} we get |m(f)] < Ce®" for a certain constant C and all
t 2 0. But this contradicts (4). Thus the relation (5),, is not valid for at least one
ko €{0, ..., n — 1}. This proves the theorem.

PART 2 — NONLINEAR EQUATIONS
2.1 INTRODUCTION

We shall deal with the equations (1.1.4), (1.1.5) in this part.

Lemma 2.1.1. Let the operator £ be of the type w, F € €(D(u;;), D(A'")). Then

< nC(.Sf)j

t

e | 41" F(x, u(7))| de

to

f m(t + to — 5 to, A) F(1, u(7)) de

to

for every u e ¥ such that [to, 1] < D(u) = I.
Proof. If ie{0,...,n — 1}, T€[t,, t], then
A= m Ot + 1o — 5 1, A) F(, u(z))|> =

- f PO m Ot + 19 — 73 1o, 5)[2 d|[ E(s) F(, u(v))[? <
a(A)

é CZ(g) e2w(t—t)J. SZ(n—i)/nSZ(l'—n+ 1)/n d”E(S) F(T, u(t))HZ —

a(A)
= [C(2) e A" F(z, u(c))| 17
Thus

Jt m(t + to — t; to, A) F(x, u(1)) dr

to

|

i t
A= aij' m(t + ty — T; to, A) F(‘C, u(‘t)) dr
tl

I\

2]1/2

it
A=/ _aat_lJ. m(t + ty — 1 to, A) F(t, u(r)) dt

to

-[=

n—1
=P
i=0

IIA

to

t n—1

< i;o [| A= Dm m(t + ty — 7; to, A) F(x, u(‘r))" dt

to

IIA

<nC(¥) f 79| A1 F(z, u(7))| de .
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As an easy consequence of Lemmas 1.3.3, 1.3.6, 2.1.1 and Remark 1.3.1 we obtain

Theorem 2.1.1. Let the operator % be of the type w, Fe4(D(u;r), D(A'M)),
D(u) < [to, +0) 1, to € D(u), let u:D(u) » H be the solution of the equation
(1.1.4) fulfilling the initial conditions (1.1.6). Then

@ ut =':Z:mi(t; to, 4) ¢; + Jt m(t + to — 7 to, A) F(z, u(1)) dt,
(i) Ill:;l)m.-(t; to, ) ¢l = C{Ju(to)]] 2,

IIA

" t
.[ m(t + to — 7; to, A) F(z, u(t)) dt Cff e A" F(z, u(z))| dr
to

to

for t € D(u).

Theorem 2.1.2. Let v : 9(v) - H be a maximal solution of the equation (1.1.4),
F € 6(D(u)0(s)), D(A'")). Then the zero solution 0,4, of the equation

(2.1.1) L u(t) = F(t, o(t) + u(t)) — F(t, o(t))

is stable (globally stable, globally uniformly stable, uniformly stable, exponential-
ly stable, uniformly exponentially stable, globally uniformly exponentially
stable, uniformly stable at constantly acting disturbances, instable) with respect
to the norm ||||“ if and only if the solution v of the equation (1.1.4) is stable (global-
ly stable, globally uniformly stable, uniformly stable, exponentially stable,
uniformly exponentially stable, globally uniformly exponentially stable, uniformly
stable at constantly acting disturbances, instable, respectively) with respect to the
norm ”H”

Proof. Let us write all other solutions u of the equation (1.1.4), satisfying the
condition 2(u) = P(v), in the form u = v,y + . As v solves the equation (1.1.4),
w solves the equation (2.1.1) on 2(u). The statements of theorem follow directly
from the relation w = u — v;g,).

Theorem 2.1.3. (Ju. L. Daleckij, M. G. Krejn [3], p. 155). Let
t

ol1) S ™0 1 j e p(x) o(x) d,
to

where p(t) is a nonnegative continuous function, o, f, v are constants, t = t,.
Then

o(t) S e TFR[LPOIO 5 p > g
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2.2 THE CASE OF THE EXPONENTIALLY STABLE OPERATOR

In this section we shall suppose that the operator £ is of the type w <0, Fe
€ 6(2(ua), 2(A"™), and v: P(v) > H is a maximal solution of the equation
(1.1.4).

Theorem 2.2.1. Suppose

(2.2.1) There exist numbers K, R >0 such that |AY[F(t, o(t) + u(t)) —
— F(t, ()] < K|||u(t)]|| for uwe satisfying D(u) = 2(v), and for
t€ D(u) such that ||[u(t)||| < R.

Then if w + KC; < 0 or w + KC; <0, the solution v of the equation (1.1.4) is
uniformly exponentially stable (if R = + o0 moreover, then the solution v is
globally uniformly exponentially stable) or uniformly stable, respectively (if,
moreover, R = + oo, then the solution v is globally uniformly stable), with respect
to the norm HH”

Proof. According to Theorem 2.1.2 it suffices to prove the (global) uniform
exponential stability, resp. the (global) uniform stability of the zero solution 0,4,
of the equation (2.1.1).

Let to € D(v), D(u) < [to, + o), o€ D(u), u: P(u) > H be such a solution of
the problem (2.1.1), (1.1.6) that

o] = L 10712 5 min (3, 55)

In the case R < + oo let us suppose

(1) There exists a number h > 0 such that [to, o + h] S D(u), |||u(z)||| < R for
tefty to + h), ||u(to + h)||| = R.

Then with he'p of Theorem 2.1.1 we get
ulll = C3luCeof| e~ +

t
+ CIJ‘ e“’(‘"')”A””[F(t, o(t) + u(r)) — F(z, v(r))]" dr <
to
t
é C:HI“(%)”I ew(t—to) + KC:J‘ ew(!-—t)%

to

u(r)m dt for te[ty, ty + h]

and so by Theorem 2.1.3,
u@| = C3Ju(to)]| e e < CHlu(to)| =

Cc3 *R
2C% + 1

IIA

<R for te[to, to+ h].
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But the last inequality is a contradiction with (1). Thus, if ¢ € 9(u) then [[[u(z)]|| <
< C3||u(to)||| e +X47¢ =" This proves the theorem in the case R < +co. In the
case R = + oo we can proceed similarly.

Theorem 2.2.2. Let us suppose that

(22.2) F(1, o(t) + u(2)) = F(t, (1)) + Fi(t, u(t)) + Fy(t, u(t)) for ue¥ such that
D(u) = D(v), t € D(u) where F(t, (1)) € €(D(v), D(A'™")), F, Fye
€ C€(D(u;9.m), D(A")),

(2.2.3) there exist numbers K, K,, Ry > 0,v > 0 such that if u € % fulfils 9(u) <
S 9(v) and t € D(u) is such that |||u(t)|| < R, then

|4t Fult, w(@)] = K[l
|4t (e, u()]| < Ksf[u(o)][** .

Then if @ + K,C} < 0, the solution v of the equation (1.1.4) is uniformly exponen-
tially stable with respect to the norm HHH

Proof. Let us choose a number R € (0, R,] so small that
(1) o+ (K; + K,R") C; <0.
Then if u € % fulfils 2(u) = 2(v) and t € D(u) fulfils |||u(?)||| < R, it holds
@ ARt o) + u() — F( (0] =
= |A""LEL(t, w(®) + Fa(t u()]] < [4Y" Fu(t, u(D)] +
+ 4" Fy(t, u(9)]| = (Ky + KoR) [[u(o)]] -

The assertion of the theorem follows easily from (1), (2) with help of Theorem 2.2.1.

