Antonio M. Lopez, Jr.; John K. Luedeman
Quasi-injective S-systems and their S-endomorphism semigroup

Czechoslovak Mathematical Journal, Vol. 29 (1979), No. 1, 97–104

Persistent URL: http://dml.cz/dmlcz/101581
QUASI-INJECTIVE S-SYSTEMS AND THEIR S-ENDOMORPHISM SEMIGROUP

ANTONIO M. LOPEZ, JR., New Orleans, and JOHN K. LUEDEMAN, Clemson

(Received March 14, 1977)

Patterned after the theory of modules over a ring, P. BERTHIAUME [1] introduced the concepts of injective and weakly-injective S-systems. He exhibited examples of such S-systems and showed that properties holding true for a right ring module need not hold for a right S-system. For example, a weakly injective S-system need not be injective; in ring theory, this is part of Baer's Theorem. In this paper, we study another weak form of injectivity called quasi-injectivity. Quasi-injective modules have been studied by JOHNSON and WONG [6], FAITH and UTUMI [3], and B. OSOFSKY [8], among others. Recently M. SATYANARAYANA [9] investigated quasi- and weakly-injective S-systems. Our paper is a study of quasi-injective S-systems and their S-endomorphism semigroup. We characterize the smallest quasi-injective essential extension of an S-system M_0 contained in $I(M_0)$, its injective hull. Further we give conditions for $\text{Hom}_S(M, M)$ to be (von Neumann) regular and obtain as corollaries a result of M. BOTERO DE MEZA [2] dealing with the regularity of the maximal right quotient semigroup $Q(S)$ of a semigroup S, and a generalization for S-systems of Faith and Utumi's result on the regularity of the endomorphism ring of a quasi-injective module.

1. PRELIMINARIES

Definition 1.1. A right S-system M with zero, denoted M_0, is a set M, a semigroup S with zero, and a function $M \times S \rightarrow M$ such that $(m, s) \rightarrow ms$ and the following properties hold:

(i) $(ms)t = m(st)$ for $m \in M$ and $s, t \in S$.

(ii) M contains an element \mathcal{Z} (necessarily unique) such that $\mathcal{Z}s = \mathcal{Z}$ for all $s \in S$.

(iii) for all $m \in M$, $m0 = \mathcal{Z}$, where 0 is the zero of S.

Dually we can define a left S-system with zero. In this paper all our S-system will be right S-systems with zero.
Definition 1.2. A subsystem N of M_S, denoted $N_S \leq M_S$, is a subset of M such that $ns \in N$ for all $n \in N$ and $s \in S$.

Definition 1.3. A (right) congruence α on M_S is an equivalence relation defined on M such that if $a \alpha b$ then $(as) \alpha (bs)$ for $a, b \in M$ and all $s \in S$.

Definition 1.4. An S-homomorphism $f : A_S \rightarrow B_S$ is a mapping from A to B such that for any $a \in A$ and $s \in S$, $f(as) = f(a)s$.

The set of all S-homomorphisms from A_S to B_S is denoted by $\text{Hom}_S(A, B)$. Under composition of functions $\text{Hom}_S(M, M)$ is a semigroup called the S-endomorphism semigroup of M_S. If the elements of $K = \text{Hom}_S(M, M)$ are regarded as left operators then M is a (K, S)-bisystem; that is to say, M is a right S-system and a left K-system such that $h(ms) = (hm)s$ for $h \in K$, $m \in M$, and $s \in S$.

Definition 1.5. An S-system M_S is injective if for each one-to-one S-homomorphism $g : P_S \rightarrow R_S$ and each S-homomorphism $h : P_S \rightarrow M_S$, there exists an S-homomorphism $\tilde{h} : R_S \rightarrow M_S$ such that $\tilde{h}g = h$.

Definition 1.6. An S-system M_S is weakly-injective if for any right ideal R of S and $f \in \text{Hom}_S(R, M)$ there exists an element $m \in M$ such that $f(r) = mr$ for all $r \in R$.

Definition 1.7. An S-system M_S is quasi-injective if for $N_S \leq M_S$ and $f \in \text{Hom}_S(N, M)$ there exists an S-homomorphism $\tilde{f} : M_S \rightarrow M_S$ such that $\tilde{f}|_N = f$.

