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Czechoslovak Mathematical Journal, 29 (104) 1979, Praha 

SEQUENTIALLY COMPLETE SPACES 

ROMAN FRIC, 2ilina and VACLAV KOUTNIK, Praha 

(Received November 18, 1977) 

In this paper we discuss sequential completeness of sequentially regular closure 
spaces. Sequential completions of convergence spaces are studied and several theo­
rems on extensions of continuous mappings to sequentially complete convergence 
spaces are proved. 

0. PRELIMINARIES 

By a closure operator и for a set X we mean an operator which assigns to each 
subset Л of X its closure и A с X so that иф = Ф, A a и A, and u(A и B) = uA \j uB. 
The pair (X, w) is a closure space (cf. [1]) and is often denoted simply by X. If и is 
idempotent, then Z is a topological space. A convergence space (cf. [7]) is a closure 
space (X, X) where the closure operator Я is induced by a sequential convergence 
on X, i.e. Ы = {x\x = lim x„, U(^n) ^ ^ } - Let (X, u) be a closure space. The 
convergence of sequences in X is defined in the usual way, i.e. <x„> converges to x 
iff each neighborhood of x contains x„ for all but finitely many ne N, and throughout 
the paper we make a blanket assumption that in all spaces every sequence converges 
to at most one point. Denote by Я„ the corresponding closure for Z . Clearly(A„)„ = 
= /l„ < w, (Z, u) is a Fréchet space iff A„ = м and X is topological, {X, u) is a sequen­
tial space iff {^uT' = и (ju"̂ ^ denotes the topological modification of a convergence 
closure operator ju, i.e. the finest topological closure operator coarser than ju), and 
eisubset A is sequentially closed in X iff À^^A = A. Asnhset A is said to hQ sequentially 
dense in X if (Х^У' A = X. We denote the set of all continuous or bounded con­
tinuous functions on X by C{X), C*(Z), respectively. F will denote a set of functions 
on X. However, if F c: C{X) and we want to stress that we deal with continuous 
functions we shall use CQ instead of F. Denote СДХ, и)) = C((X, Я„)), i.e. C,(Z) 
is the set of all sequentially continuous functions on X. Clearly C{X) с Cj^X) and 
if X is a convergence or a sequential space, then C[X) = CJ(^X). 

Definition 0.1. Let У be a closure space, X a subspace of У, and F a Cj^X), The 
space X is said to be sequentially F-embedded in У if each / e F has an extension 
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For F cz C(X) it follows that if X is F-embedded in 7, then it is also sequentially 
F-embedded in 7, and if X and 7 are convergence or sequential spaces, then X is 
sequentially F-embedded in 7 iff it is F-embedded in 7. 

DeinitioK 0.2. Let Z be a set and F с: R^. A closure space (Z, u) is said to be 
F-sequentially regular if the convergence of sequences in X is projectively generated 
by F, i.e. lim x,^ = x iff for each / e F we have lim/(x„) = / (x) . If F = C(Z), then 
we simply say that X is sequentially regular. 

Note that if a space is F-sequentially regular, then the uniqueness of sequential 
limits implies that F separates the points of the space. 

Clearly, if X is F-sequentially regular, then F с: Cj^X). If Я„ = u, then we obtain 
the definition of Fg-sequential regularity from [8]. If, moreover, F = C(Z), then 
we have the sequential regularity defined in [7]. 

1. SEQUENTIALLY COMPLETE SPACES 

Definition 1.1. Let Z be a closure space and F a R^. A sequence <x„> of points 
of X is said to be F-fundamental if for e a c h / e F the sequence </(x„)> converges 
in R, 

Note that if F c: Cj^X), in particular if X is F-sequentially regular, then every 
convergent sequence in X is F-fundamental. 

Lemma 1.2. Every F-fundamental sequence in an F-sequentially regular closure 
space is either convergent or totally divergent. 