2.3 STABILITY AT CONSTANTLY ACTING DISTURBANCES IN THE CASE
OF THE EXPONENTIALLY STABLE OPERATOR

In this section we shall suppose that the operator £ is of the type w < 0, F e
€ €(D(ua¢,), D(A'™) and v:9(v) > H is a maximal solution of the equation
(1.1.4).

Theorem 2.3.1. Let F fulfil the condition (2.2.1) and let w + KC; < 0. Then
the solution v of the equation (1.1.4) is uniformly stable at constantly acting
disturbances with respect to the norm HHH

Proof. It follows from Theorem 2.1.2 that it suffices to prove the uniform stability
at constantly acting disturbances of the zero solution 0,a(,) of the equation & u(f) =
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= F(t, o(1) + u(t)) — F(t, o(2)). Let n€(0, r] be given. Without loss of generality

we may assume 7 < R. Let us choose a number h > 0 such that C3e(@+KCaVh 1

Further, let us find numbers 5, € (0, 4], 7, > 0 to this h so that
(1) C3no + Cinphe™ " < 'Z",

@) (C31o + Cinphe™ ") @FEEM" < g

Let to € 9(v), D(u) < [to, +0), to€ D(u), let u: D(u) > H be a solution of the
equation & u(t) = F(t, o(t) + u(t)) — F(t, u(t)) + R(t, u(t)). By Theorem 2.1.1 it
holds

(3) llu(]]| = C3luto)]] 2~ + ¥ f e | AV F(z, o(z) +

to

+ u(t) - Fle, o(2))]] de + C: f " 009 41 R, u(x))| v for te D(u).

to
Surely it suffices to prove the validity of the following implication:
4 {(luto)l| = no» A R(t, u(t))| < np for teD(u) such that
H[u(t)[“ <= {“lu(t)”[ <n for te(u)}.
Suppose

(5) There exists a number i < h such that [to, t, + 7] < D(u), |

]u(r)m < 1 for
t€[to, to + h), ||[u(to + B[] = n.

Using (3) we get

u(@)]| = (C3no + Cinphe™®") >~ 4 KC3 j " ot~ u(@)| v <

to

t ~
< (C3no + Cinphe™“") ") 4+ KC} J e I[lu(7)||| dr for te[to fo + h]

to

and thus by Theorem 2.1.3
©) (] S (Clo + Clnghe™) PR for 1 [t 1y + 1.
We obtain from (1), (6)
lu(to + B)|| = Clno + Clinphe" < g <,
which is a contradiction with (5). So we have proved
(7) H[u(t){” <n for te[ty,to+ h]n D(u).
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If 1, + he D(u) then in virtue of (2), (6), (7)

® o + 1] 5 6.

Using k-times the relation (8) we obtain

9) |llu(to + kh)||| < no for every natural number for which to + kh e D(u) .

Now, let us find an integer k and a number s € [0, h) to t € Q(u) in such a way that
t =ty + kh + s. Then taking (7), (9) into account we see that |||u(?)||| = |||u(to +
+ kh + s)||| < #. This proves the theorem.

Similarly as Theorem 2.2.2 we can prove

Theorem 2.3.2. Let F fulfil (2.2.2), (2.2.3) and w + K,C; < 0. Then the solution v
of the equation (1.1.4) is uniformly stable at constantly acting disturbances with
respect to the norm |-

2.4 THE CASE OF THE STABLE OPERATOR

In this section we shall suppose that the operator & is stable (i.e. & is of the type O),
F € 4(D(u;a(,)), 2(A'") and v : P(v) - H is a maximal solution of the equation
(1.1.4).

For the function F that fulfils the condition (2.2.2) we introduce the following
conditions:

(2.4.1) There exists a number % > 0 such that if ¢; € (A" "), i = 0,. -1,
-1
[Z A7~ D/p ||*]/* < % then for any toeR™ there exists a maximal

solutlon of the equation % u(t) = Fy(t, u(t)), satisfying the initial con-
ditions (1.1.6):
(2.4.2) There exist constants K, R > 0, v > 0 such that

(i) if 2(u;) € D(v) for u; e % and t € D(u,) N D(u,) is such that ||lu(t)]]| <
< R(t(i =1,2) then [A'[Fy(t, u,(t)) — Fu(t, us(t)]] < K||us(r) —
—u

(i) if u ze”ll fulfils 2(u) < P(v) and t e D(u) is such that |||u(?)]|| < R then
|4t Fy(t, u(®)]| = K][ju)]|'**.

Theorem 2.4.1. Let (2.2.2), (2.4.1), (2.4.2) be fulfilled for the function F. Further,
let Fy(t, O;1) = 0 for every I = 2(v) and let the zero solution O,p, of the equation

(2.4.3) L u(t) =F(t, u(t))

‘be uniformly exponentially stable with respect to the norm HH” Then the solution v
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of the equation (1.1.4) is uniformly exponentially stable with respect to the norm
HH“ as well.

Proof. According to Theorem 2.1.2, it suffices to prove the uniform exponential
stability of the zero solution O,p,, of the equation

(1) £ u(t) = Fy(t, u(t)) + Fx(t, u(?)) .
Let to € D(v). We restrict ourselves to such ¢, € 2(A®~ /") for which
n—1
[Y |4 Dmp,|2]"/* < w. In virtue of (2.4.1) there exists a maximal solution u, of
i=0

the equation (2.4.3) satisfying the initial conditions (1.1.6) for such ¢,. By Theorem
2.1.1

t

() uy(1) =:§:mi(t; to, A) @; + f m(t + to — 75 g, A) Fi(t, u(7)) dr.

to

By the assumptions of the theorem we conclude:

(3) There exist positive numbers C, «, ¢ (independent of the choice of t, € 2(v))
such that |||uL(t0)H| <o= “[u,(t)” < Ce™ 710 IHuL(tO)IH for t = t,.

If uy is a solution of the equation (1) that fulfils the initial conditions (1.1.6), then

(4) uN(t) =':§m.~(t; To, A) @; + .r m(t + tg — T; ty, A) FL(‘I:, uN(r)) dt +

to

t
+ J m(t + to — 75 1o, A) Fx(t, uy(t)) dv, for te D(uy).

to

Let0 < a; < a, C; > C. Let us find a number & > 0 so that

Ce™ 7ot < 1,
and choose a number R, € (0, min (R, ¢, %)) to this fixed h in such a way that
5) C + CACEKR}helC+ k@ RO ek < ¢

(6) Ce™ @ | CHCIKR}hlCHR@+RMFailh <

Finally, let us fix a number 5 € (0, R,) so that C,n < R, and make a restriction to
such initial conditions for which

sl = llaiol] = L}~ 0,3 < 1.
It follows from (3) that

lluc(®)| £ Cn<Cin <Ry SR for t21.
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Suppose

(7) There exists a number i < h so that [to, fo + h] = 2(un); llur(@lll < Ry for
t€[to, to + h), \H”N(‘o + h)”\ = R;.