In [1], Berthiaume showed that a weakly-injective S-system need not be injective. However, the converse is true. Also, it is clear that M_S being injective implies that M_S is quasi-injective, but the converse here is false. In fact, quasi-injective does not imply weakly-injective, as shown by the following example adapted from [9].

Example 1.8. Let S be the semigroup \{0, a, b\} with $ab = a^2 = a$ and $ba = b^2 = b$. Now S considered as an S-system over itself is quasi-injective but it is not weakly injective since the identity map is not determined by left multiplication by an element of S. Consequently, it is not injective.

Definition 1.9. A subsystem N is large (or essential) in M_S if for any P_S and any S-homomorphism $f : M_S \rightarrow P_S$ whose restriction to N is one-to-one, then f is itself one-to-one. In such a case, we say that M_S is an essential extension of N_S.

The main result of Berthiaume's work in [1] is that every S-system has a maximal essential extension which is injective and unique up to S-isomorphism over M_S. This maximal essential extension which is injective is called the injective hull of M_S and is denoted by $I(M_S)$.

Definition 1.10. A nonzero subsystem N of M_S is intersection large (\cap-large) if for all nonzero subsystems X of $M, X \cap N \neq \emptyset$. This will be denoted by $N_S \leq' M_S$.

98
Equivalently, a nonzero subsystem \(N_s \subseteq M_s \) if and only if for all \(\emptyset \neq m \in M \) there exists \(s \in S^1 \) (an identity adjoined) such that \(\emptyset \neq ms \in N \). Feller and Gantos in [4] proved that every large subsystem of \(M_S \) is \(\cap \)-large. The converse is false.

Definition 1.11. The singular congruence \(\psi_M \) on \(M_S \) is a right congruence defined by \(a \psi_M b \) if and only if \(ax = bx \) for all \(x \) in some \(\cap \)-large right ideal of \(S \).

In [5], Hinkle showed that when \(\psi_M = i \), the identity congruence on \(M \), the concepts of large and \(\cap \)-large are the same. He also showed that \(M_S \) being weakly-injective and \(\psi_M = i \) imply that \(M_S \) is injective. Example 1.8 shows that \(M_S \) being quasi-injective and \(\psi_M = i \) does not imply that \(M_S \) is itself injective.

2. The Injective Hull

Let \(M_S \) be an \((H, S) \)-system with zero, let \(I = I(M_S) \), its injective hull, and let \(H = \text{Hom}_S(I, I) \) the \(S \)-endomorphism semigroup of \(I \). We know that \(I \) is the minimal injective essential extension containing \(M_S \). Is there a minimal quasi-injective essential extension of \(M_S \) contained in \(I \) as in ring theory?

Lemma 2.1. If \(M \) is an \((H, S)\)-bisubsystem of \(I \), then \(M \) is quasi-injective.

Proof. Let \(N_S \subseteq M_S \) and \(f : N_S \rightarrow M_S \) an \(S \)-homomorphism. Since \(M_S \subseteq I \), \(f \) can be extended to an \(S \)-homomorphism \(\bar{f} \in H \). But \(\bar{f}(M) \subseteq M \) so \(f \) can be extended to an \(S \)-homomorphism of \(M \) into \(M \), namely \(\bar{f}|_M \).

Lemma 2.2. If \(\psi_M = i_M \) then \(\psi_I = i_I \).

Proof. This follows immediately from the fact that \(M_S \) is large in \(I \) and Theorem 7 in [1].

Lemma 2.3. Let \(f, g \in \text{Hom}_S(M, M) \) and suppose \(f \) and \(g \) agree on an \(\cap \)-large subsystem \(N_S \) of \(M_S \). If \(\psi_M = i \), then \(f = g \).

Proof. Let \(x \in M \), then for \(c \in x^{-1}N = \{ s \in S : xs \in N \} \), an \(\cap \)-large right ideal of \(S \), we have \(f(x) c = g(x) c \). Since \(\psi_M = i \) then \(f(x) = g(x) \).

Theorem 2.4. If \(M_S \) is quasi-injective and \(\psi_M = i \), then \(M \) is an \((H, S)\)-bisubsystem of \(I \).

