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FUNCTIONAL SEPARATION OF INDUCTIVE LIMITS AND
REPRESENTATION OF PRESHEAVES BY SECTIONS
PART THREE: SOME SPECIAL CASES OF SEPARATION
OF INDUCTIVE LIMITS OF PRESHEAVES

JAROSLAV PECHANEC - DRAHOS, Praha

(Received June 10, 1975)

To complete the investigations from Part One we discuss here some cases when
the inductive limit of a presheaf of closure spaces has a completely regular, normal
or metrizable topology coarser than that canonically defined in it. The last case
enables us to prove a representation theorem in Part Four. Further, we get a suf-
ficient condition for the canonical maps of the projective limit of a presheaf into its
entries to be homeomorphisms. It is also shown that sometimes the means developed
in the foregoing parts can be used for the verification of nonemptiness of projective
limits of some presheaves. The second and the third section is, however, not used
later and may be therefore skipped.

To establish the separation theorems in Part One we had to assume that the maps
between the entries of the presheaf were 1—1. Passing to factorpresheaves we can
sometimes get rid of the condition and obtain some sufficient conditions for the
inductive limit of a presheaf to be functionally separated. This in turn yields a repre-
sentation theorem in Part Four.

The basic notation and definitions were introduced at the beginning of Part One,
which is very often reffered to. If we refer, say, to Theorem 1.1.7 or to 0.5, we mean
Theorem 1.1.7 in the first section of Part One or Definition 0.5 at the beginning
of Part One, respectively.

[1]. FACTORPRESHEAVES

Given a closured presheaf & = {Z, = (X, 7o) || (ASD} (see 0.12), <A=Z)
well ordered, then for each o € A we can take the factorspace %,/0,,+, Of Z, by the
equivalence “a, be X,, a ~ b iff 0,0+1(a) = 0uz+1(b)”, endowed with the closure ¢,
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inductively defined by the canonical map h, : £, = X,/0+:- We get this diagram:

2. Occet «t2
s R L, e
(3.1.1) 7 Jh lh”, lh 2
= t« ot ta-rlouz “f/
:Z;, !gxlu1 “l;ﬂ/gowt x+2 A‘g;d/go(fzn«3~

each triangle here is commutative, hence so is each square. We put D, = X,/Qaa+1,
Dy = (Dy» 1,), 1oy = identity, and for o, fe A, a < B we define r,;: 2, > D, by
Tap = hgOuy 15Toqsy- If @ = B <y then the commutativity of 3.1.1 gives r,, =
= Tpylapy 50 F* = {D,|rg| CA<D} is a presheaf. If all the g,4 are continuous (i.c.
if & is from CLOS), then so is each h, and 7,,+ ;, hence so is also each Yot Dy = Dy
It can be easily seen that if for all « € A with no a — 1 we have S, = lim & 4,y (which
means that gz, : S; — S, are the canonical maps for all f € A[«]), then r,z is 1—1
iff Qg4 104218 1—1 0n @4y 1(X,). As 7,444 and h, are continuous for any « and 3.1.1
is commutative, we get that S = lim & is isomorphic with o = lim &*. Likewise,
if e A and there is no « — 1, then &, = lim & 4,; and &i = lim &%, are iso-
morphic; so we may write #% = #,. Hence the diagram 3.1.1 in the “neighborhood”
of the o looks like this:

+ )\cx Ox 1
— ‘Zr _g_i’.?_'_’_, I]‘fr‘—’.—-_» o - ‘Z‘“ —_— ‘Z:x*/-——i-
|
(3.1.2) lhr/ lhfu I’di he Rces
TrJqf T oxt!
— g, Ty Qs £, e, g Bty g

The same construction can be done in terms of TOP, SEM, UNIF, PROX, ...
(see 0.5). Thus we get

3.1.3. Proposition. Given a presheaf & = {Z,|0,45| (A< )} from TOP and a set
B < A such that (B is well ordered and ¥y is a compact presheaf (see 2.1.2A),
suppose that
(1) either B is cofinal in (A<, or (A<) is ordered, (A — B<) well ordered and

A—-Bc %,
(2) (a) Qus1aszisl=Llong,, &, foralloeB(x + 1isthe follower of & in (B<)),

(b) the family & ={F, = C(Z,— R)|aeB} has the following property:
Given o € B such that the predecessor o — 1 of « in (B<) does not exist, B € B[«]
and a thread {f, |7 € {Ba) n B} through &, then there is f € F,, with OrrS =1y
for all y e {fo) N B.
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Then S = lim & and § = lim & are f.s. If there is a countable cofinal set C
in B then the condition (2b) may be left out.

