Štefan Schwarz
The Euler-Fermat theorem for the semigroup of circulant Boolean matrices

Czechoslovak Mathematical Journal, Vol. 30 (1980), No. 1, 135–141

Persistent URL: http://dml.cz/dmlcz/101663

Terms of use:

© Institute of Mathematics AS CR, 1980

Institute of Mathematics of the Czech Academy of Sciences provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these Terms of use.
Let S be a finite semigroup and $a \in S$. The sequence
\begin{equation}
a, a^2, a^3, \ldots
\end{equation}
has only a finite number of different elements. Denote by $k = k(a)$ the smallest natural number k for which $a^k = a^l$ for some $l > k$. Denote further by $k + d$, $d = d(a) \geq 1$ the least exponent for which $a^k = a^{k+d}$ holds. Then the sequence (1) is of the form
\begin{equation}
a, a^2, \ldots, a^{k-1}, a^k, \ldots, a^{k+\delta-1}, a^k, \ldots
\end{equation}
It is well known that $\{a^k, \ldots, a^{k+\delta-1}\}$ is a cyclic group of order d.

To any $a \in S$ we have associated two integers $k(a), d(a)$ and we have $a^{k(a)} = a^{k(a) + d(a)}$.

Denote $K = \max \{k(a) \mid a \in S\}$ and $D = \text{l.c.m.} \{d(a) \mid a \in S\}$. Then $K = K(S)$ and $D = D(S)$ are characteristics of the semigroup S and for any $a \in S$ we have
\begin{equation}
a^k = a^{k+D}.
\end{equation}
Hereby K and D are the least integers having this property (if we insist on the natural requirement that K and D should be independent of a).

The identity (3) may be called the **Euler-Fermat Theorem for the semigroup S.**

To explain this name suppose that p is a prime and S_p is the multiplicative semigroup of residue classes $\pmod p$. Then for any $a \in S_p$ we have $a = a^p$. Here $K = 1$ and $D = p - 1$.

There is a rather limited number of important semigroups (playing a role in various parts of mathematics) for which the exact values of $K = K(S)$ and $D = D(S)$ are known. We mention two of them.

1. Let $n = p_1^{\alpha_1} \cdots p_r^{\alpha_r}$ be the factorization of the integer $n > 1$ into the product of primes and S_n the multiplicative semigroup of residue classes $\pmod n$.
Denote $v(n) = \max (\alpha_1, \alpha_2, \ldots, \alpha_r)$. Let $\lambda(n)$ be the Carmichael function, i.e.

$$\lambda(n) = \text{l.c.m.} \left[\lambda(p_1^{e_1}), \ldots, \lambda(p_r^{e_r}) \right],$$

where

$$\lambda(p^a) = \begin{cases} 2^{a-2} & \text{for } p = 2 \text{ and } a > 2, \\ p^{a-1}(p - 1) & \text{otherwise.} \end{cases}$$

We then have: $K(S_n) = v(n)$ and $D(S_n) = \lambda(n)$. Hence we have: $a^{v(n)} = a^{v(n) + \lambda(n)}$ for any $a \in S_n$ and none of the exponents can be replaced by a smaller number. (This is the best possible generalization of Euler’s Theorem from the elementary theory of numbers.)

2. By an $n \times n$ Boolean matrix ($n > 1$) we mean an $n \times n$ matrix over the semiring $\{0, 1\}$ under the operations $a + b = \sup (a, b)$, $a \cdot b = \min (a, b)$.

Denote by B_n the multiplicative semigroup of all Boolean matrices. Clearly $\text{card } B_n = |B_n| = 2^{n^2}$ and B_n is isomorphic to the multiplicative semigroup of all binary relations on a finite set X with $|X| = n$.

In this case it is known that $K(B_n) = (n - 1)^2 + 1$. $D(B_n)$ is a function of n which can be computed in the following way. Let $n = n_1 + n_2 + \ldots + n_s$ be a partition of n. Then $D(B_n) = \max \{\text{l.c.m.} \left[n_1, n_2, \ldots, n_s \right] \}$, where (n_1, n_2, \ldots, n_s) runs through all possible partitions of n. Otherwise expressed:

$D(B_n)$ is the largest order of an element in the group of all permutations of n elements.