Then using (4), the condition (2.4.2), Theorem 2.1.1 and the equality Fy(t, Ojtto,+ ) =

= 0, we obtain

s = CHllunCiol] + €3 f 41 Fyfe, un(@)] + 42" Fys un(d)]1 de <

to

IIA

Cilllun(to)ll| + CIK(1 + R;)Jr |[un(z)|| dz for te[t, to + A].
This yields with help of Theorem 2.1.3
®) [l = C3lllun(ro)]| <+ for te[toto + ]

Subtracting (2) from (4) and using Theorem 2.1.1, the estimate (8) and the con-
dition (2.4.2) we obtain

o) = ] = €3 [ ) o+ [ o7 3

to to

< CiK j t |un(z) — un(@)|| dr + CHCERR} RS R (s, |

to

for te[ty, to + h].
Thus it follows from Theorem 2.1.3 that
©) Jlan() = s = CHOIKRIRES S+ (1) <

< C’;CZKRIﬁe[C“'K(Z+R‘V)+“‘]he_°”('_mmuzv(to)m for te[to, to + E].

From (3), (9) we obtain

(10) (il = Wua Il + len®) = o] <

< [C + CECIKRYRACTK@ TR el gmait=w)| Iy (1. for te[to, to + F].
Ash<h we get from (5), (10) that
[ux(@)l] £ [C + CICIKRuheFE R ]y < Ciy < Ry for 1€ [to, to+ h].-
However, this is a contradiction with (7). Thus
(11) llun(@ll < Ry S R for te[ty, to + h] 0 D(un)

and the relations (9), (10) will be valid for t € [to, to + h] 0 D(uy) if we write h
instead of k.
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If o + h e D(uy) we get by virtue of (3), (9), (11)
(12) |[Jun(to + ||| < [Ce™ % + CECIKR;helC+™ K@ HRVeaalh] g=aihllly (e )]

From (5), (6), (10), (12) we conclude
(13) llux(®)]]| £ Cre™ = ||un(to)]|| for te[to, to + h] N D(uy),
(14) [lun(to + R)||| < e™*¥|lun(to)]] if to + heD(uy).
The uniform exponential stability of the zero solution 0,4, of the equation (1) is an
easy consequence of the inequalities (13), (14). By (14) the inequality
lunto + k)| = ™= |lur(to)|

holds for an arbitrary natural number k provided t, + kh € 9(uy). Nowlet t € @(u N)-
Let us find a natural number k and a number s € [0, h) so that t =ty + kh + s.

Then
llux(l = lllun(to + kb + 9| < Cre™lun(to + kn)| =

= Cxe_al(ﬁkh)mulv(to)’“ = Cle—al(t—’O)”luN(’O)Hl :

This proves the theorem.
Moreover, it is clear that we have proved

@

Corollary 2.4.1. Let the assumptions of Theorem 2.4.1 be fulfilled and let the

implication
[lus(toll] = @ = [lma(®)l] = Ce™™* [un(eo)]]|

hold for all ty € 9(v), t 2 1, and for solutions uy, of the equation (2.4.3). Let C; > C,
0 < oy < a. Then there exists a number n > 0 such that the implication

llun(to)lll = n = lun()l| = C1e™= " [lun(to)]|

holds for to € 9(v), for solutions uy of the equation & u(t) = F(t, u(t)) + Fx(t, u(t))
and for t € D(uy).

2.5 STABILITY AT CONSTANTLY ACTING DISTURBANCES IN THE CASE
OF THE STABLE OPERATOR

In this section we shall suppose that the operator & is stable (i.e. £ is of the type 0),
F € 6(D(u;9(,)), 2(A'™)) and v : D(v) - H is a solution of the equation (1.1.4).

Theorem 2.5.1. Let (2.2.2), (2.4.1), (2.4.2) be satisfied for the function F. Further,
let Fy(t, 0,) = 0 for every I = 9(v) and let the zero solution 0,4, of the equation

(2.5.1) L u(t) = Fy(t, u(t))
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be uniformly exponentially stable with respect to the norm HHH Then the solution v
of the equation (1.1.4) is unifo;"mly stable at constantly acting disturbances with
respect to the norm |||-|||.

Proof. According to Theorem 2.1.2 it suffices to prove the uniform stability at
constantly acting disturbances of the zero solution 0,4, of the equation

(1) L u(t) = Fy(t, u(t)) + Fy(t, u(t)) .

Let 1 € 2(v). Remember that if u;, is a maximal solution of the equation (2.5.1)
fulfilling the initial conditions (1.1.6) then

n—1 t
(2 ug(t) = Y, mft; 15, A) @; +J m(t + to — 1 to, A) Fylt, ug(r))dr;
i=0 t0
(3) there exist positive constants C, «, ¢ (independent of the choice of t, € 2(v))
such that [||u(to)]|| £ e = [|[ul(D)||| £ Ce™* ™™ [Jur(to)||| for ¢ = to.
If uy, solves the equation
4) & u(t) = Fy(t, u(t)) + Fx(t, u(t)) + R(2, u(?))

and fulfils the initial conditions (1.1.6) it is

(5)  up(t) =:Z:mi(t; to, A) @; + ft m(t + to — T to, A) Fy(t, up(r)) dv +

to

t
+ j m(t + to — 15 1o, A) Fy(t, up(7)) dz +

to

t
+ J m(t + to — 15 to, A) R(t, up(v)) dv, for teD(up).

to

By Theorem 2.1.1
(6) [4Y" R(z, u(z))| < np forall te[to, {]=

=‘ < Chnplt — 1o).

J “m(t + 1o — 5 to, A) R(z, u(x)) de

to

Let now n e (0, r] be given. Without loss of generality we may suppose #§ =
< min (R, 0, x) Consider a number h > 0 such that Ce~*" < 1. Further, let us
choose a number R, €(0, 7] for which

Ce™™ + CCIKhR} ™™ ™ < 1,
Let us find a number 7, € (0, R,) such that

™) Cinge™KU+m™h < R . Cpy < R.'
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Finally, let us choose a number 7, > 0 satisfying
(8) (C3no + Cinph) & H™Mh < R,
9) [Ce ™ + CECEKhR}S™ MM o 4
+ [CPKh* Ry C+mk 4 Crhe®™ ] np < g .

Now, we shall verify the implication
n—1
(10) (il = L5, 14,217 5 n, 41 Rls, (i)  np for such

t € D(up) which satisfy [[[up(1)]]| < n} = {||lus()]| < n for t e D(up)}.

By (2.4.1) there exists a maximal solution u;, of the equation (2.5.1) that fulfils the
same initial conditions as u,. According to (3), (7)

(11) [lu@)|l| £ Cno < R for t21,.
Suppose

(12) There exists a number h < h such that [ty to + h] = D(up), ”I”D(T)”f <R,
for T € [to, 1o + h). [[up(te + h)[[| = R,.

