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INTRODUCTION

This part of our theory of integration of vector valued functions with respect to
operator valued measures consists of three supplementary sections. In § 1 we prove
further properties of L;-pseudonorms, thus continuing their study from Part II (see
[4]) Particularly, we prove a diagonal convergence theorem for them, see Theorem 5.
The main result of § 2 is Theorem 6 on the existence of infinite products of L(X)
valued measures. Here the assumption ¢, ¢ X is essential. In § 3 we first prove
a theorem of the form [, fd(me™") = [ -1 f(¢(+)) dm, where ¢ is a measurable
transformation, and then four theorems which in the scalar case reduce to assertions
of the form {; fd([ g dn) = (5 gfdn.

We shall use the notation and concepts of the previous parts of our theory. Parti-
cularly, T will be a non empty set, # a é-ring of subsets of T, X, Y, Z and Z, will
be Banach spaces over the same scalars, and L(X, Y) the Banach space of bounded
linear operators from X to Y.

Remark. It is worth noting that our setting of the theory of integration covers
also the case of integration of operator valued functions with respect to“a countably
additive vector measure, i.e., integration of #-measurable functions f: T — L(X, Y)
with respect to a countably additive vector measure m : #, — X. This is evident
from the following considerations:

Let m : 2, — X be a countably additive vector measure, and let f: T — L(X, Y)

be a Z,-simple function of the form f= 3 U;. g, where U, e L(X,Y), E;e 2,
i=1
and E;nE; =0 for i #j, i,j =1,...,r. Then it is natural to define [, fdm =
=Y Um(E N E;) for E € S(2,). Being motivated by our definition of the semivaria-
i=1

tion, see p. 513 in Part I, we put

m"(E) = sup{ Lfdm

ST L) s 2 simpleand 7] = 1}
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for E€ 6(«@0). Then

m~(E) = sup{‘ZUim(EmE,-) Ui L(X.Y), |U| <1, E;e P, E,nE; =
i=1
forifj, i,j=1,..,r,1r= 1,2,...} =

= sup{.ZJm(EmEi)L E;€Po, E;nE;=0fori=%j i,j=1,...7,
r=12,..} = v(m,E)

for each E e &(2,) (using a corollary of the Hahn-Banach Theorem, see 11.3.14
in [8], take x} € X* so that |x}| =1 and x{m(E N E;) = |m(E n E;)|, and put
U;=y.x}, where ye Y and |y| = 1).

Similarly m*(f, E) = [z |f|dv(m, -) for each 2,-measurable function f:T —
— L(X,Y) and each Ee &(2,), hence &, M(m) = £,(m) = &,(v(m, +), X), see
Definitions 1 and 4 in Part II.

On the other hand, by the same Corollary 11.3.14 in [8] of the Hahn-Banach
Theorem, X has the natural imbedding X, L(L(X, Y), Y), x (, %, defined by the
equality XU = Ux, Ue L(X,Y). Hence m : #, - X may be viewed as m: P, —
— L(L(X,Y),Y), and m is countably additive in the uniform operator topology by
the countable additivity of m. Since [ fdm = [z fdm for each 2,-simple function
f:T— L(X,Y) and each Ee &(2,), our original setting covers also this case.

1. FURTHER PROPERTIES OF L,;-PSEUDONORMS

This section may be considered a continuation of Part II. We note that from the
definition of the L,-pseudonorm, m*(g, E) = sup {|[zfdm|, f: T— X is P-simple,
{ f(t)l < |y(t)| for each t e T}, it is clear that it depends only on | yl and E. Hence the
results about L,-pseudonorms for vector valued functions remain valid for functions
g:T— <0, +0) (then ge Z,(m) if and only if g is #-measurable and m*(g, *)
is continuous on &(2)). This was already noted in the paragraph before Theorem 2
in Part IIL. On the other hand, Lemmas 1 and 2 below have no meaning for X-valued
functions in general.

We begin with the following extension of Theorem 16 from Part II.

Theorem 1. (Extended Vitali Convergence Theorem in %y(m).) Let m:2 —
o= L(X, Y) be an operator valued measure countably additive in the strong operator
topology with the finite semivariation m" on 2, let f, € $l(m), k=12, ..., and
let fi(t) = f(t)e X m a.e. on T. Then the following assertions are equivalent:

a) fe &(m) and m"(f,, E) —» m"(f, E) for each E e &(%),
b) m*(fi. *), k = 1,2,..., are uniformly continuous on S(2), and
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¢) fe Zy(m) and m"(f, — £, T) - 0.