E.g., if $n = 5$, we have $K(B_5) = 17$, $D(B_5) = 6$ and for any $A \in B_5$ we have $A^{17} = A^{23}$. Hereby none of the exponents can be replaced by a smaller number.

In this paper we shall deal with the multiplicative semigroup of all circulant Boolean matrices of order n.

A circulant is a Boolean matrix of the form

$$
\begin{pmatrix}
\alpha_{0}, & \alpha_{1}, & \ldots, & \alpha_{n-1} \\
\alpha_{n-1}, & \alpha_{0}, & \ldots, & \alpha_{n-2} \\
\ldots & \ldots & \ldots & \ldots \\
\alpha_{1}, & \alpha_{2}, & \ldots, & \alpha_{0} \\
\end{pmatrix},
$$

where $\alpha_i \in \{0, 1\}$. Denote by

$$
P = \begin{pmatrix}
0 & 1 & 0 & \ldots & 0 \\
0 & 0 & 1 & \ldots & 0 \\
\ldots & \ldots & \ldots & \ldots & \ldots \\
0 & 0 & 0 & \ldots & 1 \\
1 & 0 & 0 & \ldots & 0
\end{pmatrix}
$$
and let E be the unit matrix of order n. Then any circulant can be written in the form

$$A = a_0E + a_1P + a_2P^2 + \ldots + a_{n-1}P^{n-1}, \quad a_i \in \{0, 1\}.$$

We have $P^n = E$ and for convenience we also define $P^0 = E$.

The set of all circulants of order n is (under multiplication) a semigroup C_n with $|C_n| = 2^n$ (including the zero circulant Z). Note that C_n contains the cyclic group $G_n = \{E, P, \ldots, P^{n-1}\}$.

If $A = (a_{ij})$ and $B = (b_{ij})$ are Boolean matrices, we denote by $A \cap B$ the matrix $D = (d_{ij})$ with $d_{ij} = \min(a_{ij}, b_{ij})$. We shall write $A \leq B$ if and only if $A \cap B = A$. Clearly, if $j \not\equiv l \pmod{n}$, we have $P^j \cap P^l = Z$, which implies that any element $e \in C_n$ has a unique representation in the form (4).

The following is the Euler-Fermat Theorem for the semigroup C_n.

Theorem 1. For any $A \in C_n$ we have

$$A^{n-1} = A^{2n-1}.$$

This result is the best possible, i.e. none of the exponents can be replaced by a smaller number.

Proof.

a) If $A = Z$, (5) is trivially true. If $A = P^j$ ($0 \leq j \leq n - 1$), (5) is true, since

$$p_j^{(2n-1)} = p_j^{(n-1)}p_{jn} = p_j^{(n-1)}.$$

b) Suppose next that A is of the form

$$A = E + P^{j_1} + P^{j_2} + \ldots + P^{j_k}, \quad 1 \leq j_1 < j_2 < \ldots < j_k \leq n - 1.$$

In this case we have $A = EA \leq A \cdot A = A^2$. Now $A \leq A^2$ implies $A \leq A^2 \leq \leq A^3 \leq \ldots \leq A^{n-1} \leq A^n$. Since $j_1 \geq 1$, the first row of A (hence any row of A) contains at least two non-zero elements. The matrix A^2 is either A or it contains at least three non-zero elements in each of the rows. Repeating this argument we obtain: There is an integer $h \leq n - 1$ such that $A^h = A^{h+1}$. The more $A^{n-1} = A^n = A^{n+1} = \ldots = A^{2n-1}$, which implies $A^{n-1} = A^{2n-1}$.

c) Suppose finally that A is of the form $A = P^jB$, where

$$B = E + P^{j_1} + \ldots + P^{j_k}, \quad 1 \leq j_1 < j_2 < \ldots \leq n - 1.$$

Then with respect to (6)

$$A^{2n-1} = (P^jB)^{2n-1} = p_j^{(2n-1)}B^{2n-1} = p_j^{(n-1)}B^{n-1} = (P^jB)^{n-1} = A^{n-1}.$$

This proves (5) in all cases.
d) Consider the element $B = E + P \in C_n$. Then for any $u \geq n - 1$ we have $B^u = B^{u-1} = E + P + \ldots + P^{u-2} + P^{u-1} = J$, where J is the $n \times n$ matrix with all elements equal to 1. On the other hand $B^{n-2} = E + P + \ldots + P^{n-2} + J$. Hence $B^{n-2} = B^u$ for any $u \geq n - 1$.

e) Consider next the element $B = P$. We have $P^{n-1} = P^{2n-1}$, but for all v satisfying $n - 1 < v < 2n - 1$ we have $P^{n-1} + P^v$. This completes the proof of Theorem 1.

