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SYSTEMS OF UNARY ALGEBRAS WITH
COMMON ENDOMORPHISMS II

DaNIcA JAkuBikovA, Kosice
(Received September 15, 1977)

Part I of this paper has been submitted to Czech. Math. Journ.; for references,
cf. Part 1. In this Part II the definitions and denotations from Part I will be used.
It will be proved that card Eq(f) < cis valid for each f € F. A constructive description
of all elements of the set Eq(f) will be given.

4. UNARY OPERATIONS EQUIVALENT WITH RESPECT
TO ENDOMORPHISMS

Let I be a nonempty set and for each ¢€I let (4,, f,) be a connected monounary
algebra. Assume that 4, N 4, = 0 for each ¢, x €I, ¢ + x%. We denote by U (4. f,)
the monounary algebra (B, g), where B = |J,;4, and g(x) = f,(x) for each x e 4,,
tel.

Now let (4, f) be a monounary algebra. A system of connected monounary algebras
{(A“ f)}iex such that

(A’f) = ULEI(AL’fL)

will be called a component partition of (4, f). Obviously, each monounary algebra
(4, f) has a uniquely determined component partition.

For each ne N, n > 1 we denote by 0,(n) the class of all algebras belonging to @,
and having a cycle with period n. The symbols @,(n) and 0,(n) have an analogous
meaning,

Let (4,f) and (4, g) be monounary algebras. Suppose that {(4,,f.)}.s and
{(4.> 9.)}.c1 are the component partitions of (4, f) and (4, g), respectively. We shall
consider the following conditions: ‘

(a) If there exists ¢ € I with (4,,f,)e & U Ay, then g, = f, for each x e I.
(b) If there exists tel with (4,,f.)e A4, and g, = f,, then g, = f, for each
xel.
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(c) If there exist ¢, xel and z e A, such that (Anft)e 0, v 04(2), fiz) + z,
s/(z) = o, (4,,f,) € N5, then g, = f, for each Ael.

(d) If there exist ¢, x €I, 2 < p, € N such that (A,,f,) € 0, (p,) and (A f) e N5,
then g, = f, for each A € I.

(e) If there exists ¢ € I with (4,, f.) € &', and g, # f,, then for each x € I, whenever
1 < p,eN and (4,, f,) € 0,4(p,) the relation g, = 271 holds.

() If there exist tel and 1 < p,e N such that (4,,f,) € 021(p.), then the fol-
lowing conditions are fulfilled:

(f1) whenever x €I, 1 < p, €N, p, is divisible by p, and (A, f.) € 05(p,,), then
9x = f

(f2) whenever Ael, 1 < p,e N, p, is divisible by p, and (A2 13) € 050(p;), then
there exists n € N such that 0 < n < p,, n and p, are relatively prime, n = 1 (mod p)
and g, = f}.

(g) If there are ¢, xel, 1 <peN, 1 <p,eN, (4,f)€0(p), (A.f.)e
€ (920(p,,), where p, is divisible by p,, then there exists n e N such that 0 < n < p,,
n and p, are relatively prime and g, = 7, g,, = f-

Lemma 10. Let (4, f) be a monounary algebra nad let {(A.,f.)}.x be the com-
ponent partition of (A, f). Suppose that g € F(A) and that g and f are equivalent
with respect to endomorphisms. Then we have:

(i) {(4i 9.)}ier is the component partition of (A, g) (g. is the operation g
reduced to the set A,);
(i) the conditions (a)—(g) are fulfilled;
(iii) g. eq f, for each tel.

Proof. From Lemma 4 of Part I it follows that if (4,, f,) is a connected com-
ponent of (4, f) and if g, is the operation g reduced to 4,, then (4,, g,) is a connected
component of (4, g). Thus {(4,, g,)}.; is the component partition of (4, g).