Proof. Let X be an F-sequentially regular closure space and let <x„> be an F-
fundamental sequence which is not totally divergent in X. Then there is a sub­
sequence <x^> of <x„> converging to a point x i nZ . Consequently, we have lim/(x^) = 
= / (x) and therefore also lim/(x„) = f{x). Since X is F-sequentially regular, we 
have lim x„ = x. 

We define an equivalence relation on the set of all F-fundamental sequences in 
an F-sequentially regular closure space as follows: <x„> -^ <};„> whenever lim/(x„) = 
= lim/(j^„) for each feF. The equivalence class containing <x„> will be denoted 
by [<x„>]. 

Lemma 1.3. Let <;;„> e [<x„>], <z„> G [<X„>] , and lim y^ = y. Then lim z„ = y. 
The easy proof is omitted. 

Corollary 1.4. The set of all equivalence classes [<^i,)] is the union of two disjoint 
sets, one consisting of all equivalence classes containing a constant sequence and 
the other consisting of all equivalence classes containing only totally divergent 
sequences. 
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Definition 1.5. Let X be a closure space and F a R^. The space X is said to be 
F-sequentially complete if every F-fundamental sequence converges in X. If F = 
= C(X), then we simply say that X is sequentially complete. 

Note that an F-sequentially complete closure space need not be F-sequentially 
regular. E.g. if F = R^, then X is always F-sequentially complete but X is F-se­
quentially regular iff it is discrete. 

Defirition 1.6. Let X be a closure space and F с: R^. The space X is said to have 
the property p with respect to F if 
(p) for every two sequences <x„> and <(y„> of points of X such that (Я„ U(^«)) '^ 

n (A„ U(}^«)) = 0 there is a function / e F such that lim/(x„) = lim/(;;„) does 
not hold. 

If F = C{X), then we simply say that X has the property p. 
This property has been introduced in [2] for convergence spaces and F cz C{X). 

It has been studied in [3] in the special case when F = C(X) n F^, where E <^ R. 

Lemma 1.7. Le^ X be a closure space which has the property p with respect to 
F с C,(X). Then: 

(i) X is F-sequentially regular. 
(ii) X has the property p with respect to each F\ F a F' a R^. 

(iii) If F = C(X) or F = C^(X), then X has the property p with respect to C*(X) 
or C*(Z), respectively. 

Proof, (i) and (ii) follow immediately, (iii) was proved in [3] (Corollary 1.8) for 
convergence spaces and the proof can be easily extended to closure spaces. 

Theorem 1.8. Let {X, u) he an F-sequentially regular closure space. Then the 
following statements are equivalent. 

(i) X is F-sequentially complete. 
(ii) X has the property p with respect to F. 

(iii) X is sequentially closed in every closure space (У, v) in which it is sequentially 
F-emhedded. 

Proof, non (iii) implies non (ii). If z e X^X — X, then there is a one-to-one sequence 
<z„>, z„ G X, converging to a point z in Y. We have (Я„ U(^2«-i)) ^ {K U(^2n)) = 0-
Since X is sequentially F-embedded in У, we have lim/(z2„_i) = lim/(z2„) for 
each / e F. 

non (ii) implies non (i). Let <x„> and <y„> be sequences of points of X such that 
{K U(^n)) ^ {K U(y«)) = 0 ^^^ suppose that for each fe F WQ have Hm/(x„) = 
= Ит/(у„). For neN put Z2„-i = x„, Z2„ = y„. Then <z„> is an F-fundamental 
sequence not converging in X. 

non (i) implies non (iii). Let <x„> be a totally divergent F-fundamental sequence 
in X. Denote by XQ = [<^и)] the equivalence class containing <x„> and put Y = 
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= X и (хо). For each feF define a function / o n 7 as follows: / (x) = f{x) for 
X G X , / ( x o ) = lim/(x„). Put F = { / | / e F } . Define a closure Ü for T a s follows: 
j ; G t;^ if either y e u[A n X) or there is a sequence < j„> in A such that for each 
JEFWQ have lim/(y„) = /(}^). Then (Z, w) is a sequentially F-embedded subspace 
of (y, v) and X is not sequentially closed in Y. Note that X is open and hence se­
quentially open in Y. 