The identity (5) holds for all $A \in C_n$. Modified results can be obtained if we specify “the position” of A in C_n.

To prove the corresponding results we need some informations concerning the structure of the semigroup C_n.

In [1] we have proved: If d is a divisor of n, $n = dt$, then

$$E^{(d)} = E + P^d + P^{2d} + \ldots + P^{(t-1)d}$$

is an idempotent in C_n and any idempotent $e \in C_n$ different from Z can be obtained in this manner. (Note that in this notation $E^{(n)} = E$ and $E^{(1)} = J$.)

Denote by K_d the set of all $A \in C_n$ such that $A^s = E^{(d)}$ for some integer $s \geq 0$ (depending on A). Then $C_n - Z = \bigcup_{d|n} K_d$ is a union of disjoint subsemigroups of C_n.

We call K_d the maximal subsemigroup of C_n belonging to the idempotent $E^{(d)}$. (It is largest subsemigroup of C_n containing $E^{(d)}$ and no other idempotents.)

The maximal group containing $E^{(d)}$ as its unit element is the group $G_d = \{E^{(d)}$, $P \cdot E^{(d)}$, \ldots, $P^{d-1}E^{(d)}\}$, a cyclic group of order d. Clearly $G_d \subset K_d$. In particular $K_n = G_n = \{E, P, P^2, \ldots, P^{n-1}\}$, while G_1 is the one point group $G_1 = \{J\}$.

Note also that the set of all idempotents $e \in C_n$ different from Z becomes a modular lattice if we define

$$E^{(d_1)} \lor E^{(d_2)} = E^{(\min(d_1, d_2))} \quad \text{and} \quad E^{(d_1)} \land E^{(d_2)} = E^{(\max(d_1, d_2))},$$

where $[d_1, d_2]$ and (d_1, d_2) denote the least common multiple and the greatest common divisor of d_1 and d_2 respectively.

Example. Let $n = 45$. The semigroup C_{45} contains 6 idempotents different from Z. In the schematic figure 1 each square denotes a maximal subsemigroup of C_{45}. The circle contained in K_d is the maximal group G_d with unit element $E^{(d)}$.

We have $C_{45} - Z = K_{45} \cup K_{15} \cup K_9 \cup K_5 \cup K_3 \cup K_1$. Consider, e.g., $d = 15$. We have $E^{(15)} = E + P^{15} + P^{30}$ and $G_{15} = \{E^{(15)}, PE^{(15)}, \ldots, P^{14}E^{(15)}\}$. K_{15} is the set of all $Y \in C_{45}$ for which $Y^s = E + P^{15} + P^{30}$ for some integer $s \geq 1$. In [2] (p. 509) an explicit formula for the number $|K_d|$ has been given, namely $|K_d| = d \sum_{j|d} \mu(j)(2^{t/j} - 1)$, where $t = n/d$ and $\mu(j)$ is the Möbius function. From this formula we obtain $|K_{15}| = 60$.

138
Note also that $|K_1| = (2^{45} - 1) - 3(2^{15} - 1) - 5(2^9 - 1) + 15(2^3 - 1)$, so that by far the most elements $e \in C_{45}$ are contained in K_1. It can be easily shown that

$$\lim_{n=\infty} \frac{|K_1|}{2^n} = 1.$$

The aim of this section is the proof of Theorem 3, which is the Euler-Fermat Theorem for the semigroup K_d. It turns out that if we specify that $A \in K_d$, then the exponents in (5) can be replaced by smaller numbers.

Theorem 2 may be considered as a supplement to the results obtained in [1] and [2].

Theorem 2. For any $A \in K_d$, $d \neq n$, we have $A^{n/d-1} \in G_d$ and the number $n/d - 1$ cannot be replaced by a smaller one.

Remark. If $d = n$, we have $K_d = G_d$ and the statement formally holds if we define $A^0 = E$.