Proof. Let \(h \in H \). Since \(M_S \subseteq I \) then \(h^{-1}(M) \subseteq I \) and so \(\emptyset \neq h^{-1}(M) \cap M \subseteq I \). Let \(N = h^{-1}(M) \cap M \) and define an \(S \)-homomorphism \(a : N_S \rightarrow M_S \) by \(x \rightarrow h(x) \). Since \(M_S \) is quasi-injective there exists \(b \in \text{Hom}_S(M, M) \) such that \(b(x) = a(x) \) for all \(x \in N \). Since \(I \) is injective, there exists \(c \in H \) such that \(c(x) = b(x) \) for all \(x \in M \). Hence \(c(n) = b(n) = a(n) = h(n) \) for all \(n \in N \). Since \(\psi_M = i \) then \(\psi_I = i \) by Lemma
2.2, and so \(c = h \) by Lemma 2.3. But \(c(M) \subseteq M \) so \(h(M) \subseteq M \). Hence \(M \) is an \((H, S)\)-bisubsystem of \(I \).

Corollary 2.5. Let \(M_S \) be an \(S \)-system for which \(\psi_M = i \). Then \(M_S \) is quasi-injective if and only if \(M = HM \) where \(HM = \{ f(m) \in I \mid f \in H \text{ and } m \in M \} \).

Proof. We note that \(HM \) is the smallest fully invariant \((H, S)\)-bisubsystem of \(I \) containing \(M \) and it is quasi-injective.

Note that if \(M_S \) is quasi-injective and \(K = \text{Hom}_S(M, M) \), then any \(K \)-invariant subsystem of \(M_S \) is also quasi-injective.

Theorem 2.6. Let \(M_S \) be an \(S \)-system for which \(\psi_M = i \). Then \(M_S \) is quasi-injective if and only if \(\text{Hom}_S(M, M) \cong \text{Hom}_S(I, I) \).

Proof. Let \(K = \text{Hom}_S(M, M) \). If \(H \cong K \) then \(M \) is an \((H, S)\)-bisubsystem of \(I \) and so by Lemma 2.1 must be quasi-injective. Conversely, consider \(\phi : K \rightarrow H \) defined by \(a \rightarrow \bar{a} \) where \(\bar{a} : I \rightarrow I \) is the quasi-injective extension of \(a : M \rightarrow M \subseteq I \).

Since \(\psi_M = i \) this mapping is well defined, one-to-one and a semigroup homomorphism. Furthermore, \(M_S \) being quasi-injective implies by Theorem 2.4 that \(M \) is an \((H, S)\)-bisubsystem of \(I \).

We now show that \(HM \) is the smallest quasi-injective essential extension of \(M \) contained in \(I \).

Theorem 2.7. Let \(M_S \) be an \(S \)-system with \(\psi_M = i \). Then \(HM \) is the intersection of all quasi-injective \(S \)-subsystems of \(I \) containing \(M \).

Proof. Let \(P \) be a quasi-injective subsystem of \(I \) containing \(M \). We must show that \(HM \subseteq P \), but it is sufficient to show that \(aP \subseteq P \) for all \(a \in H \). To this end then let \(a \in H \). Since \(M \subseteq I \) and \(M \subseteq P \subseteq I \) then both \(P \) and \(a^{-1}(P) \) are \(\cap \)-large \(S \)-subsystems of \(I \) and so \(\emptyset = a^{-1}(P) \cap P \) is an \(\cap \)-large \(S \)-subsystem of \(P \). Consider the mapping \(a^{-1}(P) \cap P \rightarrow P \) defined by \(x \rightarrow a(x) \). Since \(P \) is quasi-injective then there exists an \(\bar{a} \in \text{Hom}_S(P, P) \) such that \(\bar{a}(x) = a(x) \) for all \(x \in a^{-1}(P) \cap P \). Since \(I \) is injective there exists \(\bar{a} \in H \) such that \(\bar{a}(y) = a(y) \) for all \(y \in P \). Thus \(\bar{a}P \subseteq P \).

But by Lemma 2.2 and 2.3, \(\bar{a}(x) = a(x) \) for all \(x \in a^{-1}(P) \cap P \subseteq I \) implies that \(\bar{a} = a \), and so \(aP \subseteq P \).

Since there are \(S \)-systems which are quasi-injective but not injective (Example 1.8) we can have \(HM \subseteq I, HM \neq I \). The condition that \(\psi_M = i \) cannot be omitted in the previous theorem as the following example demonstrates.