Let ^-space stand for one of the following: convergence space, sequential space, 
closure space, topological space. We have 

Theorem 1.9. Let (X, u) be a CQ-sequentially regular espace, CQ С C[X). Then 
the following statements are equivalent. 

(i) X is Co'Sequentially complete. 
(ii) X is sequentially closed in every espace Y in which it is sequentially CQ-

emhedded. 
(iii) X is sequentially closed in every espace Y in which it is CQ-embedded. 

Proof, (i) impHes (ii) by Theorem L8. Since Q c= C(X) and hence a Co-embedded 
subspace is also sequentially Co-embedded, it follows that (ii) implies (iii). It remains 
to prove that non (i) impHes non (iii). 

(1) Let [X, u) be a convergence space. Then the space (У, v) constructed in the 
third part of the proof of Theorem L8 is a convergence space as well and the assertion 
follows immediately. 

(2) Let (X, u) be a sequential space. Let (X, Я„) be the associated convergence 
space. It follows from Theorem 3.3 and Theorem 3.6 in [3] that (X, u) is Co-se-
quentially regular (complete) iff" (X, Я„) is Co-sequentially regular (complete). We 
have just proved in (l) that there is a convergence space (У, fi) such that (X, Я„) is its 
open but not sequentially closed subspace which is sequentially Co-embedded, and 
hence Co-embedded, in (У, JJL). Let v be the topological modification of fi. The space 
(y, v) is sequential and, X being open, (X, u) is a subspace of (У, t;). Clearly, (X, u) 
is Co-embedded in (У, v). 

(3) Let (X, u) be a closure space. Let <x„> be a totally divergent Co-fundamental 
sequence in X. Denote by Xo = [<x„>] the equivalence class containing <x„> and let 
У = X u (xo). For each /GCQ define a function / o n У as follows: for x G X let 

/ (x) = / (x) and let/(xo) = lim/(x„). Denote by CQ the family of all such extensions. 
Define a closure operator v for У as follows. Let A c: Y. Then for >̂  Ф Xo let j G VA 
iS y e u{A n X) and let XQ G VA iiï for each g e С о we have ö̂ (xo) G cl gl^Ä]. It is easy 
to see that (X, u) is a Co-embedded subspace of (У, v), 

(4) Let (X, u) be a topological space. Clearly it suffices to prove that the closure 
space (y, v) constructed in (3) is a topological space, i.e. v{vA) = vA for each subset 
A of У Let A cz У and let у e v{vA), у ^ XQ. Then у e u{{vÄ) n X) = u{u{A n X)) = 
= U(A n X) Cl vA. Now let XQ ф vA. Then there is g e CQ such that g{xo) ф cl g\^A^, 
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and vA = u{A n X) = uA. Since g \X e CQ e C{X), we have gluA] e cl g^A] and 
hence cl gluA] <=. cl glA]. Thus ^̂ (xo) Ф cl ^[мЛ] = cl g[vA] which implies XQ ^ 
Ф v{vA). Consequently v(vA) = vA, This completes the proof. 

Remark 1.10. From the proof of Theorem 1.9 it follows that in (ii) and (iii) we can 
require the ^-space Y to be Co-sequentially regular, CQ\X = Co or sequentially 
regular, respectively, and to contain X as a sequentially dense open subset. A similar 
remark holds for Theorem 1.8. 

Theorem 1.9 can be extended to completely regular spaces provided that CQ 
determines the topology of the underlying space. 

Theorem 1.11. Let X be a completely regular space and CQ CZ C(X) a subset 
which determines the topology of X. Then the following statements are equivalent. 
(i) X is CQ-sequentially complete. 

