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WITH SOME APPLICATIONS 
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(Received January 19, 1978) 

1. INTRODUCTION 

Let 

(1) 

and 

(2) 

f{x) = öf„+ix" - a„x" ^ ,., - a2X - a^ 

g{x) = b^^ix'" - b^x'" ^ . . - b2^ - bi 

be two polynomials of degree n and m with real coefficients. For the sake of sim-
pHcity, let us assume that a„+i = 1 and m ^ n. 

The quantities 5̂ , i = —1, 0, 1, 2,.. . , defined, by 

f{x) X x^ x^ 

are called Markov parameters associated with the rational function 

and the matrices 

5/c~l h 

h-1 

^2k-2 
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(/< = 1,2, ..., n) are called Hankel matrices of Markov parameters. There exist 
simple recursive relations for generating the coefficients of a Hankel matrix of Markov 
parameters. For example, in case n = m, these relations are given by [8. vol. II, 
pp. 214} 

(3) S - 1 b„ + i 

a,5_ 

(t = 71, n + 1, n + 2, . . . ) . In this paper, we estabHsh an interesting relationship 
between the Hankel matrix of Markov paramètres H„„ and the matrix polynomial 
д{Л), where Ä is the companion matrix of/(x). As an immediate application of this 
result, we demonstrate the equivalence of the well-known Markov stability criterion 
[8, vol. II, pp. 235 — 236] and a recent formulation of the Liénard-Chipart criterion 
of stabiHty by BARNETT [1]. By the use of this result, we also show that a criterion of 
aperiodicity recently obtained by the author [4] is equivalent to the one given by 
Barnett in [1]. We indicate several other possible apphcations. 

2. LEMMAS 

We establish a few lemmas in this section which will be used later. 

Lemma 1. Let Я„„ be the Hankel matrix of Markov parameters associated with 
the polynomials f{x) and g{x) and let A be the companion matrix of f{x). Then 

(4) AH„ H„„A^ 

Proof. Let 

(5) 0 1 0 
0 0 1 

0 0 0 
ßi «2 «3 

0.. 
0.. 

0.. 
0 4 . . 

0 
0 

0 
««-

0"i 
0 

1 
-1 a„j 

and let H„„ = (si+j). Then 

AH„n = ySi+j+i) 

is symmetric; as is Я„„. 
This proves the lemma. 
As an immediate Corollary of Lemma 1, we obtain the following: 
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Corollary 1. Let hi, /12? •••? ^n be the n successive columns of H„„. Then 

(6) h,^, = Äh,, f = l , 2 , . . . , n - 1 . 

Lemma 2. Let g{x) and A be the same as defined in (2) and (5) and let g^, ^2? •••-> 9n 
be the successive n columns of g [A). Then 

(7) Qn-i = (A - aj)g„, 

(8) gn-i = ^ö^n-.+ i - ^n-i+idn. i = 2 ,3 , ..., n - 1 . 

The above result is a special case of a result recently obtained by the author [5]. 
For the sake of completeness, however, we give here a short derivation of the lemma. 

Proof. Let /,• be the its column of the identity matrix / of order n. 

Then 

"01 

9n-i = (0̂ 1,0̂ 2» ••',9n-u9n) 

= g{A) {A - a J) К = {A - aj) {g{A) Q = (Л - aj) g„ 

(note that g{A) and A commute with each other). 
In general 

âf„-i = g{A) l„_i = g{Ä){Al„^i+^ - a„-i+J„) = 

= Лд{А) In-i+i - «П-/+1 g{A)ln = Ag„_i^i - a„_,.+ iö^„, 

(i = 2 , 3 , . . . , n - 1) . 

3. A RELATIONSHIP BETWEEN g{A) AND H„„ 

Theorem 1, 

9{Ä) = H„ 
- ^ 3 - « 4 

-a„ 1 
1 0 

1 0 0 0 0 

- H„JJ 

Proof. Let h'l, h'2,..., /i^ be the columns of Я„„17 and hu 2̂» •••» /Ï„ be those of Я„ 
Then 

(9) 

(10) K-i = hi- a„hi 
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By Corollary 1, h2 = Äh^ 
So, 

(11) 

In general, 

^»-1 = ^h - ^nhi = (Л ~ a„I) /ii . 