Proof. If &5 = {@,|r,| (B<)} is the factorpresheaf of &5 constructed above
then we put # = {H, = C(2, > R)|ae B}. By [1, Chap. 1, Sec. 10(6), Cor. 1
of Prop. 8, p. 97], 2, are Hausdorff, hence compact, being continuous images of the
compact spaces Z,. As r,,., is 1—1 for all « € B, 1.3.4A yields the left smoothness
of #. Let a € B such that there is no « — 1, § € B[o] and a thread {g, | y € {fa) n B}
through # be given. As 3.1.2 is commutative, we get that {f, = g,h, | y € (Ba) N B}
is a thread through &, hence there is f € F,,; with gfaﬂf = f, for all y e (o) " B.
Putting g = f0,,+ 4, We get from 3.1.2 that rj,g = g, for all y e {fa) N B, so # is
connected. By 1.1.7, o = lim &% is f.s. Since & and ¢ = lim & are isomorphic,
the statement follows. If there is a countable cofinal set C in B then 1.5.6B yields
that & is f.s. without 2b, which finishes the proof.

2. SOME REMARKS ON FUNCTIONAL SEPARATION,
COMPLETE REGULARITY AND NORMALITY OF INDUCTIVE LIMITS

We start with a generalization of Th. 1.1.7.

3.2.1. Remark. Given a presheaf & = {Z,|o,5| CAS)} from an i.c. category £
which is endowed with a leftward smooth and connected family & = {F, =
= C(Z,~ R|2)|xe A} (which need not be separating), CA<) well ordered,
suppose for any p,qe S =1lm &, p + q, there is o€ A and f,€ F, such that
f=1landf = 0ontheset M, = & '(p) and N, = &;(q), respectively (£,: &, » F
are the canonical maps). Then 5 = lim & is f.s. by D = {fe C(# — R|Q)| there
is Be A with £{f € F, for all o« = B}.

If, moreover, for every a € A there is f, € F, such that f, =1 on M, and f, = 0
on N, and if there is a countable cofinal set D in C then the condition of con-
nectedness of & may be left out.

Proof.Letp,qe 4, p + q. Thereisa € A — & and f, € F, such that M,, N, % 0,
ffM, =1, fJN,=0. We put M, =¢""(p), N, =2¢&"(q) for yeAx) =
={BeA|B = a}. As & is leftward smooth and connected, we can make a thread
9 = {g, |y A(2)} through & with g, = f, by induction (see the proof of 1.1.7). If
ye A(x), a e M,, then there is be M, and & = y with g,5(a) = 0,s(b) = ¢. Thus
g,(a) = gs(c) = g,(b), hence g,/M, = 1 for all y € A(x). Likewise g,/N, = 0, thus
for f =1im ¢ we have f(p) = 1, f(q) = 0 as desired. For the proof of the rest
take a countable cofinal set D in C of the ordinal type w,. Then &, &, fulfil the con-
ditions of 3.2.1 and 1.4.2 completes the proof.

Since & in 3.2.1 need not be separating, the maps @,,+; need not be 1 —1 (by 1.3.1c,
1.1.6, if & is leftward smooth, connected and separating, then ¢, are 1— 1).
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3.2.2. Remark. Let & = {Z, = (X, 1,) |@as| {A<)} be a presheaf from CLOS,
leto,pbel—1foralla,fe A, a = B.Ifaue A, we put D,={feC(Z,~ R) |foQ;,,l
is continuous on (Qaﬂ(Xa)’ ind Tﬂ) Jorall p > a}. Then for o, e A, « < B we have:
(1) A. @}3Ds = D,. B. 0isD; = D, if g, is onto.

(2) If # = lim & is f.s., then each D, separates points of X,, so a necessary con-
dition for £ to be f.s. is that each D, separates points.