(ii) X is sequentially closed in every completely regular space in which it is se­
quentially Co-embedded. 

(iii) X is sequentially closed in every completely regular space in which it is Co-
embedded. 

Proof. It is easy to see that X is Co-sequentially regular. Thus (i) implies (ii) 
which implies (iii) by Theorem 1.9. The remaining impHcation follows also from 
Theorem 1.9. Indeed, the topological space (7, v) constructed in the proof of Theorem 
1.9, parts (3) and (4), is completely regular. This follows from the fact that CQ de­
termines the topology of Y. 

Let ^-space stand for one of the following: closure space, convergence space, 
topological space, sequential space, completely regular space. Using Lemma 1.7 we 
have 

Corollary 1.12. Let X be a sequentially regular espace. Then the following 
statements are equivalent. 

(i) X is sequentially complete. 
(ii) X has the property p. 

(iii) X is sequentially closed in every espace in which it is C-embedded. 
(iv) X is sequentially closed in every espace in which it is C^-embedded. 

The following example shows that in Theorem 1.9, i^-space cannot stand for 
Fréchet space and that Theorem 1.11 fails if all spaces in question are assumed to be 
Fréchet. 

Example 1.13. Let Z = U JJ (x^„). Define a topology и for X as follows: for 

n > 0 all points x^„ are isolated and for each x^o the family of all sets of the form 
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(•̂ шо) ^ ( и i^mn)) is а local base at X„,Q. For each к : N -^ N and / G N define/ : X -> 
m = i 

-* {0, 1} as follows: 

f{x) = 1 for X e ( и (x.o)) ^ ( и и (^m„)), 
m= I m= I n = k(m) 

and 
/ (x) = 0 otherwise . 

Denote by Q the family of all such functions. Then: 
(a) (Z, u) is a Fréchet completely regular space. 
(b) Co cz C(X) and Co determines the topology of X. 
(c) (X, u) is Co-sequentially regular. 
(d) <x^o> is a totally divergent CQ-fundamental sequence. 
(e) If <y„> is a totally divergent Co-fundamental sequence in X, then <ĵ „> e [<.x^o>3 

and y„ G (J (x^o) for all but finitely many neN. 
m = l 

(f) (X, u) is not Co-sequentially complete. 
(g) X is sequentially closed in every Fréchet space in which (X, u) is sequentially 

Co-embedded. 

Corollary 1.14. Let X be a completely regular space. Then the following state­
ments are equivalent. 

(i) X is sequentially complete. 
(ii) X is sequentially closed in the Hewitt realcompactification vX of X. 

(iii) X is sequentially closed in the Cech-Stone compactification ßX of X. 

Proof. Since a completely regular space is sequentially regular, (i) implies (ii) 
by Corollary 1.12. 

non (i) implies non (ii). It follows from Theorem 1.11 that there is a completely 
regular space Y such that X is a sequentially dense C-embedded proper subspace 
of Y. Thus Y is homeomorphic to a subspace of DX and the homeomorphism leaves 
X pointwise fixed (cf. [4]). Consequently, X is not sequentially closed in vX. 

The equivalence of (i) and (iii) can be proved in the same way. 
Let X be a completely regular space. Consider vX as a subspace of ßX. From 

Corollary 1.14 follows the known result (cf. [2], [3], [5]) that a realcompact space 
is sequentially complete. Thus DX is sequentially closed in ßX. Denote by aX the 
smallest sequentially closed subset of ßX containing X. The next corollary is a gener­
alization of Theorem 8 in [2]. 

Corollary 1.15. X cz aX c: vX cz ßX. 

Remark 1.16. The notion of F-sequential completeness generalizes several previous 
definitions of sequential completeness. When F = C(X) and X is a sequentially 
regular convergence space we obtain ^^-completeness defined in [6]. By Theorem 1.9 

ê 

292 



when F с С{Х) and X is an F-sequentially regular convergence (sequential) space 
we obtain Q-sequential completeness defined in [3]. By Corollary 1.14 when F = 
= C*(X) and X is a completely regular space we obtain sequential completeness 
defined in [5]. 