(12) Й ; _ , = /if+i - a„hi - a„_ifei_i . . . - а„_,+2Й2 - ««-r+i^i = 

= Ahi - a„Ähi.^ - a„.^Ähi_2 .•• - а„_,.+2^^1 -

— a„^i+ihi (Using Corollary 1) 

= A{hi - ajii.^ - a„-ifti-2 ••• - ^n-t+ihi) - a„-j+i/ii = 

= AK.i+^ - а„-,.+ 1Й;, i = 2, 3 , . . . , n " 1 (since h^ = K). 

Thus, by the results of lemma 2 and from (11) and (12), it follows that the first 
(n — 1) columns of H„„U satisfy the same recursive relations as do those of g{A). 

Also, let g„ be the last column of g{A), 

dnl 
9ni 

Then in case n = m 
9n, 

dm = K+i^n - К y 

Gm = K+i{al + a„_i) - b„(a„) - b„-i = 

etc. 

Bringing the Markov parameters into the picture, we see by means of relations (3) 
that 

etc. 
This shows that 

9n = {dnU дп2> •••» Qnnf = (^0» 5 i , . . . , S„Y =: hi = h'„ 

74 



This relation is also valid in case n < m and can be verified similarly. 
The proof is now complete. 

4. APPLICATIONS 

(a) EQUIVALENCE BETWEEN TWO CRITERIA OF STABILITY 

Let f{x) be the same as defined in (1) and represent it in the form 

f{x) = h{x') + xy{x'). 

This representation gives rise to two polynomials h{u) and y{u) defined as follows: 

h(u) = — «1 — a^u — a^u^ ~ . . . , 

y{u) = — «2 ~ ^AM ~ ^б"^ ~ . . . . 

Assume that h{u) and y{u) are relatively prime and generate s_i, SQ, 5I . . . by 

y{u) __ 

h{u) 
5 . 1 + - ^ + - ^ + . . . 

M U^ 

The following theorem gives a criterion of stabiHty of / (x) (/(x) is said to be stable 
if all the roots of / (x) have negative real parts). 

Theorem 2. (Markov Criterion of Stability [8. vol. II, pp. 235-236]). / (x) is 
stable if and only if the following system of determinantal inequalities hold: 

So > 0, 

Si < 0, 

So Si 

Si S-) 

H S2 

So Sri 

>0, ..., 

SQ S I . . . s^^ i 
Si S2 . . . S^ > 0 , 

> 0 , . . . , ( - l ) ' ^ 

Si «2 
^2 S3 

Snt S, 

. . . s . 

m '^m+1 

>o, 

where n = Im or 2m + 1 according as n is even or odd. If n is odd, in addition to 
the above inequilities, s_i is needed to be positive. 

Assume now all the coefficients of h{u), namely a^, аз, as . . . etc are negative (there 
is no loss of generahty in this assumption, be cause, the necessity condition of 
stability demands that all the coefficients of/(x) be negative). 
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The condition that 5_i > 0 in case n is odd, is trivially satisfied in this case. For, 
when n is odd, 5_i = — l/a„ > 0. Fur theremore, under this assumption, we show 
that the second set of inequalities is redundant. To do this, first we give a matrix 
formulation of theorem 2. 

Let H be the companion matrix of the form (5) of h(u) when n is even and of 
— (l/a„) h(u) when n is odd. Let H^^ = {si+j) be the associated Hankel matrix of 
Markov parameters. Then, 

^^mm ~ ('̂ 1 + 7 + i j • 

The first set of inequalities, therefore, implies that Я^^ is positive definite and the 
second set imphes that HH^,„ is negative definite. 

This later condition is redundant. For since H is nonderogatory, positive definite, 
ness of Я„„„ implies that all the roots of h(u) are real and distinct. Moreover, since 
all the coefficients of h{u) are negative, h{u) > 0 for all и ^ 0. This implies that the 
roots of h{u) are all negative as well. 

is therefore, negative definite. The above discussion allows us to reformulate Theorem 
2 in Liénard-Chipart style as follows: 

Theorem 2'. f(x) is stable if and only if 

ai < 0 , a^ < 0 , a^ < 0 , ... 

and H^^ is positive definite. 

In [ l ] , Barnett presented a new formulation of the classical Liénard-Chipart 
stability criterion using certain matrix polynomials. In the following Theorem we 
present his results with some modifications*). 