(3) If # is completely regular and every g,; carries any t,-closed set onto a T4
closed one, then D, separates points and closed sets. This gives us a necessary
condition for S to be completely regular.

(4) Let CAZ) be well ordered and let g, be onto for all o, B € A. If every D, sepa-
rates points of X,, then S is f.s. The statements (1), (2), (4) hold in terms of any
i.c. category.

Proof. 1. Let a,f,y€ 4, a £ B, a £y, fe Dy We put g, = o005 If
y 2 B then g, = fo 05, [en(X,). However, 0,(X,) = M = ¢,(X;) and fogp,' is
continuous on M. If & < y < f then g, = f o 0,4/0x(X,) Which is continuous, hence
(1A) is proved. To prove (1B), we take a € 4, fe D, and put g = fo I R
then g o gp,' = foe,' Wwhich is continuous, hence g € Dy and clearly 0md = f as
desired. Let £ be f.s., €A, a,beX,,a + b. If £, : X, - £ is the canonical map,
then &,(a) = p + q = &,(b). There is fe C(# — R) with f(a) = 0, f(b) = 1. Then
g=fo.¢eD, and g(a) =0, g(b) =1 which proves (2). Given a€ 4, aeX,,
Q = X, closed, a¢ Q, then S = £,(Q) = # is closed for E7)(S) = 0,(Q) is 74-
closed for all B = a (we have # = lim &, where M = A(x) = {feA4|p = a},
for M is confinal in (4=<)). Further, the closure in # is inductively defined by ¢, :
1 &, - || (see 0.19),&,(a) ¢ S, thus thereis f e C(# — R) withf = Oon S, f o &,(a) =
= 1. Then g = f o &, separates Q and a as desired. (4): The family 2 = {D, | o € A}
is smooth by (1B). Since g, are onto, the maps gy are 1 — 1. By 1.2.4, 2 is connected,
hence 1.1.7 works. Likewise we can proceed in terms of i.c. categories. The proof is
complete.

Part (4) of the foregoing remark can be modified for the case when either & is
not from CLOS (i.e. Q4 need not be continuous) or (A<) is not well ordered,
in the following way:

3.2.3. Remark. Let & = {Z,]|0,4| CAS)} be a closured inductive family (see
0.12) and let every 0,; be 1—1 and onto. Suppose there is y € A such that the set
T,=D,n{feC(Z,~ R)|fogseC(Zs— R) if p =<7y} separates points of %,
(D, are from 3.2.2). If # = lim & exists then it is f.s. (£ is defined by 0.12). The
same holds in terms of TOP, SEM, ... — see 0.5.

Proof. Under our conditions the canonical maps &, : £, = # are onto. We have
H={f.&"|feT} = C(# - R). Indeed, if h = fo &, ' e H,ae Athen ho &, =
=fooyfora <y, and hol, =fo 0, for y < a. In both the cases h o &, is con-
tinuous (see the definition of D, in 3.2.2) hence so is h as desired. The proof in the
other categories is the same.
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3.2.4. Remark. Let a presheaf & = {%,]o.| (A<D} from an i.c. category £
be endowed with a family & = {F, < C(%, > R| 2)|ae A}.

(A) If for every a € A the set V, = N\{o}4F, | B = o} separates points of Z,, iy
sends Fy in to F, and is 1—1 in Fy for alla,fe A, « £ B, then S = lim & is f.s.
(CAZ) need not be well ordered).

(B) Let A(x) = {BeA|B = o} be countable for any ae A. Suppose that 0%y
carries Fy onto a subset of F, which is of the Baire type G5 and dense in the usual
sup-norm for all a, € A, a < B. If every F, is complete in the norm and separates
points of &, then so does V,.