Example 2.8. Let \(Q^* \) represent the noncomplete chain of rationals with largest element \(+\infty \) and \(q \cdot q' = q \) if and only if \(q \leq q' \). Thus \(Q^*_0 \), has for its injective hull the chain of extended reals \(\mathbb{R}^* \). Berthiaume [1] showed that every noncomplete chain is weakly injective. Satyanarayana [9] showed that since \(Q^*_0 \) has an identity it must
also be quasi-injective. Here \(\psi_{Q^*} \neq i \) because if \(\psi_{Q^*} = i \) then the maximal right quotient semigroup \(Q(Q^*) \approx B(Q^*) \), the bicommutator of the injective hull of \(Q^* \), [7; Corollary 3.1] which is a contradiction since \(Q^* = Q(Q^*) \) and \(R^* = B(Q^*) \). Hence \(Q_{Q^*} \) is quasi-injective and \(\psi_{Q^*} \neq i \). In this case, \(H = \text{Hom}_{Q^*}(R^*, R^*) \) and considering the mapping \(f : R^* \to R^* \) defined by \(r \to (\sqrt{2}) \cdot r \), we say that \(HQ^* \neq Q^* \). Hence \(HQ^* \) is not the smallest quasi-injective essential extension contained in \(R^* \).

3. THE S-ENDOMORPHISM SEMIGROUP OF A QUASI-INJECTIVE S-SYSTEM

In addition to the notation of the previous section we let \(K = \text{Hom}_S(M, M) \) and define for \(m \in M \) the mapping \(\lambda_m : S_S \to M_S \) by \(s \to ms \). Let

\[
J(M_S) = \{ m \in M : \lambda_m \text{ is one-to-one only on one element right ideals of } S \}.
\]

Lemma 3.1. \(J(M_S) \) is an \(S \)-subsystem of \(M_S \).

Proof. It is clear that \(J(M_S) \) is not empty since \(\emptyset \in J(M_S) \). Let \(m \in J(M_S) \) and \(s \in S \), we must show that \(ms \in J(M_S) \). Let \(A \) be a right ideal of \(S \) with more than one element, denoted \(|A| \geq 2 \). Consider the right ideal \(sA \) of \(S \). Either \(sA = 0 \) or \(|sA| \geq 2 \).

Case 1. Suppose \(sA = 0 \) then for all \(a_1 \neq a_2 \in A \), \(sa_1 = sa_2 = 0 \) and so \(m(sa_1) = m(sa_2) = \emptyset \). Consequently \(\lambda_{ms} \) is not one-to-one on \(A \) and thus \(ms \in J(M_S) \).

Case 2. Suppose \(|sA| \geq 2 \) then there exists \(sa_1 \neq sa_2 \in sA \) such that \(m(sa_1) = m(sa_2) \) because \(m \in J(M_S) \). Hence \(\lambda_{ms} \) is not one-to-one on \(A \) and \(ms \in J(M_S) \).

Lemma 3.2. \(J(M_S) \) is \(K \)-invariant.

Proof. Let \(f \in K \) and \(m \in J(M_S) \). Since \(f \) is an \(S \)-homomorphism then \(f(ms) = f(m) \cdot s = f(\lambda_m(s)) = f \circ \lambda_m(s) \). Suppose \(f(m) \notin J(M_S) \) then \(\lambda_{f(m)} \) is one to one on a right ideal \(R \) of \(S \) with \(|R| \geq 2 \). Since \(m \in J(M_S) \) then there exists \(r_1 \neq r_2 \in R \) such that \(\lambda_m(r_1) = \lambda_m(r_2) \). But then \(f(\lambda_m(r_1)) = f(\lambda_m(r_2)) \) and so \(f \circ \lambda_m(r_1) = f \circ \lambda_m(r_2) \). Thus \(\lambda_{f(m)} \) is not one-to-one on \(R \); a contradiction.

Thus \(J(M_S) \) is a \((K, S) \)-subsystem of \(M_S \) and when \(M_S \) is quasi-injective, \(J(M_S) \) is also. Furthermore, when \(\psi_M = i \) and \(M_S \) is quasi-injective, \(J(M_S) \) is an \((H, S) \)-subsystem of \(M_S \). We now define the set

\[
T(M_S) = \{ f \in K : f^{-1}(J(M_S)) \subseteq M_S \}.
\]

Clearly the zero mapping \(\theta \in K \) is in \(T(M_S) \) and \(\{ f \in K : f^{-1}(\emptyset) \subseteq M_S \} \subseteq T(M_S) \).