Let te1 and let H be a mapping of 4, into 4,. Put H(x) = H(x) for each x € 4,,
H(x) = x for each xe A — A,. The mapping H is a homomorphism with respect
to fif and only if H is a homomorphism with respect to f,. Analogously, H is a homo-
morphism with respect to g if and only if H is a homomorphism with respect to g,.
Since g eq f, we obtain that H is a homomorphism with respect to g, if and only if H
is a homomorphism with respect to f,, i.e., g, eq f,. Let us remark that according to
the results of § 3, the relation g,  f, can hold only if (Al,ft) €0y U N 5.

a) Let the assumption of the condition (a) be fulfilled. Suppose that x €I, 1 <
< p.eN, (A1) €050(p,) Let xe A, If ze A,, then there are m,neN with
zef™(f1(x)). Let y belong to the cycle of (4,, f,). Put

' H(z) =z foreach zeAd — A4,
H(z) = fir=*""™(y) for each zef ™(fI(x)), where k
is an integer such that kp., +n—m = 0.
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The mapping H is a homomorphism with respect to f, thus H is a homomorphism
with respect to g. Then we have

£0) = FH(x)) = H(/(x)) = H(9.(x)) = 9.(H()) = 9.(»),

and according to Thm. 2 the relation f, = g, is valid.
Let A€l be such that (4;, g,) € A ,. From Lemma 5 it follows that there are
distinct elements {x;};.z in 4, such that f;(x;) = x,., for each i e Z. Put

G(z) =z foreach zed — A,
G(z) = x,-,, foreach zef "(fy(x)).

The mapping G is a homomorphism with respect to f, thus G is a homomorphism
with respect to g and hence

filx0) = x; = G(fi(x)) = G(9.(x)) = 9.(G(x)) = g:(xo0) -
Then according to Thm. 1 we have g, = f;. Thus we have proved that the condition
(a) is valid.

b) The condition (b) can be proved analogously.

c) Let the assumption of the condition (c) be fulfilled. If g, + f,, then Lemma 5
and Thm. 1 imply that there are distinct elements {x }, in 4, such that f,(x;) =
= Xi+1, 9(X:) = x;—, for each ieZ, f(y)e{x;:ieZ} for each ye A,. Since
s;(z) = 0, fi(z) * z, there exist distinct elements {z;},.y, in 4, with z, = z,
fA(z;) = z;-, for each j e N. Put

H(y)=y foreach yed — 4,,
H(y) = fi"'(z) foreach yef '(x;), ieN,
H(y) =z_;y, foreach yef;'(x;), ieZ, i<0.
The mapping H is a homomorphism with respect to f, hence H is a homomorphism

with respect to g. There exists a least positive integer n such that f"(z) belongs to the
cycle of (4, fl). According to Thm. 3 we have g, = f,. Then we obtain

F7(2) = H(xy-1) = H(guxs)) = 9.(H(x,)) = 9.(f1(2)) = f(fi(2)) = f17(2),
which is a contradiction. Hence g, = f, and the condition (b) yields g, = f; for each
Ael.

d) Let the assumption of the condition (d) be fulfilled and let z be an element of 4,
such that f?'(z) = z.If g, + f,, then according to Lemma 5 and Thm. 1 there are
distinct elements {x;};z in A4, with f,(x;) = X;41, gX;) = x;_, for each ieZ,
fy)e{x;:ieZ} for each y € 4,. Put

H(y) =y foreach yed - 4,,
H(y) = fi**"Y(z) foreach yefy'(x), ieZ,
where k is an integer such that kp, +i~12>0.
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The mapping H is a homomorphism with respect to f and hence H is a homomorphism
with respect to g. Thm. 3 implies g, = f,, thus we have

H(gx(xo)) = H(x—l) =ftl—1(z) =§=f,(2) = gt(z) = gz(H(xo)) s
and this is a contradiction. Hence g, = f, and then the condition (b) yields that
g, = f, for each 1el.

e) Let the assumption of the condition (e) be fulfilled. Then there are distinct
elements {x;},z in 4, such that f,(x;) = X;4,, 9.(x;) = x;—, for each i€ Z, f,(y) €
€ {x;:i€Z} for each y € 4,. Let x be an element belonging to the cycle of (4,, f,)-
Put -

H(y)=y foreach yed — 4,,
H(y) = fi**"!(x) foreach yef;'(x)), ieZ,
where k is an integer such that kp, +i—1=>0.