Proof. Given p,q € 4, p =+ g, there is « € A such that there are representatives a,
of pand b,of gin &,. If a, fe A, a < fthenV, = Q:,,V,,. Indeed, if f € V, then for
every y > B there is f, € F, with o} f, = f = 050}, f,- As fp, ¢},f, € Fyforally =
and @} is 1—1 in Fy so gp,f, = fp for all y 2 B, hence fy e V,. As oipf; = f, we
getV, < Q:ﬂVp. Clearly Q;",,V,, < V, which proves the equality. As V, separates points
of Z,, we get from 1.3.1c that g,5 is 1—1. By 0.9, the canonical maps ¢, : Z, = £
are 1—1 for all a€ 4, so a,, b, are unique. We can find f, e ¥, with f,(a,) = 0,
fub,) = 1. Setting a, = 0,,(a,), b, = 0,,(b,) for y = a, we can find to every y € 4(«)
auniquef, € F, with o}, f, = f,(ex, are 1 —1). Thus we get a family # = {f, | y € A()}
with f(a,) = 0, f,(b,) = 1 for all y e A(x). As every gjp is 1-1 in F4, we have
fy = Q’;,;f,, for all y, B e A(oc), y < B, hence & is a thread through &. Further, J =
= lim &, for A(x) is confinal in (4<). Thus f = lim # € C(# — R), which
proves (A) for f(p) = 0, f(q) = 1.

(B) By the Baire category theorem [5, Chap. X1V, sec. 4, Th. 4.1, p. 299], every V,
is norm-dense in F,, hence V, separates points.

We can easily prove 3.2.4 if (A<) is well ordered. The proof used here allowed
to leave out that condition.

3.2.5. Remark. Given a presheaf & = {%, = (X, 1,) |0up| C(ASD} from TOP
such that every %, is Hausdorff, let 0,5 be a homeomorphism of %, onto a tg-open
set 0,5(X,) for all B = a. Then S = lim & is Hausdorff.

Proof. Let p,ge 4, p + q. We take a € 4 such that there are a, b e X, with
&(a) = p, &(b) = q (¢ : %, > F are the canonical maps). As %, is Hausdorff,
there are 7,-open sets G,H < X, with aeG, beH, Gn H = 0. Then G; =
= 0.4(G), Hy = 0,4(H) are 15-open and disjoint for any fe A(@) = {ye 4|y = a}.
As A(a) is confinal in (A<D, we have S = lim &,,,. Clearly &' £(G) = Gy,
&' &(H) = Hy are tg-open for any B e A(a), hence M = &(G), N = ¢ (H) are
open and disjoint, pe M, q € N as desired.

The above remark can be generalised as follows: Instead of @u(X.) to be 75-open
we may assume that for any a € 4, a, be X, there is § > « and 7g-neighborhoods
U, V of @up(a), 2up(b) such that P = g,(U), Q = g,(V) are open t,-neighborhoods
of 0,,(a), @u(b), respectively, for all y = B. The proof is the same. (If P, Q are not
always 7,-open then only CLOS lim & is Hausdorff.)
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3.2.6. Remark. Let & = {(Xl, 7,) IQzﬁI (A=)} be a presheaf from CLOS, (A<)
well ordered and containing a countable confinal set C. Then (I, ) = lim &
is a Hausdorff closure space if every (X,, 1,) is Hausdorff and Qup is a homeo-
morphism into (X, 75) for all a, B € A.

Proof. There is a confinal set D = C such that (D<) is of the ordinal type w,;
lim &), is isomorphic to lim &, so we may assume that (A<) is of the ordinal
type wq.

It is known that there is an order preserving map of A either on the set N of
natural numbers or on its segment N[k]. Hence & is either over N[k] (but then
(I,1F) = (Xx—1» 7—1) and the statement holds) or over N. Let A =N, p,qel,
p * q. We set a, = & '(p), b, = & '(q). Let n be the smallest number for which
there are a,, b,. We may assume that n = 1 as N(n) = {ke N | k = n} is confinal
in N and thus (I, ;) = lim #y(,). The maps @,,.+; are homeomorphisms into
(X4+ 15 Tas 1)- Thus we can construct by induction a sequence {Uy}, {¥;} of 7,-neigh-
borhoods of a,, b, such that U, n ¥, = 0 and that ¢3'(Uy) = Uj, 03' (Vi) = V;
for all ke N and all j £ k. Then U = U{&(Ux) | ke N} and V = U{(W) | ke N}
are fy-neighborhoods of p and g, respectively (see 0-19), and U n V' = 0. Indeed,
if re U N V, then there are k,le N and ce Uy, d e V; with &(c) = &(d) = r. We
may assume k < 1. Then ¢ = ¢5;'(d) € V; and c € U, so Uy n ¥ + O — a contradic-
tion, which proves the Remark.