Fig. 1.
Proof. Write $t = n/d$. In [2] we have proved that any element $e K_d$ can be written in the form
$$A = E + P^{u_1} + P^{u_2} + \ldots + P^{u_k},$$
where $1 \leq u_1 < u_2 < \ldots < u_k \leq t - 1$ and $0 \leq l \leq n - 1$. Note that not all possible choices of u_1, u_2, \ldots, u_k are giving elements $e K_d$ (some of them are elements $e K_j$ where d is a divisor of j).

a) Denote $B = E + P^{u_1} + \ldots + P^{u_k}$ and note that if $B \in K_d$, we also have $P^i B \in K_d$. We have again $B \leq B^2$ which implies $B \leq B^2 \leq B^3 \leq \ldots \leq B^t$. By assumption B belongs to the idempotent $E^{(d)}$ and $E^{(d)}$ contains in each row exactly t non-zero elements. Analogously as in the proof of Theorem 1 we conclude that there is an integer $h \leq t - 1$ such that $B^h = B^{h+1}$. Hence B^h is an idempotent $e C_n$ and therefore $B^h = E^{(d)} \in G_d$.

b) Suppose next $1 \leq l \leq n - 1$ and $A = P^l B$. Then with the same h as sub a) we have $A^h = P^{lh} = P^{lh}E^{(d)}$, which is an element $e G_d$.

c) To see that $t - 1$ cannot be replaced by a smaller number consider the element $Y = E + P^d \in C_n$. We have $Y \in K_d$.

$$Y^{t-2} = (E + P^d)^{t-2} = E + P^d + \ldots + P^{d(t-2)} \neq E^{(d)}.$$
If Y^{t-2} were an element $e G_d$, we would have $Y^{t-2} E^{(d)} = Y^{t-2}$. Now $Y^{t-2} E^{(d)} = (E + P + \ldots + P^{d(t-2)})(E + P^d + \ldots + P^{d(t-1)}) = E^{(d)}$. Since $Y^{t-2} \neq E^{(d)}$, we have a contradiction. Hence Y^{t-2} is not an element $e G_d$. This proves Theorem 2.

Theorem 3. For any $A \in K_d$, $d \neq n$, we have
$$A^{n/d-1} = A^{n/d-1+d}.$$
None of the exponents can be replaced by a smaller integer.

Remark. For $A \in K_n = G_n$ we have $E = A^n$. The statement of the Theorem is true if we define $A^0 = E$.

Proof. a) Put again $t = n/d$. Let $A \in K_d$ and consider the sequence A, A^2, A^3, \ldots. Since A^{t-1} is in the group G_d, recalling (2), we immediately see that A^t, A^{t+1}, \ldots are contained in the group G_d. Since G_d is of order d we have $A^{t-1} = A^{t-1+d}$.

b) The exponent on the left hand side cannot be replaced by $t - 2$ since $(E + P^d)^{t-2}$ is not contained in G_d while all powers $(E + P^d)^l$ with $l \geq t - 1$ are elements of the group G_d. (As a matter of fact for $l \geq t - 1 \ (E + P^d)^l = E^{(d)}$.)

c) The exponent on the right hand side cannot be replaced by a smaller one, i.e. $A^{t-1} = A^{t-1+u}$, $1 \leq u < d$, does not hold for all $A \in K_d$. It is sufficient to put $A = PE^{(d)}$. We have $A^{t-1+u} = P^{t-1+u}E^{(d)} \neq P^{t-1}E^{(d)} = A^{t-1}$. This proves Theorem 3.
Example (continued). For the semigroup C_{45} we obtain by Theorem 3 the following identities:

\[E = A^{45} \quad \text{for} \quad A \in K_{45}, \quad A^8 = A^{13} \quad \text{for} \quad A \in K_5, \]
\[A^2 = A^{17} \quad \text{for} \quad A \in K_{15}, \quad A^{14} = A^{17} \quad \text{for} \quad A \in K_3, \]
\[A^4 = A^{13} \quad \text{for} \quad A \in K_9, \quad A^{44} = A^{45} \quad \text{for} \quad A \in K_1. \]

The best result holding for all $A \in C_{45}$ is (in accordance with Theorem 1) $A^{44} = A^{89}$.

References

Author's address: 880 19 Bratislava, Gottwaldovo nám. 19, ČSSR (Slovenská vysoká škola technická).