Theorem 3. Let Ri^ denote the minor of the first к rows and the last к columns 
of y(H) and define 

(14) ,, = ( _ l ) ^ ( ^ 

then, f(x) is stable if and only if a^ < 0, «3 < 0, «5 < 0, . . . and t^Ri^ > 0, к = 
= 1,2, ..., m. 

We now prove: 

Theorem 4. Theorem 3 and Theorem T are equivalent. 

*) In case n is odd; Barnett gave his results using a different matrix polynomial A(i?), where R 
is the companion matrix of yiji). However, as stated in Theorem 3, both the cases can be handled 
using the same matrix polynomial у{Щ. 

16 



Proof. Consider two cases. 

Case 1. n is even. By Theorem 1, 

(15) 

у{н) = я„ 
- а з - Я ; -а„_1 1 

1 О 

О О О 

Case 2. п is odd. Let Н^„ denote the Hankel matrix of Markov parameters 
associated with — (l/a„) h(u) and y(u). Then by Theorem 1, 

y{H) = я; , 
a„ a„ 

Again, it is easy to check that 

Therefore, 

(16) 

т(я) = H„, 

1 0 

Tjf __ n H 
mm ^n'^mm 

0 0 

- а з - ^ 5 
- « 5 - « 7 

- a„_2 

-a^ 0 0 0 

Applying now the Cauchy-Binet Theorem [8. vol. I, pp. 9 — 12] to (15) and (16), we 
see that Theorem 3 and Theorem 2' are equivalent. 

(b) EQUIVALENCE BETV^EEN TWO CRITERIA OF APERIODICITY 

A polynomial f{x) with real coefficients is said to be aperiodic if all its roots are 
distinct and negative real. The concept of aperiodicity is an important concept is 
Mathematical Control Theory [1]. 

In [1], Barnett gave a criterion of aperiodicity using the matrix polynomial/'(Л), 
where f'(x) is the derivative of/(x). 

Theorem 5. /(x) is periodic if and only if all ai < 0 and t^^Fj^ > 0, /c = 1, 2, ..., n; 
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where Fj, is the minor of ^he first к rows and last к columns of f'{A) and 4 is the 
same as defined in (14). 

Recently the author [4], [6] has shown. 

Theorem 6. f(x) is aperiodic if and only if all ai < 0 and the Hankel matrix 
of Markov parameters associated with f(x) and f'{x) is positive definite. 

In view of Theorem 1, Theorem 5 and Theoiem 6 are easily seen to be equivalent. 

Remark. In [4], the author gave the criterion of aperiodicity using Hankel 
matrix of Newton sums. However later in [6], it has been shown that the Hankel 
matrix of Newton sums is just the Hankel matrix of Markov parameters associated 
with f[x) and f'{x). 

5. DISCUSSIONS 

We have established here a relationship between the Hankel matrix of Markov 
parameters Я„„ associated with two polynomials f{x) and g{x) and the matrix poly­
nomial д{Л), where A is the companion matrix of/(x). As an immediate application 
of this result, we have demonstrated the equivalence of the well-known Markov 
criterion of stabiHty (modified in Liénard-Chipart style) and a recent result of Bar nett 
on the classical stability criterion of Liénard and Chipart. By the use of this result 
we have also shown that a recently obtained criterion of aperiodicity of the author 
is equivalent to the one obtained by Barnett earUer. It is to be noted also that there 
exist a few results involving g[À) on the root separation of polynomials and other 
related problems. For example, Barnett [2] and later (independently) the author [3] 
have shown how g{A) may be employed to obtain information on the location of 
roots a polynomial in a given half plane and inside the unit circle. It is also well-
known that polynomials /(x) and g{x) are relatively prime if and only if g{À) is 
nonsingular. The rank of g{A) even determines the degree of the greatest common 
divisor of/(x) and g{x). These results and a few others have been nicely summarized 
in a recent survey of Barnett [2]. 

The matrix polynomial g{A) is again related to the classical Bézout matrix as­
sociated with Bézoutian defined by f{x) and g{x), and there exists a great variety 
of classical results involving Bézoutian. For more details, the readers may again 
refer to the survey of Barnett [2] (see also [7]). 

In view of the relationship between Я„„ and g{À) established in this paper, all the 
results involving g{A) (and therefore those involving the Bézoutian as well) can now 
be given new interpretations in terms of Я„„. One can be used as a complete alter­
native to the other. Computationally, the use of Я„„ is attractive in the sense that 
there exist simple recursive relations for generating the elements of a Hankel matrix 
of Markov parameters. 
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