Under the conditions of the foregoing remark we get that (I, t7) is Hausdorff,
but we do not know whether there is a Hausdorff topology in I, coarser than ¢},
as t7 is only a closure. We do not know it, either, when & = TOP. Now we shall
shortly deal with the question when lim & is completely regular or normal.

3.2.7. Remark. Let & = {(Z,, 7,) [0.5| (A=)} be a normal presheaf from TOP,
(AL ) well ordered. Suppose

(2) Cuar1:Zz— Zary is a homeomorphism onto a T, -closed set @, 41(X,) for
all € A.

(b) {xe A|a — 1 does not exist} = £.

Then $ = TOP lim & is normal. The condition (b) may be left out if there is
a countable cofinal set in A and if (a) holds for any pair a, fe A, a < p.

Proof. Let P,Q = # be closed, Pn Q =0, M, = £, '(P), N, = £.(Q) (&,
: %, — J are the canonical maps). There is o € 4 such that M, + 0, N, + 0. As
M, "N, =0, there is f, € F, with f,[M, = 1, f,/N, = 0. Since A(z) = {fe 4|p =
= oc} isconfinalin {4 <), we may assume o = 1 (oc is the smallest element of (A=< )).
Let fe A and let us have a thread {f,|ye A[B]} through & with f, | M, = 1,
f,| N, =0 for all ye A[B]. If there is no B — 1, then fe £ and there is fy € F,
with @}y fy = f, for all y € A[B]. Clearly {f, | y e (1, By} is a thread through & 4,
with f, | M, = 1, f,| N, = 0 for all ye <1, B). If there is f — 1 then g = f;_, o
o Qp-14 is Tp-continuous on Oy = 05-1p(X4-,), so we can define § on Ry = 0, U
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U My U Ny as follows: § = g on Oy, § = 1 0on My, § = 0 on Ny Then g is Tg-con-
tinuous on Ry, hence by 1.3.4A, there is a continuous extension f; of § to the whole
Z,. Clearly {f,|ye<1B)} is a thread through & with f, |M, =1, f, | N, =0 for
all y e {1, B). By induction, there is fe C(# — R) with f[P = 1, f/Q = 0 which
completes the proof. The last statement readily follows from 1.2.6.

3.2.8. Remark. Let & = {Z, = (X,, n,) |0,| (A<D} be a presheaf from UNIF.
We put 1 & = {(X,, cl n,) || <ASD} (cl n, is the closure generated in X, by n,;
it is always a topology hence cl & is from TOP — see 0.9), (I, n) = UNIF lim &,
(I, t*) = TOP lim cl & (see 0.7). Then the topology t, induced in I by n is completely
regular and coarser than t* (notice that (I, n) need not be separated). If (I, n) is
f.s. then so are (I, 1) and (I, tT).

Proof. By [3, Chap. V, sec 29, Th. 28A5(f), p. 504], ¢ is completely regular.
If (I, n) is f.s. (by U((1, n) = R)), then so is (I, 1) (by C((I, t) - R)). The canonical
maps ¢, 1 (X,, cln,) — (I, 1) are continuous thus so is the identity e : (I, t*) —
— (I, 1) as desired.

3.2.9. Remark. Given an i.c. category £ and an inductive family & =
= {Z 0| CAS)} of R-objects (see 0.12), suppose that A[«] is right directed for
every o€ A. If ae A, we put 7, = lim & 41, in the sense of 0.12 (see 1.1.3, 0.2).
Let ryy: T, — T3 be the canonical 8-morphisms. Then T = {T, | rep| <A}
is from 2 (see 0.2) and ¢ = lim I is L-isomorphic with # = lim & if S exists-
(lim & is meant in the sense of 0.12).