2. SEQUENTIAL COMPLETION 

Now we shall consider Co-sequentially regular convergence spaces. Since not all 
sequentially regular spaces are sequentially complete (see e.g. [6]) it is natural to 
consider a suitable sequentially complete convergence space into which a given space 
can be embedded as a sequentially dense subspace. The following definition has been 
introduced by J. NOVAK in [8]. 

Definition 2.1. Let (L, X) be a Co-sequentially regular convergence space. A con­
vergence space (5, a) is said to be a Cg-sequential envelope (7Q[L) of (L , X) if 
(e/) (L, X) is a sequentially dense Co-embedded subspace of (S, a); 
(Q2) {S, a) is Co(S')-sequentially regular where Co[S) = {fe C{S) j / \LE CO}; and 
(сз) there is no convergence space (S\ a') containing (S, a) as a proper subspace 

and satisfying (ci) and (Q2) with respect to (L, Я). 
The Co-sequential envelope is unique in the sense that if S^ and ^2 are Co-se­

quential envelopes of L, then there is a homeomorphism of S^ onto 5*2 that leaves L 
pointwise fixed (Theorem 5 in [8]) and we write S^^ = 82-

The second part of the following theorem was announced in [2] (Theorem 6). 

Theorem 2.2. In Definition 2.1, the condition (сз) is equivalent to either of the 
following conditions: 

(i) S is sequentially closed in every convergence space in which it is Со(5)-^т-
bedded. 

(ii) S is CQ^Sysequentially complete. 
Moreover, the conditions {Q2) and (e^) are equivalent to 
(iii) iS has the property p with respect to CQ[S). 

Proof. It is easy to see that (63) is equivalent to (i) and hence, by Theorem L9, to 
(ii). To prove the second assertion note that a convergence space having the property p 
with respect to Co{S) is Co(5')-sequentially regular by Lemma 1.7. The statement then 
follows from the first assertion and Theorem 1.8. 

Corollary 2.3. Let (L, X) be a Co-sequentially regular convergence space. Then 
the following statements are equivalent. 
(i) ao{L) = (L, A). 

(ii) (L, X) is CQ-sequentially complete. 

Proof. The assertion follows from Theorem 2.2 (condition (ii)). 
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Corollary 2.4. o-o(L) is a Consequential envelope of (L, X) for each Q such that 
Co cz Ci cz C{(Jo{L)) I L. 

Proof. The assertion follows from Theorem 2.2 (condition (iii)) and Lemma 1.7. 

Corollary 2.5. Ö-I(Ö-O(L)) = <TO{L) for each C^ such that Со(сго(Ь)) cz d cz 
cz C{a,{L)). 

Proof. The assertion follows from Theorem 2.2 (condition (iii)) and Lemma L7. 
The Co-sequential envelope of a Co-sequentially regular convergence space L can 

be constructed by embedding the space L into a suitable product of real lines (see 
[8]). Here we give a direct construction by successive adjoining of "ideal points" 
to the given space. The main reason is that this method will be used to prove Theorem 
3.1. This method was developed in [6] for sequentially regular convergence spaces. 

Theorem 2.6. Let (L, Я) be a ÜQ-sequentially regular convergence space. Put 
(LQ, ÀQ) = (L, X), For each (̂  ^ ш^ there is a convergence space (L^, X^ with the 
following properties: 
(a) (L^, Ifj) is a subspace of (L^, ^^f^^ ^^<^h rj -^ ^ ^ œ^. 
(b) L^ = AfLo. 
(c) For each ^ ^ co^ the space (L^, Я )̂ is Co(Lç)-sequentially regular, where Co(L^) = 

= { /GC(L^) | / |LoeCo}. 
(d) For each t] ^ ^ the mapping h^(f) = / 1 L^ of Co(L^) into Co(Lj is one-to-one 

and onto. 
(e) The space (L^^, A^J is Co(L^i)-sequentially complete. 