Because R; = n < R we obtain from (5) using Theorem 2.1.1 and the relations
(2.4.2), (6), Fy(t, Oy4y, + ) = O the inequality

s 5 st + 2K [ Jjafol] d + €35 [ o)+ +

T Clhmolt — 1) S Clno + CIK(1 + 1) j Nlun)| de + Clngh
¢
for te [ty to + h] 0
Hence with help of Theorem 2.1.3 and the relation (8) we conclude
(13 s} = (€30 + Clnph) et
< (Cino + Cinph) €™ ™h < Ry for te[ty, ty + h].
But this is a contradiction with (12). So we have proved
(14) lup(d)]| < Ry <0 for te[ty, to + h] A D(up).

Subtracting (2) from (5) and using Theorem 2.1.1 and the relations # < R, (2.4.2),
(6), (11), (13), (14), we get

lokt) = 0] = €25 [ o) = ) s + 2 [ G+ +
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# Cinalt = 10) 5 CIK [ [Juo) = (o) e+
o
+ CiKhRY(C3no + Cinph) ™™ 4 Cinph for te[to, to + h] 0 D(up).
This yields
(15) lup(t) — u(t)]]] £ {CICTKRR] S I Hm0y
+ [CP?Kh?Rye“™ ™ CEh] np} ™" for te[to, to + h] 0 D(up).
It follows from (3), (15) that
(16)  [luslto + W] = [fuatto + W] + funto + 1) = walto + B =
< [Ce ™ + CECEKhRye ™+ 4 4
+ [CPPKR?RY S o Cihe“ ™ np, if 1o + he D(up).
Further, we conclude from (9), (16) that
(17) [lunlto + B)||| S Mo if 1o + he D(up).

The implication (10) is now an easy consequence of (14), (17). Let us find an integer k
and a number s € [0, h) to t € D(up) in such a way that t = t, + kh + s. Then using
k-times the relation (17) we can see that ’Hub(to + kh)’” < 1o and by virtue of (14),
Nup@ll] = [fJun(to + kh + s)|| < n.

This proves the implication (10) and hence also the theorem.

2.6 INSTABILITY

In this section we shall suppose that F € €(D(u)p1,, + o), 2(A'")), and v : D(v) =
= [ty. +0) — H is a maximal solution of the equation (1.1.4).

Theorem 2.6.1. If + oo is a limit point of a(A) then we shall suppose that the
equation (1.5.3) has simple roots only. Further, let us assume:

(2.6.1) There exist numbers K > 0, R > 0, v > 0 so that ||A""[F(t, (1) + u(t)) —
— F(t, o(0))]]| = K|u()||[** for such ue that D(u) = [t,, +) and
such t € 9(u) that fu(t)” <R.

(2.6.2) If A(s) are solutions of the equation (1.5.2) then 2(s) + A(s) for i # j
(i,j =1,...,n), seo(A).

(2.6.3) There exists an eigenvalue s, of the operator A and an index iy € {1, ..., n}
such that Re A,(so) > 0 and max sup Re A(s) £ Re A;(so).

1,..., n seq(A)
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(2.6.4) There exists a number x > 0 such that if ;€ D(A"" ") (i =0,...,n—1),
n—1
[Y A" Dp,|2]'* < % then there exists a maximal solution of the
i=o

equation &L u(t) = F(1, v(t) + u(t)) — F(t, u(t)) fulfilling the initial con-
ditions (1.1.6).
Then the solution v of the equation (1.1.4) is instable with respect to the norm HH”

Proof. According to Theorem 2.1.2 it is sufficient to show that the zero solution
O/11o, + ) Of the equation

(1) &L u(t) = F(1, o(t) + u(t)) — F(t, o(1))
is instable with respect to the norm ”IIH Theorem 1.5.1 yields:
(2 The operator & is of the type @ = Re 4,(so) -

Choose such a number C that

3) Ce (1, -~ (2, 14 GK Rv>) .

vy

We can easily verify that there exists a number 7, € (0, %] such that if # € (0, 1,]
the equation

(@) eor = L[(C = Donis
nC CIKC

has a unique solution h = h(n) > 0.
Denote by ¢, such an element of the space H that

(5) APy = 5090 »
”((po, l,-o(A) @os - -» l',o'o_l(A) QDo)"g)(A)xg(A(n-l)/n)x coxaaum = 1.

Further, let 4o be a maximal solution of the equation (1), satisfying the initial con-
ditions u§’(to) = 02 (A) @o, (j =0, ..., n — 1), n€(0, n,]. Then it holds

(6) uo(t) = nexp (,(4) (t — 10)) 9o +
+ f m(t + to — ©; to, A) [F(, v(7) + uo(7)) — F(z, v(7))] dt .

Using (5) we get

() [Iln exp (A:o(4) (£ = 1)) @o|| =
= 13 4744 exp ()t — 10) 0ol T =
= nexp (ot — t)), in particular, |[Juo(to)]|| =7 .
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Let us suppose:

(8) There exists a number € (0, h) such that
luo(D)||| < nCe® =" for t e [to, to + k),
uolto + B[] = nCe®™.

Then from (3), (4), (8) we obtain

. : _ /v * 1/
luo(t)]| = nCe™ < nCe® = [(—g—c—*;)?wv] < [C“—K R’ Ci'%] =R
4 4 4

for 1€[ty to + h],

and so with respect to (2), (4), (6), (7). (8), (2.6.1) and Theorem 2.1.1 we can conclude

to+h

ltto + B 5 e+ 2K [ a1 g 5
to

to+h

é "ewﬁ + CIK(?]C)I"H"[ ew(l’o+ﬁ—t)ew(t—ro)(1+v) dr <

to

é "ewﬁ + C__:L< (nc)1+v ew(v-(-l)ﬁ — nea)ﬁ [1 + C:K ﬂvC1+vewvﬁ] <
v v
*
< newﬁ [1 + C4K nvcl +vewvh] — ncewh ,
o) .
which is a contradiction with (8). Thus
(9) [[uo(®)]| S nCe®“~" < R for te[to, to + h].

Now, it follows from (3), (4), (6), (7), (9), (2.6.1) and Theorem 2.1.1 that

lluofto + B 2 ne* — €K Jwew"“"'”llluo(f)lll’”dT z

to

* _ i/v
= ne 1—9“—15;1Vc‘+"ew“" _Ll[c-Do 2-C)=Co>0.
v ClL CiKcC

As [|lug(to)||| = #, which is a consequence of (7), the last relations prove the theorem.
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PART 3 — EXAMPLES

3.1 THE LINEAR EQUATION WITH VARIABLE COEFFICIENTS

In this section, we shall deal with the equation
L u(t) = F(t,u(t)), FebD(u),2(A'").

We shall suppose the function F to be linear with respect to the variable u. Further,
we shall suppose that H is a real Hilbert space of real vector functions h = h(x) =
= (hy(x), ..., l(x)) (k = 1) that are defined on a subset Q of a Euclidean space Ej.

Let ;20 (i=0,...,n — 1) be natural numbers f;; (i=0,...,n—1, j =
=1, ..., ;) functions fulfilling the condition

(3.1.1) fi;:0(A) » R, are continuous functions and there exists a constant F*
such that |fi(s)| < F*s®~ "D for seo(d), i=0,...,n—1, j=
=1,...,9;

Let a;; be mapping defined on R x @ such that a;ft, x)f;,(4) u™(t, x) €

€b(2(u), 2(A") (i=0,...,n—1,j=1,..., q)).