Proof. Clearly 7 is from £. Look at this commutative diagram:

]
=2

J=lim¥ Oup lp limJ 77

S
‘fﬁ\ Jﬁ#\ /'7'13

B Ts

! |

Here 3,, ol &, 1. are canonical maps. Every arrow except g, is an £-morphism.
Thus there are £-morphisms i : # — # and j: ¢ —» S with io &, = 10 ¢f for all
B> oa,andjon, = 9,forallae A. Clearly i - j and j - i are identical as desired.

The foregoing remark can be useful if & is not from 2. We can form 4~ and deal
with the functional separatedness of 7.
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3. A FEW REMARKS ON PROJECTIVE LIMITS

Given ani.c. category £ and an inductive family & = {Z,]0,5] CAZ )} of L-objects,
which is endowed with a family & = {F, = C, = C(%, - R | &) | x € A}, then if "<
is the inverse order in A4 (i.e. « "< B iff B £ «), then &* = {F,|ol| <4'<)} is an
inductive family from SET (see 0.5). We can construct the projective limit P =
= lim &* (see 0.6). Further, we assume that there is # = lim & (see 0.12).

3.3.1. Remark. P = lim * is isomorphic with the set S; = {fe C(F —
—R|8)|fo&€F, for all we A} (¢,: %, —~ F are the canonical maps). Thus if
€ =1{C, = C(%,—> R|8)|ae A}, then lim ¢* + 0.

Proof. Each element of P is a thread # = {f, | « € A} through & (see 0.6). Such
a thread generates a unique map f : C(# — R) with f, = f o &, for all « € 4. Putting
G(#) = f, we have f € S;. On the other hand, if f € S, then # = {f, = fo &, | ae
€ A} is from P as f, = o};f; for all o, fe A, « < B. Setting A(f) = F we get Ao
o G(F) = F,G o A(f) = f,s0 Gand 4 are isomorphisms. As S, = C(# - R | £) +
+ 0, we get lim €* + 0.

3.3.2. Definition. We say that P = lim &* separates points of S = lim & if the
set S, from 3.3.1 separates points of £.

3.3.3. Remark. # = lim & is f.s. iff there is a family & for & such that lim §*
separates points of #. Thus a necessary and sufficient condition for S to be f.s.
is that lim €* separates points of #, where ¢ = {C, = C(Z, > R|2)|ae A}.

Proof. If # is f.s., then there is S = C = C(# — R | £) which is separating (and
then so is also C itself). Setting F, = {fo&,|feS} for aed, & = {F,|ae 4}
then lim &* is separating for 4. The converse is clear. Since lim §* < lim €* for
any &, the last statement follows.

3.3.4. Remark. Let an inductive family 9 = {D,|0,;| CA<)} from SET be
given. Denoting by "< the inverse order for <, we assume that (A <) is right
directed and that there is an i.c. category £ and a presheaf & = {&,]0,5| <A <)}
of L-objects such that F = lim & exists and that at least one of the following
conditions holds:

(1) D, = C,=C(Z, > R| L), Gy =0}, for all a,feA, a« <P, and S =
={feC(F >R|8)|foé,eD, acA} (,&,:2,—~ F are the canonical maps).
(2) C, = Dy, 3,5 | Co = @ for all e, e A, B~ < 0.

Then P =1lim 2 * 0.

Proof. If (1) holds, then P is isomorphic with S. If (2) holds, then by 3.1.1, P’ =
= lim ¢* + 0, where ¥ = {C(Z, > R|8)|ae A}. As lim¢* c lim 2, we get
P+ 0.
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3.3.5. Corollary. Let each D, from 3.3.4 be a topological locally convex linear
reflexive space, so that Q0,5 are linear maps. Then lim 9 + 0.

Proof. If Z, is the dual space of D,, then D, = C(%, - R| &), where £ = LIN
(see 0.5). Setting g,5 = @j, We have @}y = §js = 0p, and & = {Z,|0,p| (A"}
is a presheaf of LIN — objects and LIN lim & exists. Now we use 3.3.4 (2).

3.3.6. Proposition. Let & = {Z,|0,5| (AS)} be a topologised inductive family
(see 0-12) for which there is a compact hull € = {%,|r,5| CA<)} (see 2.1.2B) such
that all the r,5 are 1 —1. If (A< ) is right or left directed then all the canonical
maps {p,: /" =1im & — Z,| o € A} (see 0.6) are homeomorphisms.