Proof. We shall use transfinite induction. Conditions (a) through (d) are clearly 
satisfied for ^ = 0. Suppose that the spaces (L^, Я^ with the required properties are 
already defined for each tj < ^ ^ œ^. 

L Let (̂  = С + 1- The space (L^, X^ is Co(Lç)-sequentially regular by (c). Let M^ 
be the set of all equivalence classes of Co(bç)-fundamental sequences in L^ which 
contain only totally divergent sequences. Put L^ = L^ u M^. For each fe CQ(L^) 
define a function/ on L^ as follows: /(x) = / (x) for x e L^ and/(x) = hm/(x„) for 
X = [<x„>] e Mç. Denote by f = { / | / e Co(L^} the family of all such extensions. 
Let 1^ be the convergence closure for L^ projectively generated by F, i.e. x e X^A iff 
there is a sequence <X;,> in A such that for e a c h / e F we have lim/(x„) = / (x) . It is 
easy to see that (L^, X^) satisfies the conditions (a) through (d) and that F = Co(L^). 

IL Let (̂  be a Hmit ordinal. Let L^ = \J L^. Let / e CQ and x e L .̂ Then there is 

a least ordinal С < ^ such that x e L .̂ By (d) there is a unique g e CQ(L^ such that 
/ = ^ I LQ. Put/(x) = g{x). Thus for e a c h / e Co we have defined a unique extension 
/ on L .̂ The convergence closure X^ for L^ is defined in the same way as in case L 
Again, it is easy to prove that the required conditions are satisfied and that 
{ / | / 6 C o } = Co(L,). 

294 • 



To prove the last statement let <x„> be a Co{L^J-fundamental sequence. Let 
i < oji he the least ordinal such that U(^») ^ ^^ It follows from the construction 
of L^+i that <x„> converges in L^+i с L^^. 

Theorem 2.7. Let (L, X) be a CQ-sequentially regular convergence space. The 
space (L^^, À^^) is a Co-sequential envelope of (L, X). 

Proof, (a), (b), (c) and (d) in Theorem 2.6 imply for ^ = œ^ that conditions (ci) 
and (02) are satisfied. Since (L^^, À^^) is Co(bojJ-sequentially complete, the assertion 
follows from Theorem 2.2. 

3. EXTENSION OF MAPPINGS 

Theorem 3.1. Let cp be a continuous mapping of a Сi[Lysequentially regular 
convergence space (L, X) into a С2{Муsequentially regular convergence space 
(M, n). If cp о C 2 ( M ) С Ci{Üj, then there is a uniquely determined continuous 
mapping cp of o^(L) into 02{M) such that the diagram 

>M 

id I id 
у у 

G^{L) ^(T2{M) 

commutes. 

Proof. Let a^{V) = {S^,G^) and G2{M) = (52,0-2). By Theorems 2.6 and 2.7 
there is a transfinite sequence of spaces (L^, Я )̂, ^ ^ œ^, such that (LQ, XQ) = (L, Я) 
and (bojp A^J = (S^, cj^). Using transfinite induction we shall prove that for each 
(̂  ^ CL»! there is a continuous mapping (p^:L^-^ S2 such that 
(a) (p^\ L^ = cp^ for each rj ^ ^, and 
(b) cp^ о 02(52)^ с: Ci(L,) for each t] й t 
We then put ф = ф^^. Since ф\ L = (p and L is sequentially dense in iS ,̂ the uni­
queness of (p follows by a standard topological argument (see e.g. Lemma 5 in [7]) 
and the theorem will be proved. 