Proof. a) = b) by the continuity of m"(f; *) on &(#) and by the monotonicity
and continuity of each m"(f;, *), k = 1,2, ... on S(2). .
b) = ¢) by Theorem 16 in Part II.
¢) = a), since |m"(f;, E) — m"(f, E)| < m"(f, — f, E) < m"(f, — f, T) for each
E e &(2).
The next theorem and the example after Theorem 3 show that in &, (m) the analog
of the classical Monotone Convergence Theorem holds only if ¥ contains no subspace
isomorphic to c,.

Theorem 2. (Monotone Convergence Theorem in %,(m).) Let Y contain no sub-
space isomorphic to cg, for example, let Y be a weakly complete Banach space,
see pp. 160 and 161 in [1], and let m : 2 - L(X,Y) be an operator valued measure
countably additive in the strong operator topology with the finite semivariation m*
on 2. Let further f,: T— X, k = 1,2, ..., be #-measurable functions, let fi(t) -
> f(t)e Xma.e. onT, and let |£(1)] ~ |f )| m a.e. on T. Then the following asser-
tions are equivalent:

a) limm*(f,, T) < + oo,
k=

b) fe &,(m), and
¢) ffie&Ly(m), k=12 .., and m"(f, — £, T) > 0.

Proof. a) = b). According to Theorem 4 in Part 1I and the classical Monotone
Convergence Theorem, see Theorem B in § 27 in [9],

+00 > limm"(f,, T) = llm sup J ]f,',| dv(y*m, *) =

k= -0 |y* =

= sup limj | A do(y*m, +) = sup J |f] do(y*m, *) = m*(£, T).
|¥*S1 k= J I»*Is1 Jr ‘
Since ¥ contains no subspace isomorphic 0 ¢,, f€ &,(m) by Theorem 5 in Part II.
b) =c). Since |£(t)] £ |f(t)] m ae. on T for each k = 1,2,..., fie £ (m),
k=1,2,..., and the L;-pseudonorms m"(ﬁn -), k =1,2,..., are uniformly con-
tinuous on &(2). Thus m"(f, — f, T) — 0 by Theorem 1.
<) =>a). Since fe Z,(m), +© > m"(f,T) 2 m"(f,, T) for each k =1,2,....

Remark. In Theorems 1 and 2, &,(m) is the space of all m-essentially -measurable
functions, see Definition 2 in Part III, with the continuous L,-pseudonorms on S(2).

We now give an application of Theorem 2.

Theorem 3. Let T be a locally compact Hausdorff topological space, let Y contain
no subspace isomorphic to co, and let U: Co(T) — Y be a bounded linear operator.
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Let further fie Co(T), k = 1,2,..., be such that fi(t) - f(t)e X = the scalars
of ¥, let |£(t) 7 |f(t)], and let sup |U(fi - 9)| < + o0 for each ge Co(T). For
k

k=1,2,... define U,:Co(T)—>Y by the equality U,g = U(f;.g), ge Cy(T).
Then U, k = 1,2, ..., is a Cauchy sequence in L(Co(T), Y).

Proof. According to the well-known representation theorem, see [8, VI.7.3]
and [7, Theorem 2], U has a unique representation Uf = [r fdu, where p : S(%,) —
— Y is a countably additive vector measure (S(4,) is the o-ring of Baire measurable
subsets of T), and |U| = |u| (T). By Theorem 6 in Part II,

IUk| = sup lng| = sup

llgllT=1,9eCo(T) llgllT=1,9eCo(T)

Jﬂydu‘ — 2 T).
T

By assumption, U,g, k = 1,2, ... is a bounded sequence in ¥ for each g e Cy(T),
hence sup A(f, T) = sup |Uk| < + o0 by the Uniform Boundedness Principle, see
k k

[8, IL.1.11 and 1I.3.21]. Since ¥ contains no subspace isomorphic to ¢, IU,, - U,,I =
= A(f, — fo» T) > 0 as k, n — oo by Theorem 2.

Let us note that the function fin the preceding theorem is integrable with respect
to u, Uy = 11m U, (in L(Cy(T), Y)) has the representation Uyg = [ g d([ fdu) =

=(rfg dy, ge CO(T) and |Up| = A(f; T).
The following simple example shows that the assumption ¢, ¢ Y is essential for
the validity of Theorems 2 and 3.

Example. Let T= {1,2,...} with the discrete topology, let # = 27, and let
f:P - c, be determined by countable additivity from the values p({f}) =
=(0,...,0,¢7%,0,...). Then T is a locally compact Hausdorff topological space,
and p: 2 — ¢, is a countably additive vector Baire measure. Let £, : Co(T) = c,
k =1,2,..., be defined as follows: fi(t) = t if t < k and £(t) = 0 if t > k. Then
fi(t) 7 f(t) = t for each te T, A(f, T) = 1 for each k = 1,2,..., but fis clearly
not integrable with respect to p, and |U, — Uy = A(f, — fi, T) = L if n#+ k,
nk=1,2,.