Proof. There is A = lim & and = lim . Denoting by e,: %, > %, (9. :
: M — €,) the embeddings of Z, into &, (the cannonical maps of ./ into %,), we
have e, o p, : /" — €, for all a € A. By 0.6, there is a unique 1—1 continuous map
i: A — M suchthat g,.i = e, o p, for all ® € 4. We get the commutative diagram

‘/V po(

Ly
i l €n
&

M —

By [5, Appendix 2, Th. 2.5, p. 430, Th. 2.8, p. 432], i is a homeomorphism into ..
By [5, Appendix 2, 2.4, p. 429], the topological space .# is compact. The maps
9o : M — €, are 1—1. Indeed, the set |.#| consists of all threads a = {a, € |%,| | a e
€ A} — see 1.2.1, [5, Appendix 2, Def. 2.2, p. 427] and g,(a) = a, for all xe 4
[5, App. 2, p. 428]. Given xe€ A, a = {a,|ac A}, b={b,|aecd}ed with
g.(a) = g,(b), then a, = b,. If a; = b, for some € A then clearly a, = b, for all
y€ A,y = 5. Let Be A. If (AL is right (left) directed, there is y € 4 with y = «,
=y (y s 7S ﬂ) Then rﬁv(alf) =a,=b,= rﬂv(bﬁ)’ hence a; = by (rva(ay) =
= a, = b, = r,(b,), hence a, = b, so a; = by) as all the r,, are 1—1. This shows g,
to be 1—1. Hence all the g, are homeomorphisms into €, (see 0.15), thus so are also
g: ' oe, = iop; ", which gives the continuity of p; ' as i is a homeomorphism.

3.3.7. Remark. In all the theorems, where we have a compact hull ¥ of & over
a right or left directed set such that all the r,; are 1—1, all the canonical maps p, :
:lim & —» &, are homeomorphisms into %,. This occurs namely in 2.1.7, 2.2.9
if & is strongly separating, in 2.2.7, 2.2.8 if & is strongly separating, and in 2.3.6,
2.3.8, 3.1.3 (it can be easily seen by 0.6 that in 3.1.3lim & and lim #* are isomorphic).
Especially, this holds for &y from 1.5.2, 1.5.5 and for & from the statement in
1.5.6B.
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4. THE METRIC CASE

Now we will deal with the presheaves over countable sets.

If (A< ) is a well ordered and countable set whose ordinal number is at most @,
then there is an order preserving map of A either on to the set N of natural numbers
or onto its segment N[k]. Thus if & = {X,|o,4| (A=)} is a presheaf from a category
R then & is either over N or over N[k] = {1, ..., k — 1}. If A is finite then lim &
is K-isomorphic with X, _,, where A = N[k]. The only case which is worth dealing
with is A = N. Then we write & = {X,,|¢,..| N} and say that & is over N.

3.4.1. Proposition. Let & = {(X,, 1,) |0m| N} be a presheaf from CLOS over N
such that all g,,, are homeomorphisms of (X,,,, ) into (X,, 7,). Suppose that every
(X, 1,) is metrisable with the metric d, (thus & < TOP and & is a presheaf of
UNIF-objects — see 0-12, but it need not be & < UNIF as g, need not be uniformly
continuous). If a, b € (I, t7) = CLOS lim & (see 0-7) then there is the smallest n € N
such that a, b have representatives a,, b, € X,. We put a,, = Qun(as), by =0um(bs)
for m = n.

A. Let us set D(a, b) =Y. 27*d,(ay, b) (1 + di(ay, by))™"'. Then the function D
k=n
is a metric in I such that all canonical maps & : (X4, di) = (I, D) are homeo-
morphisms into (I, D). We have D < 1 and D yields a topology in I, coarser than t}.
B. Given peN, we set q = max(n,p) and Dja,b) =Y 27%dy(a;, b)) (1 +
k=gq
+ d(ay, b,))”*. Then D and D, are equivalent metrics in I.
Proof. A: It is an easy matter to check that D is a metric. We prove that all the
&, 0 (Xy» d,) = (I, D) are continuous. Given neN, a € X, and ¢ > 0, then there is
m = n such that Y 27/ < 27'.& The function f(x) = x(1 + x)™! is increasing,