The mapping H is a homomorphism with respect to f, hence H is a homomorphism
with respect to g and we obtain

9.x) = 9:(H(x0)) = H(g(x0)) = H(x-) = f17"(x).

According to Thm. 2, g, = f2*~! holds.

f) Let the assumption of the condition (f) be fulfilled. Suppose that (4,,f,)e
€ 0,(p,,), where p, is divsible by p,, 1 < p, e N.Let x and z be elements belonging
to the cycles of (4,, f,) and (4,, f,), respectively. Put

H(y)=y foreach yed — A4,
H(y) = f2"%(z) foreach yef i(x), ieN,,
where k is an integer such that- kp, —i = 0.

From the fact that p, is divisible by p, it follows that the mapping H is correctly
defined. The mapping H is a homomorphism with respect to f and thus H is a homo-
morphism with respect to g. Since f, = g, (cf. Thm. 3), we have

942) = g.(H(x)) = H(g.(x)) = H(f(x)) = f(H(x)) = f.z).-
Then Thm, 2 yields g, = f,.

Suppose that (4,, f,) € 0,0(p;), where p; is divisible by p,, 1 < p, € N. Because
of g, eq f;, according to Thm. 2 there exists n e N such that 0 < n < p;, n and p,

are relatively prime and g, = f3. Let u be an element belonging to the cycle of
(4, £3); we set

G(y)=y foreach yed — 4,,
G(y) = fi"!(x) foreach yef;'(fiw)), ieN, 0<iZp;.
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The mapping G is a homomorphism with respect to f, hence G is a homomorphism
with respect to g and we get

f(x) = g.(x) = g.(H(w)) = H(g,(w)) = H(f(w)) = fi(H(u)) = fi(x).
Thus n = 1 (mod p,).

g) Let the assumption of the condition (g) be fulfilled. From Thm. 2 it follows
that there is n € N such that 0 < n < p,, n and p, are relatively prime and g, = f".
Let x and z be elements belonging to the cycles of (4,. f,) and (4,, f,), respectively.
Put

H(y)=y foreach yed - A,,
H(y) = fi7'(z) foreach yef;'(fi(x)), ieN, 0<i=Zp,.

The mapping H is a homomorphism with respect to f, thus H is a homomorphism
with respect to g and we have

9.{2) = 9.(H(x)) = H(g.(x)) = H(fi(x)) = fi(H(x)) = fi(2) -

Then, according to Thm. 2, g, = f is valid.

Lemma 11. Let (4, f) be a monounary algebra and let {(A,,f.)}.c be the com-
ponent partition of (A, f). Suppose that g € F(A) and that H: A — A is a homo-
morphism with respect to f. If the conditions (i)— (iii) from Lemma 10 are fulfilled,
then H is a homomorphism with respect to g.

Proof. We have to prove that the relation H(g(x)) = g(H(x)) holds for each
x€ A. Let ce! and let x € 4,. From [7] (Thm 7.1) it follows that there exists x € I
with H(4,) < A,.Iff, = g, and f, = g,, then the assertion is obvious. Let us remark
that if Ael, g, + f;, then (A, f;) € /2 U 0,,. Hence it suffices to assume that
either f, + g, or f, * g, holds.