Remark 3.1.1. In accordance with the notation from the previous sections we

shall not always write u(t, x) but sometimes only u(¢). Similarly in the case of a;;.
On the contrary, g(x) will mean a function independent of ¢.

Theorem 3.1.1. Ler us suppose:
(3.1.2) There exist real constants a;, Kij (i=0,...n—1, j=1,...,q,) such
that [|AY"[(a;(t) — ay) fi(A) uP(O]] = Kyjf|[u(r)]]| for e, teD(u),
I = 0,...,n - 1, ] =1,..., qi;-

Further, let the operator
n—1 q; .
Zut) = £ u(l) —i;) j;a,-jf,»j(A) u(1)

be of the type w and

n—1 qi

0 +nC(Z)Y YK;<0
i=0 j=1

(resp. £ 0). Then the zero solution Ojo,+«) of the equation
n—1 4i

(3.1.3) Zult) = %, 3 aift) fi(4) u()

1
=0j=1

is globally uniformly exponentially stable with respect to the norm HHH and
uniformly stable at consiantly acting disturbances with respect to the norm ||-||
(resp. globally uniformly stable with respect to the norm l””l)
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Proof. If we write the equation (3.1.3) 1n the form

Zul) =3 ¥ [a() = a1 1(4) ).

i=0

the assertion of the theorem follows easily from Theorems 2.2.1, 2.3.1.

3.2 THE GENERAL NONLINEAR EQUATION WITH 4 = (—1)? A?

We shall deal with the equation

6:21) Zu() = Fle.u(9), Fe (@), 2(4")

in this section. We shall use the notation and conventions from Section 3.1 here.
Let @ = (0, mc,) x (0, me;) X ... x (0,7ey), ¢; >0 (i=1,...,N) be a subset

of the Euclidean space Ey. We shall suppose that H = L,(2Q) is a real Hilbert space.
Let p = 1 be a natural number such that 2p/n is an integer.

Remark 3.2.1. By the symbol ) we shall denote Y,
k 1
The operator 4 will be defined as follows:
N .
(32.2) Aux) = (=1YT Y. DT ox) for ve D(4) = {u(x) e Ly(@ | u(x) =
i=1

B n B2k, k),

Cq CN

2 272p
Z[(ﬁ) ++<EE>} u,f<+oo}, D,.=—a—
x| \¢cy Cy 0x;

(in the sense of distributions).

= Y uysin
k

Now we shall introduce some properties of the right hand side F that will be used
in the following. Suppose that

(3:2.3) F(t, u(r)) = f(t, %, fo1(A) u(?), ..., foge(A) u(t), f11(4) w'(2), ...

o L1a(A) W (@), s om0 1(A) u™D(), oy fam g g (A) " 1(2)),
(3.2.4) the functions f;; fulfil the condition (3.1.1),
(3.2.5) F(t + T, u(t)) = F(t, u(t)) for ueu, te P(u), T> 0.

Suppose that there exists a T-periodic solution v : R* — H of the equation (3.2.1).
The following Lemmas 3.2.1—3.2.6 can be proved in a similar way as Lemmas
5.1—5.6 from J. Bartak [1], pp. 428 —431. That is why we omit their proofs here.

Lemma 3.2.1. The operator A is selfadjoint.
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Lemma 3.2.2. The spectrum of the operator A is a point spectrum

o4) = {h N [Z (’Ici”

k; integers, (i = 1, ..., N)}

k=(k1,.-.,kN), 1§ki<+00,

and the eigenfunctions corresponding to an eigenvalue A, are sin (kx,/c,)...

... sin (kyxy/cy). Further, 6 = [i (1/c;)*7x.

Lemma 3.2.3. Let u € 9(A) have the form

(3.2.6) u(x) = Yuy sin kaxy | gin K
K ¢y Cx

2 4 271r
Au(x) = Z[<ﬁ> + ...+ (kN) ] Uy sin Xy sinﬁvﬁ .
© | \c, ey N ey

ve H4N) = {u(x) € Ly(Q) l u(x) = X ux sin bl ...sin kyxy ,
k ¢ cN

k 2 kN 27)2p/n )
k= (ks k), z[(_l) +...+<_)] uk<+oo}
k Cy Cn

has the form (3.2.6), where we write v, instead of uy, then

2 271p/n
A p(x) = Z[(ﬁ> + .+ (ﬁ> :| vy sin kiXs | i F
k

Cy CN Cy CN

Then

If

Lemma 3.2.4. There exists a constant K§ such that if u € D(A'") then

N N
NTU2| ¥ D u(x)| = 41" u(x)| = K| 3 DI u(x)] -
i=1 i=1

Lemma 3.2.5. There exists a constant K so that if u € 9(A'") then
lulwozpimey < KE[ A" .

Put s* = (N + 1)/2 if N is odd, s* = (N + 2)/2 if N is even.

Lemma 3.2.6. (The Sobolev Embedding Theorem.) There exists a constant K3
such that to each u e W;‘(Q) there exists a continuous representant of this element
satisfying Huuc(ﬁ) = max |u(x)[ é K:“u”wzn(g).

580



In the rest of this section, we shall consider only such solutions that f;(A) u‘(r)
(i=0,...,n—1,j=1,...,4;) are continuous for t€ P(u), x € Q. We shall call
them continuous representants (of solutions).

Suppose

(3.2.7) There exist continuous G-derivatives of the function f with respect to the
variables f;(4) u®® (i =0,...,n — 1, j =1, ..., g;) up to the second order.
Then

(3.2.8) F(t, o(t) + u(t)) = F(t, o(t)) + Fu(t, u(t)) + Fy(t, u(t)), where

rlolt) =5, & 0014000,

n—1 ¢qi n—1 gqx

Pt ) = %, 3 5 ol u(0) £4) w0 l(4) w0,

=1k

qi

aifi) = a—jf— (8 %, For(A) (1) - Foes g (A) 0 (0),

rults u(f)) = J: ﬁﬂjm(t, u(t) + 90 u(t)) ¢ d3 do,

62
Fiats u(t)) = 7 gf
ij Ok

(Lbk=0,...on—1,j=1,..,q, I =1,..., q).

(t, x, fo1(4) “(t), “'7fn—1q,.—1(A) “("_“(t))

If g =g(t X for, s Soger s Su—115 s fa=14,-,) We denote by M(g) the system
of all derivatives of the type

ar'g n—1 gqi
, '=9y_( + Yij» 0STI=k.
X"~ Q" oy o OVt f, ! i;o j\=21 4

Further, let us denote

= {3 5 sup? f(4) O 2,

i=0 j=1 teR* ,xe

Koo = {yeEq] [ylleg < 0*}, where g=qo+q; + ... + qu-y -

Theorem 3.2.1. Let v: R™ — H be a T-periodic solution of the equation (3.2.1).
Let F satisfy the conditions (3.2.3)—(3.2.5), (3.2.7) and let the operator A be
defined by the relation (3.2.2). Let there exist a closed sphere K, = E;, ¢ = qo + ...
coo+ Gn-1, K, # 0, Int K, 2 K,s 50 that all derivatives from the systems M, (a ),
My p(Fis) (bk=0,..,n—1, j=1,...,q;, I =1,...,q) exist and are con-
tinuous on [0, T] x @ x K,. Further, let 2s* < 2p[n + 1 and let Fy, Fy be defined
by the relation (3.2.8).
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Then F.(t, 0;;) = 0 for every I = 2(v), the conditions (2.2.1), (2.2.2), (2.2.3),
(24.2) and (3.1.2) being fulfilled with some constants K,K,, K,,K;;, R >0,
R, >0,v=1, a;

