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THE COEFFICIENT RING OF THE SKEW GROUP RING 

JAMES OSTERBURG, Cincinnati • 

(Received August 10, 1977) 

We let R be an associative ring with an identity (unless explicitly stated otherwise). 
We let G be a finite group of automorphisms of i^. We consider two rings associated 
with R and G. The first is the fixed ring of R under G, R^ = {r in R\r^ — r for all g 
in G}. The second is the skew group ring or the crossed product, Я * G, which as 
a left R module is free with basis {ug \ g eG} and u^r = r^Ug. Now JR can be viewed 
as a left R * G module by defining Y^o^g^g^ = YjO^g^^^ ^̂ ? ^ iî  ^- We call a left 
JR * G submodule of Я a G-invariant left ideal of JR. By the trace of R, t[R), we mean 
the collection of all elements of R^ of the form J]G^^^ ^ i^ ^- K^) î  ̂  two-sided ideal 
of R^, Finally, the map that associates Yo^g^g in 1̂  * G to the right R^ homomor-
phism/(r) = YjG^g^^^ ^ ^^ i^ is a ring homomorphism from jR * G to End {RRG). 

Now f : R ^ G -^ R, f{Y,^gUg) = Y^g î  ^ ^̂ ^̂  Я * G, right R map. Unlike the 
group r i n g / i s not a ring map, but JR is a left jR * G homomorphic image of i? * G. 
Also the map from i? to JR * G that sends r to r(ui + Ug + ... + u^) is a left JR * G 
map. So 7̂  is a left R^ G submodule of î  * G. 

In [4, Theorem 2.8], J. FISHER and J. OSTERBURG showed that if jR^ has the ACC 
on semiprime ideals, then so does Я, as long as |G | is invertible in R. 

Theorem 1. Assume that G is a finite abelian group such thai the order of G is 
invertible in R. If R* G satisfies the ACC on semiprime ideals, then R satisfies the 
ACC on semiprime ideals. 

Proof. Let Ai Ç ^2 , ... ^ Ai be an ascending chain of G-invariant semi-
prime ideals of R. Then (R * G) A^ = A^{R * G) Ç (Я * G) ^2 = A2{R * G) .. . 
... Я {R * G) Ai = Ai{R * G) is an ascending chain of two-sided ideals of i^ * G. 
Now (R ^ G) Ai, for / = 1, 2 , . . . , is a semiprime ideal of i^ * G. Since Ai is G-invariant 
for each i, G acts on JR/v4̂ . In fact, the map from .R * G to (RJAi) * G that associates 
ГдЫд to (гд + A^ и g is an epimorphism with kernel Ai(R * G). Now we have (i^Mf) * 
* G = Я * G/(JR * G) Al. Since G is abelian and RJAi is semiprime with no order of G 
torsion, we use [8, Proposition 3.3] to conclude that {R * G) Ai is a semiprime ideal 
of î  * G. 
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By the hypothesis of the theorem, we conclude that the chain of ideals in R* G 
terminates; hence, we have shown that every chain of G-invariant semi prime ideals 
of R terminates. Using a result of Joe W. Fisher in [6], we conclude that this implies 
the ACC on semiprime ideals in R. 

The next result is true even if there is order of G torsion, i.e., there is r Ф 0 in i? 
such that |GJ r = 0. 

It is shown in [6] that if î  * G is Artinian or Noetherian, then R is Artinian or 
Noetherian (respectively). The if part of the following theorem is due to D. HANDEL-
MAN, J. LAWRENCE, W . SCHELTER [8, Theorem 3.5c]. Our proof is slightly different. 

Theorem 2. Assume that R has no ^G^-torsion. Then R * G is a semiprime Goldie 
ring if and only if R is a semiprime Goldie ring. Moreover, if the quotient ring of R 
is ß , then the quotient ring of R * G is Q ^ G, the skew group ring of G with Q. 

Proof. Assume R is semiprime Goldie and ß is the quotient ring. Since | G | is 
regular in R, it is invertible in ß . The action of G in Я can be extended to ß by taking 
(а~^Ьу = {a^)~^ b^. It is easy to see that i^ * G is an order in ß * G. 

Since ß * G is f.g. over ß , it is Artinian. All we need to do is show that the Jacobson 
radical of ß * G is 0. This follows from the fact that | G | is invertible in ß , so ß * G 
and ß form a projective pair [5, Theorem 3, p. 99]. In this case, the Jacobson radical 
of ß * G is zero by [12, Theorem 16.3, p. 65]. Thus Я * G is an order in a semisimple 
ring; hence, R is semiprime Goldie. 

Now to the converse. We show first that R is semiprime, if i^ * G is semiprime. 
L e t / b e an ideal of jR such that/^ = 0. Let Л = / + / ^ + ... + Л G = {1, ^ , . . . , / i } , 
then Ä is G-invariant and AR * G is an ideal of JR * G. It is easy to see that a power 
of this ideal is 0. So / = 0. 