Lemma 3.3. If \(J(M_S) = \{ \emptyset \} \), then

\[
T(M_S) = \{ f \in K : f^{-1}(\emptyset) \subseteq M_S \} = \{ \emptyset \}.
\]

101
Proof. Let $0 \neq f \in T(M_S)$, then there exists $\emptyset \neq m \in M_S$ such that $f(m) \neq \emptyset$. Since $J(M_S) = \{\emptyset\}$ then $f(m) \notin J(M_S)$ so there exists a right ideal R of S with $|R| \geq 2$ such that $\lambda_{f(m)}$ is one-to-one on R. Consider now the S-subsystem mR and note that $|mR| \geq 2$. Now f is one-to-one on mR and since $f^{-1}(\emptyset) \subseteq M_S$ then $f^{-1}(\emptyset) \cap mR \neq \emptyset$. This is a contradiction since if $x \in f^{-1}(\emptyset) \cap mR, f(x) = \emptyset$ and since $x \in mR$, then $f(x) = f(\emptyset)$ which implies that $x = \emptyset$ since f is one-to-one on mR. Hence $T(M_S) = \{\emptyset\}$.

Theorem 3.4. Let M_S be a quasi-injective S-system. If $\psi_M = i$ and $J(M_S) = \{\emptyset\}$, then $K = \text{Hom}_S(M, M)$ is regular.

Proof. Let $0 \neq f \in K$, then there exists $\emptyset \neq x \in M_S$ such that $f(x) \neq \emptyset$ and so $f(x) \notin J(M_S)$. Hence there exists a right ideal R of S with $|R| \geq 2$ such that $\lambda_{f(x)}$ is one-to-one on R. Hence considering the S-subsystem xR we can say that f is one-to-one on xR and $|xR| \geq 2$. By Zorn's Lemma, there is a maximal S-subsystem on which f is one-to-one, call it D_f. Define the S-homomorphism $g : f(D_f) \to D_f$ by $y = f(z) \to z$. Since M_S is quasi-injective then we can extend g to $\bar{g} \in K$ such that $\bar{g} \big|_{f(D_f)} = g$. Let $D_f = f^{-1}(f(D_f))$, then for $t \in D_f, f(t) = f(r)$ for some $r \in D_f$. Hence for $t \in D_f$ we have

$$f \bar{g}(f(t)) = f(\bar{g}(f(t))) = f(\bar{g}(f(r))) = f(r) = f(t).$$

Thus if $D_f \subseteq M_S$ we have by Lemma 2.3 that $f \bar{g}f = f$ on M_S. Hence suppose D_f is not an \bigcap-large subsystem of M_S, then there exists $A_S \subseteq M_S$ such that $|A_S| \geq 2$ and $A_S \cap D_f = \{\emptyset\}$. Let $\emptyset \neq a \in A_S$ such that $f(a) \neq \emptyset$. Then $f(a) \notin J(M_S)$ so there exists a right ideal Y of S such that $|Y| \geq 2$ and $f(a) y_1 \neq f(a) y_2$ for all $y_1 \neq y_2 \in Y$. Hence f is one-to-one on $aY \subseteq M_S$. But $D_f \subseteq D_f$ so $A_S \cap D_f = \{\emptyset\}$ implies $D_f \cap aY = \{\emptyset\}$. Now $D_f \cup aY \supseteq D_f$ so f is not one-to-one on $D_f \cup aY$ by the maximality of D_f. Hence there exists $d \in D_f$ and $a y \in aY$ such that $d \neq a y$ but $f(d) = f(ay)$. Thus $a y \in f^{-1}(f(D_f)) = D_f$. But $D_f \cap aY = \emptyset$ since $D_f \cap A_S = \emptyset$ and so $a y = \emptyset$. Thus $f(d) = \emptyset = f(\emptyset)$ and $d = \emptyset$: a contradiction since $a y \neq d$. Thus $D_f \subseteq M_S$ and K is regular.

Corollary 3.5. Let M_S be an S-system with $H = \text{Hom}_S(I, I)$ where I is the injective hull of M_S. If $\psi_M = i$ and $J(M_S) = \{\emptyset\}$, then H is regular.

Proof. It suffices to show that $J(M_S) = \{\emptyset\}$ implies $J(I) = \{\emptyset\}$. Let $0 \neq t \in J(I)$. Since $M_S \subseteq I$ then $t^{-1}M$ is an \bigcap-large right ideal of S and $|t^{-1}M| \geq 2$. Hence there exists $0 \neq s \in S$ such that $0 \neq ts \in M$. We now show that $ts \in J(M_S)$ which gives a contradiction. Let R be any right ideal of S with $|R| \geq 2$. Then either $sR = 0$ or $|sR| \geq 2$.