If, moreover, the operator & is stable, the operator

ij>

is of the type w,
n—1 gqi

o +nC(2)Y YK, <0

i=0 j=1

and (2.4.1) holds then the solution v is uniformly exponentially stable with respect
to the norm HH” and uniformly stable at constantly acting disturbances with
respect to the norm H||H

Proof. Let u € %. Then according to Lemmas 3.2.5, 3.2.6 and to the relations
2s* < 2p/n + 1, (3.2.4), the following inequalities hold:
(1) 17:(4) vy = K3 Sis(A) uP(O) | aswer <
= K3 fi(A) u(O)|wyzomeer < KIKZ[AM" f1(A) u®(D)]| <
< KIKEF<| 4140~ =0 40| < KIKEFJu(o
and so to every u € % there exits its continuous representant. Moreover, this implies
that o* is a finite number.

I) We shall prove (3.1.2). :
Let a; (i=0,...,n—1, j=1,...,q;) be constants. Under the expression
(a(t) — @) V(1) we shall understand some of the terms (a;(t) — a;;) fi{A) u”(t)
(i=0,..,n—1,j=1,...,q,). Using Lemma 3.2.4 we get

|4*"[(a(s) — @) V()] < Ki:ﬂé?f"’"[@(r) —a) vl =

s k5% 5 () it - @) 03 ).
Thus it suffices to prove
©) |D(a(t) — @) D22~ V(o) = Cy[ju(o)]

for i = 0,...,2p[n, where D means some of the derivatives D; (i = 1, ..., N); C; are
constants in this proof.
We can easily find that D(a(f)—a) is a linear combination of members of the form

©) - wie=a T B o o,
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where m(a — @) is a function from the system M (a — a) and

4) Biroyo =0=0;=0 for j=0,...,n—1, k=1,....q;,
n=1 q; dj

D lzlllfm =i

j=0k=11=

Using the assumptions on functions from the system &m,(a — @) we can obtain
%) sup [mya(t) — a@)|cq) < C,
teR+

for m;e M, (i =0,...,2p[n).

First we shall prove (2) for 0 < i < 2p/n — s*. The condition (4) implies that all
derivatives D' appearing in (3) are of the order I < 2p/n — s* and so (see the proof
of inequalities (1)) we get

(6) | D" £(A) v9(1) [ = KIKZF*|[o(1)]] -
Further, \
@ @] = [VOlwazemay = KE[AT V()] < KTF*|u(s)]] -

Now the relations (3), (5), (6), (7) prove (2) for 0 < i < 2p/n — s*. It remains to
show that (2) holds for 2p/n — s* + 1 < i < 2p/n. In this case, we can obtain
(similarly as (1))

®)

D= V(1) ey S K[ V(O)|wazem-ieonay = K3 V(D)]|wazomay < KFKEF*{[Ju(2)]] .
Hence in order to prove (2), it suffices to show that

o) [Da() - @) < Cs.

Using (4) we can show that there is no more than one derivative D” of an order
v > 2p/n — s* in (3) (see also J. Bartdk [1], pp. 433—434). Obviously v < 2p/n
and thus

(10) [0 () ()] = [£5(4) 02O lw2ermay < KTF*{[[o(a)]| -
The other derivatives in (3) are of an order | < 2p/n — s* and so
(11) "lejk(A) ”(j’(t)”am s K§||fik(A) U(j)(t)”"’z“”"(ﬂ) = KTK;F*H!”(‘)HE :

The relations (5), (10), (11) prove (9). So we have proved (3.1.2).

II) Now we shall prove (ii) of (2.4.2). Let us choose a number R > 0 so small
that

(fou(4) (v(t, x) + S0 u(t, X)), --.s fum14,,(4) ("7 V(1 X) + 90 w11, X)) € K,
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for 9,0 €[0,1], ue%, x e and such te P(u) that |[[u(r)]| < R. (This is possible
according to (1).)

Further, let 7(t, u(t)) be some of the functions r,;(t, u(?)), V(f), W(t) some of the
functions fi{(A)u™(t) (i, k =0,...,n =1, j=1,...q, [ =1,..., g)
To prove (ii) of (2.4.2) it suffices to show that

|42 (e, w(®) V() WO = Caflu(]][* -

Using Lemma 3.2.4 we get
144, ) V() WO = K8 3 D37t ) V() WOl =
SKY YOS () (P =) hoite w) o3+~ v 2y weol

i=1i=0 K=o k
So we have to prove
(12) [D'r(e, u(r) D*#=i=* V(1) D* W(r)]| < Csl[u()]|®

for i =0,...,2p/n, k =0,...,2p/n — i; D means some of the Dys, j=1,...,N.
Similarly as in J. Bartak [1], p. 435, we find that D'r(¢, u(t)) is a linear combination
of members of the form

) j : J 1 '"‘(F):i Hl ,ﬁ(’)'ffk(f*) (@2(1) + 80 u(1)))*1s d3 do

where m,(F) is a function from the system 9(¥) and

(14) ﬂjk&jk=0=>6jk=0 for j=0,...,n—1, k=1,...,qj,

n—1 gq; djk
XY Y si.

Jj=0k=11=1

The proof of (12) is quite analogous to the preceding one. That is why we shall
sketch it only briefly. Firstly, let 0 < i < 2p/n — s*. Then (14) yields that all deriva-
tives D'in (13) are of an order I < 2p/n — s* and thus

(15)  [D'(4) () + 90 u(D))|can S KIKFF*|[[o(t) + 9o u(r)]]| <
< KIKF([o(0)] + R) = C,.

If 0 < k < 2p/n — s* then 2p/n — i — k < 2p/n and so

I

[ D22~ VO] < VOl warermey < KEFHJu(o)] -

(16) 1D WD)l can = KIKEF*|Ju()
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If 2p/n — s* + 1 < k < 2p[n then 2p/n — i — k < 2p[n — s* and thus
(17) [ D2~ % V(1) e < KIKZF*|[[u(n)]] »
ID* W) = [W(O)w,2emey < KIF*|[u(2)] -

Now (12) follows from (13), (15), (16), (17) and from the boundedness of the func-
tions m(F).

Secondly, let 2p/n — s* 4+ 1 < i < 2p[n. Then with help of (14) we obtain that
there exists at most one derivative D* in (13) of an order v > 2p/n — s*. Surely
v=s2 p/ n and so this derivative can be estimated as follows:

(18) [0 u(4) 00() + 90 ()] < KIFolt) + 9o (]| €
The other derivatives are of an order | < 2p/n — s* and so
(19)  [D*/al4) (£90) + 90 (D) S KIKIF((0)] + B) < .

Because k < 2p/n —i < s* — 1= 2pln—s* 2pn—i—k<s*—1=<2p/n-—
— s*, the following relations hold:

(20) |0 W(t)ca = KIKZF*|[lu()]]],
| D2 V(D) e < KIKSF*|[u(r)] -

The relations (13), (18), (19), (20) imply (12). So we have proved (ii) of (2.4.2).