Let (po = (p. The assertion clearly holds. Assume that it holds for all tj < ^ ^ œ^^. 
I. Let { = С + 1. We have L^ = L^KJ M^ where M^ is the set of all equivalence 

classes containing totally divergent Ci(Lç)-fundamental sequences. Let x = 
= [<x„>] G Mç. Since фс о £2(52) с: C^(L^, the sequence <(??ç(x„)> is C2(S'2)-funda-
mental and hence converges in S2. We define (p^{x) = lim (pç(x„). For x e L^ we 
define (p^{x) = <Pç(x). Clearly (a) is satisfied. 

Let g e €2(52). By (a) we have cp^o g \ L;^ = cpi^o g E C^[L^. It follows from the 
construction of (L^, Я )̂ that cp^o g e Ci(L^), and hence (b) holds. 
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Finally, let lim z„ = z in Ц and l e t / e C^C^i)- ^У (b) we have cp.ofe C,{L,) and 
therefore lim {cp^ о f){z„) = {cp^ of) (z). Hence <АФгг))> converges to f{(p^{z)) 
for each /662(^2) . Since S^ is C2(S2)-sequentially regular, <(p (̂z„)> converges to 
(p^{z) in 52- This proves the continuity of (p^-

11. Let ^ be a limit ordinal. Since L, = U b, , the mapping (p^ defined by ^^(x) = 

= (p (̂x) for X G L^ is a well-defined mapping on Ц and satisfies (a). By the assumption, 
(Pr,ofe Ci(L^) for each/G C2(5'2) and each rj < ^At follows from the construction 
of {ЦЛе that also cp^ofeC^{L^ for e a c h / G 62(^2) and hence (b) holds. The 
continuity of cp^ can be proved in the same way as in the case of an isolated ordinal. 

For M = L, (p = id, we obtain Theorem 6 from [8] as a special case. 
From Theorem 3.1 and Corollary 2.3 we obtain the following 

Corollary 3.2. Let cp be a continuous mapping of a Ci{L)-sequentially regular 
convergence space (L, Я) into a C2{M)-sequentially regular convergence space 
(M, /i), and let (M, /л) be C2{M)'Sequentially complete. If cp о С2(М) a C^{L), 
then there is a uniquely determined continuous mapping (p of G^{1^ into M such 
that the diagram 

commutes. 

Example 3.3. To see that the condition in Theorem 3.1 is not necessary consider 
a sequentially regular convergence space (L, X) which is not pseudocompact (e.g. 
put L = R). Put (M, fi) = (L, Я), Ci(L) = C*, C2{L) = C, cp = id. It was proved 
in [2] that ö-i(L) = Ö"2(L). The assertion of the theorem follows, while clearly 
(p о C2(L) - с Ф C* = Ci{L). 

To obtain a condition both sufficient and necessary we have to consider also the 
family C(a^(L)). We have the following 

Theorem 3.4. Let cp be a continuous mapping of a C^{L)-sequentially regular 
convergence space (L, Я) into a C2{M)-sequentially regular convergence space 
{M,fi). Let C,(L) = {f\f = g \ L, g E C{a^{L))}. There is a uniquely determined 
continuous mapping cp of G^{VJ into Ö-2(M) such that the diagram 

M 

id id 

G,(L) ^—>ff2(M) 

commutes if and only if cp о С2(М) с: C^{L). 
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Proof. Since C I ( L ) C: С З ( Ь ) a C{L), it follows from Definition 0.2 that L is 
C3(L)-sequentially regular. By Corollary 2.4 we have сгз(Ь) = (J^(L). The sufficiency 
of the condition follows from Theorem 3.1. 

To prove the necessity assume that, on the contrary, there is he C2(M) such that 
(p о h Ф Сз(Ь). Then the function f = cp о h cannot be continuously extended to 
о-з(Ь) = ö'i(L). On the other hand, h can be continuously extended to й e С((Т2(М)) 
and it follows that ^ о й is a continuous extension of cp о h. This is a contradiction. 
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