Suppose that f, = g,. If (A,,f.))e X VN U ./Vz, then according to the con-
ditions (a) and (b) the relation g, = f, holds. If (4,,f,)€ 0;, then (4,,f,)e 0,
and g, = f,. Let 1 < p,eN, (4., 1) € 05(p,). Then (4,, f,) € 01 L Oy(p,), where p,
is divisible by p,, 1 < p, € N. If (4,, f,) € 0y, then g, = f,. If (4, f.) € 0,4, then the
condition (f) implies that g, = f,. If (4., £.) € 020, then the condition (g) and the fact
that g, = f! yield g, = f..

Assume that f, + g,. Hence the assumption of none of the conditions (a)—(d) is
fulfilled. Let (A, f) €4, From Thm. 1 it follows that A, = U({x;} U B)),
where x; # x;, By B; =0 for each i,jeZ, i #j, fi(b) = xi11, (b)) = x;—4
for each b, € {x;} U B;. Then (4,,f,) € N3 U 0y U 0,4(2) U 0. First let (4,,f,) e
€ A,. Thus according to the condition (b), g, * f, and 4, = U({y:} v D)),
where y; + y;, D;n Dy =0 for each i,je€ Z, i +j, fdi) = yiy1, 9{ds) = yi—y
for each d; e {y;} v Dy, i€ Z. Since H is a homomorphism with respect to f, there
exists k € Z such that H(x;) = y;44, H(B;) S {yi+x} U Di; for each i € Z. Then H
is also a homomorphism with respect to g.
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If (4,, f,) € 0, y € A, with f,(y) = y, then according to the condition (c), we have
H(x;)) = y, H(B;) < f'(y) for each i€ Z and then H is a homomorphism with
respect to g as well. If (4,, f,) € 0,,(2), then according to the condition (c) there
exist distinct elements yy, ¥, € 4,, such that f2(y,) = yy, £2(y2) = y2, H(x2:) = yy,
H(x3:41) = y2, H(By) S f'(v2), H(Byi+1) S fx '(yy) for each i€ Z. Then H is
also a homomorphism with respect to g, since

H(gy(b2)) = H(x2i-1) = y2 = f(H(b2) = g.(H(b2s)) ,
H(gl(b2i+l)) = H(x2,~) =1 =fx(H(b2i+l)) = gx(H(b2i+1))
for each by, € By; U {X21} s bris1 €Baisy U {X141}, i€Z.

Let (A, f.) € O20(p,)» 1 < px€N, and let z = H(x,). Then H(x;) = fiP~*i(z),
H(B;) < f ' (fr=*i*1(z)) for each i € Z, where k is an integer such that kp, + i = 0.
From Thm. 2 it follows that g,(y) = g,(fi(z)) foreach y e f; ' (fi**(z)). Since from
the condition (e) we get g, = f P«=1 " we obtain

gH(b) = g7 (2) = F2 7 (F () = £ ) =
= H(x;-,) = H(g.(b))
foreach b;eB;u{x;}, ieZ.

Now suppose that (A4,,f,)€0:(p.), 1 < p,eN. Then either (4,,f,)e0, or

there exists 1 < p, € N with (4,, f,) € 0,(p,), where p, is divisible by p,. Let y be an

element belonging to the cycle of (4,, f,). Put z = H(y). Then z belongs to the cycle

of (4, f,). If (4,, f,) € 04, then H(f/()) = z, H(u) e f;*(z) for each u ef M (fi))
i € N,. For each u € A,, g,(u) belongs to the cycle of (4,, f,) and hence we have

H(g (w)) = z = fH(u)) = g.(H(u)) .

If (4, f,) € 054, then g, = f, and from the condition (f) it follows that there exists
neN such that 0 < n < p, n and p, are relatively prime, n = 1 (mod p,,) and
g. = f1. Further, for each u € 4,, the element f,(H(u)) = H(f,(u)) belongs to the
cycle of (4,, f,.). Hence

H(g (w)) = H(f1(u)) = fi(H(u)) = £(H(u)) = g.(H(u).