Now, the validity of (2.2.3) and (i) of (2.4.2) is an easy consequence of (3.1.2),
(ii) of (2.4.2) and of the linearity of Fy, with respect to the variable u. It is evident
that (2.2.2) and Fy(t, O;;) = 0 hold. The relation (2.2.1) follows from (2.4.2):

| A LE(, ot) + u(®) = F(t, o)) < |4"Fole, u(®)] +
+ [ 4" Fy(t u(@)] = (K + KR) [[[u(o)]] -

The last statement of the theorem is a consequence of Theorems 3.1.1, 2.4.1, 2.5.1.

3.3 THE TIMOSHENKO OPERATOR AND THE OPERATOR
OF THE SECOND ORDER

In the first part of this section, we shall deal with the operator defined by the
relation

(3.3.1) Zu(t) = u""(t) + au"(t) + (4" + b)) u'(r) +
+ (e A2 4 ) u'(t) + (did + dyAY2 + do) u(t)

where a, by, b, ¢y, ¢,, dy, dy, d5 are real constants.
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We introduce conditions ensuring the exponential stability or the stability of this
operator. To this problem see also J. Bartak [2].

With help of the Hurwitz theorem (see I. G. Malkin [15], p. 75) we can obtain the
following lemma the proof of which is similar to the proof of Lemma 1 from J.
Bartdk [2].

Lemma 3.3.1. Let

(3.3.2) a>0,
st +¢, >0,
dys +dyst? +dy >0,
a(bys'’? + by)(c;s'? + ¢;) — a*(dys + dps'? + ds) —
—(eys* +¢)* >0 for s=9.
Then to every S, = & there exists a number w(S,) < 0 such that if s[5, So],

A{s) (i = 1,2, 3,4) are roots of the equation (1.5.2), then Re A(s) £ w(S,), (i =
= 1, 2, 3, 4). If, moreover,

(3.3.3) abc, —a*d; — ¢} >0, ¢, >0, di +d5>0,

then there exists a constant @ < 0 such that Re li(s) Sowfors=20d,i=1,234.

Theorem 3.3.1. Let (3.3.2) be fulfilled and let
(3.3.4) dy 0, b —4d, 0.

Then the operator & defined by the relation (3.3.1) is stable. If, moreover, (3.3.3)
is satisfied then the operator & is exponentially stable.

Proof. The equation (1.5.3) has a form A* + b;4* + d; = 0 in this case. Direct
calculation shows that if the condition (3.3.4) is satisfied then all roots A4; are simple.
This implies the existence of a number S, = 6 such that A,(s) # A(s)if i +j (i,j =
=1,2,3, 4) for s = S,. Now, the statement of the theorem follows easily from
Theorem 1.5.1 and Lemma 3.3.1.

Using Theorem 3.3.1 we can obtain criteria for stability. of solution of the classical
Timoshenko equation. This has been done in J. Bartdk [2], pp. 138 —139.

In the second part of this section we shall investigate the operator defined by the
relation

q
(3.35) Lu(t) =u"(t) — 2beuw'(t) + [4 — e a;, f{A)] u(1),
i=1
where b, a; (i = 1, ..., q) are real constants and

3.3.6) f;:0(A) » R, are continuous functions such that |fi(s)| < Fis'/? for
( i 1 i 1
se€o(A), i =1, ..., q and for a suitable constant Ff.

586



Theorem 3.3.2. Let the operator & be defined by the relation (3.3.5) and let
(3.3.6) hold. Then to every n > 0 there exists a number g, > 0 such that if € € (0, &]
then the operator & is of the type ¢b and we can put C(£) = 1 + n in Definition
121.If b=0,a,=0(i =1, ..., q) then the operator & is of the type 0 and we
can put C(&) = 1.

q

Proof. Denote 4 = A(s) = s — ¢ a;f{s) — €?b*. Suppose that the number

=1

n > 0 is given. Let us find a number &, > 0 in such a way that 4 > 0, \/(s/4) <
<1+ n, |¢||B][/4 < n for every &€ (0, &]. The statement of the theorem follows
now easily from the relation

m(t; s) = my(t;s) = &P sin (t/4)]J4.

3.4 THE CASE OF THE BOUNDED OPERATOR
In this section, we shall suppose that A4 is a bounded operator.

Lemma 3.4.1. If the operator A is bounded, then there exists a positive number A
such that o(A) < [, 4].

Lemma 3.4.2. Let the operator A be bounded and o = 0. Then §*|x| < 4% <
< A"’”x” for x € H and 6* < ”A“” < 4%
Proof. By Lemma 3.4.1 we have d < s < Aforse a(A) and thus
<

(] = 5% j

a(4)

dEG) x| = j 2 d|Es) 2] = 4]

a(A)

s [ amalm <l = (e
a(A4)
This proves the lemma.

Theorem 3.4.1. If the operator A is bounded and o = 0 then
(i) Fe%([to, +0), 2(A%) if and only if F € %([ty, + ), D(A°)),
(i) F e €(2(u;), 2(A%) if and only if F e €(D(u;;), 2(A°)),
i) 2(£) = U N E(L24°),

I=[a,b)SR* i=0
I=[a,b]SR+

n—1
(vya= U N (1, 2(A°)), where obviously 9(A°) = H.
I=[a,)SR* i=0
I=[a,b]SR*
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Proof. This theorem is an easy consequence of Lemma 3.4.2.
Let us introduce the following notation:

n—1
llu@lll, = [X [«®(®)|?1*/* foraninteger p=1 and ue.
i=0

Lemma 34.3.If p= 1, q = 1 then IU“(t)Hlp = "Hlu(t)!”q'

Proof. Let us denote u; = [|u®”||. Then

l|lu(@)]|2 = [igouf]"/” < [i;)ui]“ < n%max? (ug, ..., Uy—y) <

< 1% uf = (@)

This proves the lemma.

Lemma 3.4.4. Ler the operator A be bounded and p = 1. Then there exist positive
constants di, ds such that d’f”]u(t)mp < |Hu(t)H| < &3|||u(v)|||, for ue, teD(u).