If i^ * G is semiprime Goldie, then R when viewed as a subring of i^ * G inherits 
the ACC on left annihilators. By considering Я as a left R* G submodule of R * G, 
we see that R has finite Goldie dimension as an i^ * G module. By [4, Corollary 1.3], 
we conclude R is Goldie. 

For each g in G, we let Cg = {r e R\rx, = x^r for all xin R}. Now C^ is the center 
of R and each Cg is a module over C^. We say g is inner, if Cg contains a regular 
element, r. Note rx = x^r is the left common multiple property. Thus if Cg contains 
a regular element we can form a classical quotient ring that contains r~^. In this 
quotient ring x^ = rxr"^. We call an automorphism outer, if it is not inner. G is 
called outer, if every automorphism, except the identity, is outer. In our next result, 
we allow G torsion. 

Theorems. Let R be a prime Goldie ring and G and outer group of automorphisms 
of R. Then R* G is a prime Goldie ring. 

Proof. Put ß equal to the quotient ring of R. As usual, we extend the action of G 
to ß . Since regular elements of ß are invertible in ß , G remains outer as a group of 
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automorphisms of Q, By [8, Proposition 1.1], the skew group ring of Q with G, 
ß * G is simple. Thus Я * G is an order of Q * G, a simple Artinian ring; hence, 
Я * G is prime Goldie. 

The following example shows that the converse is not quite true. Let R = Z x Z, 
Z the integers, a semiprime Goldie ring with quotient ring T = Q x Q, Q the 
rationals. Let g(a, b) = (b, a) and G = (^дУ, Now T* G is simple Artinian, hence 
jR * G is prime Goldie, but jR is not prime. 

In [9, p. 350], V. K. KHARCHENKO defined the notion of G-prime, if Ä, В are G-
invariant ideals of JR such that ЛВ = 0, then Ä = 0 or В = 0. Furthermore, R is 
G-prime if and only if По^^ = 0, P a prime ideal of R. We note that R is G-prime 
means Ris a, subdirect sum of G isomorphic prime rings. See [9, Lemma 1, p. 450]. 

Theorem 4. Let R * G be a prime Goldie ring, then R is a G-prime Goldie ring. 
So R is semiprime Goldie. 

Proof. Just as the proof of Theorem 3. 
The left Krull dimension oj R we denote by К dim R, The reader should consult 

[7] for all of the relevant facts concerning Krull dimension. 

Theorems. Assume |G| is invertible in R. Then R is semiprime with Krull dimen­
sion if and only if R ^ G is semiprime with Krull dimension. 

Proof, (only if) By [7, Corollary 3.4, p. 20] R is semiprime Goldie. Thus by 
Theorem 2 jR * G is semiprime. Since JR * G has Krull dimension as a left R module^ 
it has Krull dimension as a left R* G module* 

(if) Clearly as a left R^ G module R has Krull dimension. Since |G| is invertible 
in R, we conclude that the fixed ring has Krull dimension by [5, Theorem 2.2, p. 104]. 
Now, D. PARKAS and R. SNIDER show in [3] that i? is a submodule of a f.g. R^ 
module. Hence, if R^ has Krull dimension so does î . 

We now consider left perfect rings. These are rings such that modulo the Jacobson 
radical, J(R), they are Artinian. Also J(JR) is left T-nilpotent. We will use the following 
characterization of an ideal A, being left T-nilpotent, for any left JR module M ф 0, 
AM is a proper submodule of M. See [1, Lemma 28.3, p. 314]. 

Theorem 6. Assume R has no \G\'torsion. Then R is left perfect if and only 
if R* G is left perfect. 

Proof. It is well-known that left perfect rings have the DCC on principal right 
ideals. Thus |G| is invertible in jR. Each automorphism of R,g, induces an auto­
morphism on R = RlJ{R) as follows, g{r + J{R))= r^ + J{R). We denote this 
map by g. The association f̂ to ^ is a group homomorphism from G to the group 
automorphism of R. Let H be the kernel of this map and G = GJH. We form Я * G, 
which is a homomorphic image of JR * G. Namely, apply the map ~ : JR --» Ä to the 
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coefficients of Я * G. The kernel of this homomorphism is J(R) R * G, but by [11, 
Theorem 16.3, p. 65], J{R * G) is the kernel. Thus we have R * G/J(JR * G) is Artinian. 

We now consider T-nilpotence. To this end let M be an arbitrary left R * G module. 
Now J{R * G) M is J[R) M from the above, and J{R) M is a proper submodule, 
since J(R) is T-nilpotent. Hence J{R * G) is left T-nilpotent and we have shown 
R* G is left perfect, if R is left perfect. The converse follows from J[R) is contained 
in J{R * G). 
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