If (A,, f.) € 020(p,), then the condition (g) implies that there exists n e N such that
0<n<p, n and p, are relatively prime, and g, = f%, g, = f». Then for each
ve A, we have

H(g(v)) = H(f(v)) = f(H({)) = 9.(H(v))-

Hence we have proved that H(g(x)) = g(H(x)) is valid for each x € 4,, t€I.
Let us denote by (a’)—(g’) the conditions that we obtain from the conditions
(a)—(g) by interchanging the operations f and g.
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Lemma 12. Let (A4, f) be a monounary algebra, g € F(A) and let the conditions
(i), (ii) and (iii) from Lemma 10 be fulfilled. Then the conditions (a’)—(g') hold.

Proof.a)Ifvel, (A4, g,) € & U ANy, then it follows from g, eq f, and from Thm. 3
that g, = f,; from this and from the condition (a) we have g, = f, for each x€el.

b) The conditions (b) and (b’) are identical.

c) If there exist ¢, x €I and ze€ A, such that (4, g,) €0, L 0,,(2), g2(2) * z,
5/(z) = o, (4,, g,,) € A 5, then Thm. 1 yields (4,, f,) € A",. Since according to Thm.
3 we have g, = f,, we obtain from the condition (c) that g, = f, for each 1 e I.

d) If there are ¢, x €l such that (4,,9,)€0y(p), 2 < p,eN, (4, 9,)€ N>,
then according to Thm. 3 the relation g, = f, holds and according to Thm. 1 we have
(4, f,) € & 5. Then from the condition (d) we get g, = f, for each A e I.

e) If there exists eI such that (4,9,)e A5, g, + f, and if xel, 1 < p,eN,
(4., 9,) € 010(p,), then according to Thm. 1 and Thm. 2 we have (4,,f)e A",
and (4,, f,) € 0,(p,). Hence the condition (e) yields g, = f7*~". Since

(px — 1)‘(p,, - 1) =1 (mod p,,),

according to Remark 1 (after Thm. 2) we have f, = g2~ "

f) If there exist tel, 1 < p, € N such that (4,, g,) € 0,,(p,), then Thm. 3 implies
g.=f.Xfxel, 1 <p,eN, (4, 9,) € 0,p,) and if p, is divisible by p,, then ac-
cording to Thms. 2 and 3 we have (4,, f,) € 0,(p,); hence from the condition (f1)
it follows that g, = f,. If Ael, 1 < p,eN, (4;, ;) € 0,0(p,) and p, is divisible

by p,, then according to Thm. 2 we obtain (4,, f;) € 0,(p,). Thus it follows from the
condition (f2) that there exists n € N such that 0 <n < p,, n and p, are relatively
prime, n = 1 (mod p,) and g, = f}. Hence according to Remark 1 there exists
me N such that 0 < m < p,, m and p, are relatively prime, m.n = 1 (mod p;)
and f, = g7. Then obviously m = 1 (mod p,).

g) Ify,xel,1 <peN,1<p,eN,(A4,9)€0(p.) (4 9.) € 0:0(p,) and if p,
is divisible by p,, then it follows from Thm. 2 that (4,, f,) € 0,4(p.), (4, f,) € O20(P.)-
From the condition (g) we obtain that there exists n e N such that 0 < n < p,,
n and p, are relatively prime and g, = f7, g, = f%. According to Remark 1 there
exists m € N such that 0 < m < p,, m and p, are relatively prime, mn = 1 (mod p,)
and f, = g!". Then also f, = f3" = g5.

Theorem 4. Let (A, f) be a monounary algebra and let {A,, f,)}.; be the com-
ponent partition of (A, f). Further let g € F(A). The operations f and g are equi-
valent with respect to endomorphisms if and only if the conditions (i), (i), (iii)
from Lemma 10 are fulfilled.