Case 1. If $sR = 0$ then for $r_1 \neq r_2 \in R, t(s r_1) = t(s r_2)$ so λ_{ts} is not one-to-one on R.

102
Case 2. If $|sR| \geq 2$ then there exists $sr_1 \neq sr_2 \in sR$ such that $t(sr_1) = t(sr_2)$ because $t \in J(I)$. Hence once again λ_{ts} is not one-to-one on R.

Thus in both cases $ts \in J(M_S)$.

The next corollary is similar to a result of M. Botero de Meza [2].

Corollary 3.6. Let S be a monoid considered as a right S-system with zero over itself, and let $Q(S)$ be the maximal right quotient semigroup of S. If $\psi_S = i$ and $J(S) = 0$, then $Q(S)$ is regular.

Proof. Corollary 3.5 and [7, Corollary 3.2].

We now link this work with a result of Faith and Utumi [3] by considering the following set:

$$X(K) = \{f \in K : f \text{ is one-to-one only on one element S-subsystems of } M_S\}$$

Lemma 3.7. $T(M_S) \subseteq X(K)$.

Proof. Let $f \in T(M_S)$ then $f^{-1}(J(M_S)) \subseteq M_S$. Let $\emptyset \neq N_S \subseteq M_S$, then $f^{-1}(J(M_S)) \cap N_S \neq \{\emptyset\}$. Let $\emptyset \neq n \in f^{-1}(J(M_S)) \cap N_S$ then $f(n) \in J(M_S)$. Consequently, $\lambda_{f(n)}$ is one-to-one on only one element right ideals of S. So there exists $s_1 \neq s_2 \in S$ such that $f(n)s_1 = f(n)s_2$. But then f is not one-to-one on $nS \subseteq N_S$ so $f \in X(K)$.

Lemma 3.8. If $J(M_S) = \{\emptyset\}$ then

$$X(K) = T(M_S) = \{f \in K : f^{-1}(\emptyset) \subseteq M_S\} = \{\emptyset\}.$$

Proof. Let $f \in X(K)$ and suppose $f^{-1}(\emptyset)$ is not an \bigcap-large subsystem of M_S. Then there exists $\emptyset \neq T_S \subseteq M_S$ such that $f^{-1}(\emptyset) \cap T = \{\emptyset\}$; that is, $\{m \in M : f(m) = \emptyset\} \cap T = \{\emptyset\}$. So there exists $\emptyset \neq t \in T$ such that $f(t) \neq \emptyset$ and so $f(t) \notin f^{-1}(J(M_S))$. Furthermore, there exists a right ideal R of S with $|R| \geq 2$ such that $r_1 \neq r_2 \in R$ implies $f(t)r_1 \neq f(t)r_2$. Hence f is one-to-one on $tR \subseteq T \subseteq M$. But this is a contradiction since $|tR| \geq 2$ and $f \in X(K)$. Thus $f^{-1}(\emptyset) \subseteq M_S$ and so $X(K) = \{f \in K : f^{-1}(\emptyset) \subseteq M_S\}$.

Theorem 3.9. If S is a ring and M_S is a quasi-injective right S-module then

$$X(K) = \{f \in K : \ker f \subseteq M_S\}.$$

Proof. If $f \in X(K)$ but $\ker f = \{m \in M : f(m) = 0\}$ is not \bigcap-large in M_S then there exists $\emptyset \neq T_S \subseteq M_S$ such that $\ker f \cap T_S = \{0\}$ so f is one-to-one on T_S. This is a contradiction since $f \in X(K)$ so $\ker f \subseteq M_S$.

Faith and Utumi [3] showed that $K \setminus X(K)$ is a regular ring and when $X(K) = \{\emptyset\}$, K is a regular ring. Thus Theorem 3.4 generalizes the second half of Faith and Utumi's result to quasi-injective S-system whose singular congruence is the identity congruence.
References

Authors' addresses: Antonio M. Lopez, Jr. Department of Mathematical Sciences, Loyola University, New Orleans, Louisiana 70118, U.S.A.; John K. Luedeman, Department of Mathematical Sciences, Clemson University, Clemson, South Carolina 29631, U.S.A.