Let p: 9’—+ <0 + 0) be a countably additive measure, let g : T — <0, +0)
be a #-measurable function, and let fT g du < +o0o. Then, by the additivity of the
integral, clearly for each ¢ > O there is a positive integer N, such that whenever

N
fis -+ fy, are P-measurable and ) (f;,l < g, then [ |f,| du < & for at least one
n=1

ne{l,...,N,}. (Take N, = [¢"'. [r g du] + 1.) This fact may be considered as
a strengthening of the Lebesgue Dominated Convergence Theorem, see [9, § 26,
Theorem D]. Now we show that this strengthening holds also in %, (m).

Theorem 4. Let m : 2 — L(X,Y) be an operator valued measure countably addi-
tive in the strong operator topology and let ge £ (m). Then for each & > O there is
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a positive integer N, such that whenever f,, ..., fy. : T > X are P-measurable and

Ne
Y |£| = |9|. then m*(f,, T) < ¢ for at least one ne{1,...,N,}.
n=1

Proof. Let ¢ > 0. For k=1,2,...put G, = {t,te T, k! £ [g(t)' < k}. Then
G, € S(#) for each k = 1,2,... and G, # G = {t, te T, ¢g(t) + 0}. Hence, by the
continuity of the L,-pseudonorm m"(g, ) on &(2), there is a k, such that
m*(g, G — G,) <27 '.e Since ky'.m"(G, N E)<m"(g,G,E)=<k,.
.m"(Gy, N E) for each E € &(2), see Theorem 1 in Part 11, the semivariation m"
is continuous on the g-ring Gy, n &(2). Thus, according to the *-Theorem in Section
1.1 in Part I, there is a countably additive measure 1 : Gy, N S(2) — <0, + )
such that A(G,, N E) > 0=m"(G, nE) >0, E€ S(#). Take 6 >0 so that
Ee&(#) and NG, nE) < d=m"(G, nE)< (3ke) "¢ puta=
= (3(1 + m"(G,,))™* . ¢, and take b > 0 so that b.a~! < 4. Since [g,, |g| dA =
< ko . A(Gy,) < + 0, there is a positive integer N, such that whenever fi, ..., fy, :

: T— X are P-measurable and ib lf,,] < M’ then [¢,, |f,,| di < b for at least one
n=1

ne{l,...,N,}. We assert that such N, may be taken to be the required N,. Indeed,
if 6.0 |f;,| dA < b, then A({t:te G, ,f;,(t)| >a})<b.a"' <4, hence m"({t:
:t€ Gy |£(1)| 2 a}) < &.(3ko)™!. Thus
m*(f,, T) £ m"(f,, G — G,) + m"(f,, G,,) < m"(9,G — G,) +
+a.m ({t:teGy, [£(1) <a}) + ko.m"({t: 1€ Gy, |£(1) 2 a}) <,
which we wanted to show. The theorem is proved.
The first assertion of the next lemma immediately follows from Theorem 4 in Part

II and the classical Fatou’s lemma, see [9, § 27, Theorem F, while the second asser-
tion is immediate from the definition of the L,-pseudonorm, see Definition 1 in Part II.

Lemma 1. (Fatou’s lemma for L,-pseudonorms.) 1) Let f,: T — (0, +®), n =
=1,2,..., be P-measurable functions, and let m: P — L(X, Y) be an operator
valued measure countably additive in the strong operator topology. Then

m”(lim inf f,, E) £ lim inf m"(f,, E)

for each E € S(2).

2) Letm,m, : ? — L(X, Y), n =1,2,..., be operator valued measures countably
additive in the strong operator topology, and let m"(g, T) - m"(g, T) for each
P-simple function g : T — <0, +o0). Then

m*(f, E) < liminf m",(f, E)

for each P-measurable function f: T — {0, + ) and for each E € &(2).
We shall use the following three assumptions:
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(a): letfp: T— Xor f,: T—<0, +©), k = 1,2,..., be P-measurable functions
and let f(t) - f(t) € X (or <0, + ©)) for each te T;

(az): letm,m,:2? - L(X,Y),n = 1,2, ..., be operator valued measures countably
additive in the strong operator topology, and let m" (g, T) - m"(g, T) <
< + o for each P-simple function g : T — X (or — €0, +0)), and

(asu): (a,) and m* (g, E) > m"(g, E) uniformly with respect to E €2 for each
P-simple function g : T — X (or <0, + )).

Lemma 2. Let # = &(2), let f, f, : T— <0, + ), k =1 2,..., be ?-measurable
functions, let “f”T < +o0, and let Hf,, — f[[T — 0. Suppose further that (a,)
holds. Then lim m",(f,, E) = m"(f, E) for each E € &(2). This limit is uniform

k,n= o0

with respect to E € (%) provided (ayu) holds.