j=m
continuous and f(0) = 0, f(x) < 1 for all x > 0, thus there is § > 0 such that
5(1 + 8)™' < 27! . & Moreover, > 0 can be found such that for all b € X, with
d,(a, b) < n we have di(eu(a), eu(b)) < & whenever n < k < m (for all o;; are
continuous) and that di(¢'(a), m'(b)) < & if k < n and if ¢'(a), @' (b) exist
(for all o5 :(ei (X)), d;) = (X;,d;) are homeomorphisms — see 0.15). Given
b € X, with d,(a, b) < n, let I < n be the smallest number for which there are a;, b, €
€ X, with g,(a;) = a, Q,,,(b,) = b. Setting a; = ¢;(a;), b; = g,j(b) for j > 1, we

have  D(£,(a), in(b))-ZZ-’d(a,,b,)(l-f—d(a,,b,)) 1=Z + Z <
<Z+2 s<25(1+5)1 277 427 < o(1 4+ 6)7* 22 P42 e<2‘e+

+ 2 leg = ¢, Wthh proves the continuity of &, : (X,, d,) = (I D). By 0.4, the iden-
tity (I, t¥) - (I, D) is continuous, hence D generates a coarser closure than f7.
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If neN, a,beX,, then 27"d(a, b)(l + d,(a, b))™" < D(¢(a), &(b)) which
gives d,(a, b) < 2"D(&,(a), &(b)) (L — 2"D(£,(a), &(b))™"  whenever  2"D(¢,(a),
¢,(b)) < 1. As the function g(x) = Cx(1 — Cx)~! is continuous on 0, C~'), g(0) =
= 0,soforany e > Othereis d with0 < § < 1 such that g(x) < ¢ whenever0 < x <
< 4. This proves the continuity of & ' :(£(X,), D) = (X,. d,). Indeed, given
p. g€ &(X,), ¢ > 0, then we can find 6 > Q with 0 < § < 1 such that |g(x)| < e
if 0 <x <. If D(p,q) < then d,(&;'(p), & '(a)) < 9(D(p. q)) < & as desired.

B: As A(p) = {neN|n 2 p} is confinal in N, we have (I, 1) = lim & 4.
By A, D, is a metric in I. Clearly D, < D, so the topology generated by D is finer
than that generated by D,. Conversely, given xel, ¢ > 0 and a D-nbd M, =
={yel|D(x,y) <é& of x, we have to find a u > 0 such that N, = {yve
el | D(x,y) < p} = M,. Let n be the smallest number such that there is a represen-
tative a € X,, of x. If n = p then it follows from the definition of D and D, that
D,(x,y) = D(x, y) forall y eI, so N, = M,. It remains to deal with the case n < p.

There is m with m = pso that Y. 27% < &. As ¢, : (X, d,,) > (I, D) is continuous,
k=m

thereis 8 > O such that for all b € X,, with d,,(¢,.(a), b) < 6, we have D(x, £,(b)) < &
(we have &, o @um(a) = x). Using A to &, and D,, we get the continuity of &, ' :
2 (én(X ) Dp) = (X dpy). Thus there is p >0 so that d,(&,"(x), & (v) <6
for all y € N,,, for which &, (y) exists (we have &, '(x) = g,n(a)). We have N, = M,.

Indeed, if y € N, is such that b,, = &, '(y) does not exist, then D(x, y) < ¥, 27% < ¢,
k=m

so y € M,. If there is b, then d,(¢,, '(x), b,,) < &, hence D(x, y) < ¢ as desired. Thus
the topologies generated by D and D, are equivalent.

3.4.2. Remark. In the light of Lemma 1.4.2, all remarks of the second section and
also Proposition 3.4.1 remain valid in the following form: Let £ be the same category
which we have in the remark or proposition, let & = {Z,]0,4| (A< >} = £ be a pre-
sheaf. Let us have B < A such that

(a) Either B is confinal in {(A<) or (AZ) is ordered, {4 — B<) well ordered
and A — Bc %,

(b) #p fulfils the conditions of the remark or proposition. Then the assertion of
the remark (proposition) holds.
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