Proof. By Lemmas 3.4.2 and 3.4.3 it holds

(1) Hlu(t)m = [:;Z:“A(n*i)/n*u(i)(t)”2]1/2 < [:;1)[12("—i)/n"u(o(t)"z]_x/z <
< Kyf[lu(@)l2 = n Kyf[u(i],
(2) ||[u(t)”lp < n[':g:Hu(")(t)“Z]l/z < n[:;zié-Z(_n-i)/n"A(n-—i)/n u(i)(t)uz:'llz <

< Kof[u(o)l

for suitable positive constants K, K,. The relations (1), (2) prove the lemma.
As an easy consequence of Lemmas 3.4.2, 3.4.4 we get

Theorem 3.4.2. If the operator A is bounded and p = 1 then

(i) AIl types of stability and instability introduced in Definitions 1.1.1, 1.1.2,
1.1.4 with respect to the norm ”||[| are equivalent to the corresponding types of
stability and instability, respectively, with respect to the norm I”]“n

(ii) The stability at constantly acting disturbances with respect to the norms
”] ”[ [! ng/..) is equivalent to the stability at constantly acting disturbances with
respect to the norms ||[[[, ||+, or [[|“[[lo» [ |acarm or [[[-|[1» ]

Theorem 3.4.3. Let the operator A be bounded. Then

(i) Theorems 2.2.1, 2.3.1 remain valid if we replace the condition (2 2.1) by the
following one:
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There exist numbers K, R>0, p=1, q =1 such that HF(t, o(1) + u(t)) —
— F(t, o(t)| < 47 "a} K||u(?)|||, for ue satisfying D(u) < D(v), and for
t€ D(u) such that ”[u(t)[”,l <R

(ii) Theorems 2.2.2, 2.3.2 remain valid if we replace the condition (2.2.3) by the
following one:

There exist numbers K;, K,, R >0, v>0, p, =1, p, =1, p; =1 such
that if ue fulfils D(u) < D(v) and te D(u) is such that ||lu(t)||,, < R, then
|Fo(e, w(@)] = 47d} Kylu()]p0 [1Fa(t w(@)] = Ko [ju)][5

(iii) Theorems 2.4.1, 2.5.1 remain valid if we replace the condition (2.4.2) by
the following one:

There exist constants K, R > 0, v >0, p, 2 1 (i = 1, 2, 3, 4) such that

(a) if D(u;) = D(v) for u;e¥ and te D(u,) © Duy) is such that |||ult)],, <R
(i = 1,2) then |Fy(t, uy(1)) = Fu(t, ux(t))|| < Kl[Jus(t) = ux(0)|[os

(b) if ueu fulfils D(u) < D(v) and te D(u) is such that |||u(t)|[,, < R then
|Fx(t w@)] < K] [jut)|l5."-

(iv) Theorem 2.6.1 remains valid if we replace the condition (2.6.1) by the
following one:

There exist numbers K >0, R>0,v>0, p=1, q=1 so that ”F(t, ot) +
+ u(t)) — Fit, o(t))| < K||u(@)||;*> for ue® such that D(u) = [to, + ) and
t € D(u) such that ||u(t)|[, £ R.

(v) Theorem 3.1.1 remains valid if we replace the condition (3.1.2) by the fol-
lowing one: _

There exist real constants a;;, K;j, (i=0,...,.n—1,j=1,..., q,~) p =1 such
that |[(a;(t) = @) fi(A) u®(t)| < 47 a7 K Ju()l, for uew, ted(u), i=
=0,...n—-1,j=1,...,9g,.

p2>

Proof. This theorem follows immediately from Lemmas 3.4.2, 3.4.3, 3.4.4.

3.5 THE BOUNDED OPERATOR IN Ey

In this section we shall suppose that 4 is a bounded operator. Moreover, H = Ey
will be the N-dimensional Euclidean space. (So "” will denote the norm in Ey.)
Let v = (vy, ..., vy) : 2(v) > H be a maximal solution of the equation

(3.5.1) ZLu(t) = Ft,u(t)), Feb(D(u90) 2(A°).
We shall suppose

(3.5.2) F(t, u(t)) = £(t, ut), w' (), ..., u® D) = (fo(t, u(t), ..., u"~ (1),
Folty u(t)s ooyt D)), <o f(ts (), - u® (1)), B(f) = D(v) x (En)"
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f3.5.3) There exist continuous G-derivatives of the function f with respect to the
variables u, u’, ..., ™1 up to the second order.

Then
(3.5.4) F(t, v(t) + u(t)) = F(t, o(r)) + Fy(t, u(t)) + Fa(t, u(t)), where F(t, u(t)) =

=':z;:;ai(t) u™(r),

Pt u(t) = X rift, u(®) u(e) u(0),

aft) = (,)(t o1), v(1), - 07 (0)),

. 1 pt azj.
rif(t, u(?)) = L L 0D g (t, o(t) + 9o u(?), ...
L0071 + Yo u("‘”(t)) o0d8de, (i,j=0,....,n — 1)

Theorem 3.5.1. Let A be a bounded operator in H =Ey, let F € €(2(u;a,)), 2(A°))
fulfil the conditions (3.5.2), (3.5.3). Let v = (vy, ..., vy) : D(v) > H be a maximal
solution of the equation (3.5.1) such that ¢, = sup H|v(t)M,, < 4o for some p = 1.

Further, let there exist a positive number @ > Ql such that all derivatives 6f,,,/6u("
A uou? ou? (m,k,1=1,..,N, i,j=0,...,n— 1) exist and are continuous

n—1
and bounded on 9(v) x K,, whereK, = {(xo, Xgs oo Xgoy) | Xi€ Ey, [ Y [|X]P17 <
<o) =
Then the condition (2.2.2) and the conditions (a), (b) from (iii) of Theorem 3.4.3
are satisfied.

Proof. The condition (2.2.2) is obviously fulfilled according to (3.5.4) and Theorem
34.1.

If u €% is such that 2(u) < @(v) and ¢ € 9(u) then it holds

||a (1) u(x)(; l 7l (;) D) “l(ci)(t),
i ;f(’f, (& o(1), ..., "7 0(0) ui“(t))', (i=0,..,n—1).

This yields

0 Ja)w)] < C(T PO -, Tl OD] =
= CNYE S (0] S CNEY (P01 = CN 0]
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Ci= max sup (1) ot o(t), V(t), o, P, (i=0,..,n = 1).

mk=1,...,N tez(v)

(By the assumption C; are finite numbers.)

Using (1) and the linearity of the function F, with respect to the variables u, u’, ...
., u" D we obtain

[Fo(t ui(0) = Fult, ux(0)] < Z T (2(0) — u(0) ) =

< CNJuP () — ()] < max ) — o]
i=0 i

So the condition (a) is proved. Now let us find a number R > 0 so small that
() (o(t) + 9o u(t), V(1) + Yo u'(t), ..., v O(1) + Yo u" (1)) €K,

for all 9, 0€[0,1], ue¥ such that P(u) = D(v) and for te P(u) satisfying
Jlu@)ll, = R. o
From (2) in virtue of the boundedness of the derivatives 0%f,0u? 0ul? we obtain

that
[ [ sz o0 + 9069,

= sup
G max oJo oul? ouh

L mkl=1,.N 1e(te2®)] [lu(]]|, < R)

v(1) + 90 4(0), 0= 0(0) + S5 uD(1)) o A9 do

are finite numbers. Thus

It u(e) u(0) w0l = (zJ [ s (40 + 820,

1=

Sn=(f) + 90 utr=1(1)) 0 d9 do w2(t) ui 1), ...

J,r i — (1, o(t) + o u(t), ..., 0" (1) +
kl 1

oul) oud
<

< B0 ol L 0 o -

+ 90w V(1) ¢ 49 do uf(0) usf><r>)

_ CijN‘/ i 9(1) “(J)(t)l < Kij(Jlu®(0)|* + “u(n(t)uz)

41
k,}
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where K;; are suitable constants. So
n—1
[Ex(t u(@)] < K X [u(0]* = K] Ju(1)]12

for u € % for which 9(u) = 2(v) and for t € D(u) satisfying |||u(1)|||, < R. This proves
the condition (b). The theorem is proved.
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