Proof. If f eq g, then according to Lemma 10, the conditions (i), (ii) and (iii) are
valid. Conversely, suppose that the conditions (i)—(iii) are fulfilled. If a mapping
H:A — Ais a homomorphism with respect to f, then according to Lemma 11 the
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mapping H is a homomorphism with respect to g. From Lemma 12 it follows that
the conditions (a’)—(g’) are fulfilled. Hence, if a mapping H : A — A is a homo-
morphism with respect to g, then H is a homomorphism with respect to f (this follows.
from Lemma 11 by interchanging f and g). Thus the operations f and g are equivalent
with respect to endomorphisms.

5. THE CARDINALITY OF Eq(f)

Let A be a nonempty set and let f € F(4). Let c be the cardmahty of the continuum.
We shall prove that the relation

card Eq(f) < ¢

holds (independently of the cardinality of A).
Let us consider the following cases:

(1) First assume that (A4, f) is a connected monounary algebra. Then it follows
from Thms. 1—3 that the set Eq(f) is finite.

Further, assume that the algebra (4, f) fails to be connected and that {(4,, f.)}.cr
is the component partition of (4, f).

(2) If there exists ¢ € I such that (4,, f,) € & L A", then Thm. 4 (cf. the condition
(a) from Lemma 10) yields that card Eq(f) = 1. '

Now suppose that (4,, f,) ¢ # U A", for each t€l.

(3) Let there be eI with (4, f,) € A",. Suppose that h e Eq( f) and let h, be
the operation h reduced to A, (cf. Thm. 4). Hence according to Thm. 1 we have
card Eq(f,) = 2. If h, = f,, then it follows from Thm. 4 (cf. the condition (b) from
Lemma 10) that h,, = f, for each x € I; if h, # f,, then Thm. 4 (cf. the condition (e))
implies that, for each » eI, the operatlon h, is uniquely determined. Hence
card Eq(f) < 2.

Further, assume that (4,, f,) ¢ A", for each i e1l.

(4) According to the assumption we have (A, f.) € 04 U 0, for each ¢ e I. Denote

I(1) ={tel:(A,f)e0,},
I(n) = {tel:(A,f)e0y(n)} foreach 1<neN,
(B™, g™) = Uierm(A4,, f,) foreach neN.

Let h € Eq(f) and let AV be the operation h reduced to the set B(O, Thm. 3 implies
that AV = g,

Let 1 < ne N and let h™ be the operatlon h reduced to the set B™ Let ¢, x € I(n).
From Thm. 2 it follows that h, = f} for some ie{1,2,...,n _ 1}. Moreover,
from Thm. 4 (cf. the conditions (f), (g)) we obtain that h = f « Hengce the operation
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h™ is uniquely determined by h,; therefore there exists only a finite number of pos-
sibilities for h™. Since

( A, h) = UneN( B("), h(n))

and since the set {(B™, h) : n € N} is countable, we infer that we have at most ¢
possibilities for the operation h.

We have proved
Theorem 5.1. Let A be a nonempty set, f € F(A). Then card Eq(f) < c.
Theorem 5.2. There exists a countable set A and a unary operation f on A such

that card Eq(f) = c.

Proof. Let {p, : t € N} be the set of all positive primes greater than 2. Let {4},
be a system of mutually disjoint sets such that card 4, = p, for each ¢ € N. For each
t € N we define a unary operation f, on 4, in such a way that 4, is the cycle of (AL, £)-
Put (4,f) = U.ea(A,, f.)- Then card 4 = R,. For each M = N we denote by gy
the unary operation on A4 by putting

gu(x) = f}(x) foreach xed,, teM,
gu(x) = f(x) foreach xed,, teN—-M.

Then Thm. 4 implies that g, eq f. For My, M, = N, My + M, we have Im, F gM2
Since the system of all subsets of the set N has the cardinality ¢, we obtain
card Eq(f) = ¢. Hence according to Thm. 5.1 the relation card Eq(f) = c is valid,

Author’s address: 041 54 Kosxce, Komenskeho 14 CSSR (Katedra geometrle a algebry Pri-
rodovedeckej fakulty UPJ§)
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