Proof. Since m",(E) » m"(E) < + o for each Ee 2 = S(2), there is an n,
such that supm”,(T) < +oo. Since f:T— 0, +00) is a bounded 2 = S(2)-

nZno
measurable function, by Theorem B in § 20 in [9] there is a sequence of Z-simple
functions g;: T — <0, +oo), j=1,2,..., such that ”gl- —j‘“T — 0. Now the
assertions of the lemma are immediate from the following inequalities:
|m"(fio E) — m*(f, E)| < |m*,(fi, E) — m",(f, E)| + |m",(f, E) — m"(f,E)| £
é mAn(ﬁc —.f’ E) + lmAn(j; E) - mAn(yj’ E)I + |mA"(gj’ E) - mA(-/; E)I §
< m"(fi = £ E) + m",(f = g;, E) + |m",(g;, E) — m"(g, E)| + m"(g; — £, E) =
< A= Slo - supm*(T) + £ = g7 - sup m(T) +

+ |m"(g,~, E) — m",(g;, E)| + Hf—— _qj||TmA(T).

Using this lemma we have:

Theorem 5. (Diagonal Convergence Theorem for L,-pseudonorms.) Suppose (31)
and (a,), and let f,e £ ,(m,) for each n =0, 1,2, ..., where my = m and f, < f.
Then the following conditions are equivalent:

a) m*,(f,, E) > m"(f, E) for each E € &(%), and
b) the Li-pseudonorms m*(f;, *), n = 1,2, ..., are uniformly continuous on G(ﬂ)-

If they hold, and if (ayu) holds, then m* (f;, E) - m"(f, E) uniformly with respect

to Ee &(P).

Proof. a) = b) by the monotonocity and continuity of m"(f, +)and of m"(f, ),
n=12....
Suppose b). For E € &(2) put

_v 1 _m(fE)
WE) =2 5 +m (f, T)
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Then p: &(#) - <0,2) is monotone, subadditive, continuous, and N e &(2),
WN) = 0=m",(f N) =0foreachn =0,1,....Put F = U {t:te T, £(t) + 0} e
n=1

€ &(2). Then by (a1) and the Egoroff-Lusin Theorem, see Section 1.4 in Part I,
there are N e &(#), and F,e#, j = 1,2,..., such that y(N) =0, F; # F — N,
and on each Fj;; j = 1,2,..., the sequence f;, k = 1,2, ..., converges uniformly
to f. Since clearly

|m* (£, E) — m" W(fio E)] £ m*(f,, E = F;) + m"(f, E — F;) +
+ |m*(fp, EAF)) — m",(fi, E 0 F))|

for each E € S(#) andeach j, k,n = 1, 2, ..., from b) and Lemma 2 we immediately
see that lim m",(f,, E) = v(E) < + oo exists for each E € S(#). and that this limit is

uniform with respect to E e &(#) provided (a,u) holds. Obviously v:&(2)—
— (0, +00) is monotone, subadditive, continuous by b), and v(E n F;) 7 v(E) for
each E e &(#). According to Lemma 2, ¥(E n F;) = limm"(f,, En F;) =

=m"(f,E 0 F;) for each Ee &(2) and each j = 1,2,.... But m"(f, En F;) /
2 m*(f, E — N) for each E e &(2) by Theorem 4 in Part II. Hence WE) =
=m"(f,E — N) = m"(f, E) for each E € S(2). The theorem is proved.

Remark to Theorem 5. If there is a countably additive measure A :&(Z)—
— <0, + o) such that N € &(2), A(N) = 0 = m"(f, N) = 0, then, replacing in the
definition of u above m*(fy, E)/(1 + m"o(fy, T)) by AE)/(1 + AT)), we immedi-
ately see (the equation m*(f, E — N) = m"(f, E) remains valid) that b) implies
a) regardless of the assumption fe #,(m) (in fact, then b) through a) implies that
m"(f, *) is continuous on &(2), hence that f € £,(m); m"(f, T) < + o by Corol-
lary of Theorem 5 in Part II.). According to Theorem 13 in Part III such a measure
4 always exists in the following cases: 1) X is separable, 2) ¥ has a countable norming
set, particularly, if ¥ is separable or a dual of a separable Banach space, 3) if 6(92) > 2,
for example, if m: 2 —»L(X, Y) is countably additive in the uniform operator
topology. In fact, it is enough to have only a monotone, subadditive and continuous
4 :&(2) - <0, + o) suchthat N € §(2),A(N) = 0= m"(f,N) = 0.

Using Lemma 1 and Corollary of Theorem 5 in Part II we immediately obtain:

Corollary 1. Suppose (a,) and (a,) and let the Ly-pseudonorms m* (f;, *), n, k =
= 1,2, ..., be uniformly continuous on &(P). Then f,€ £(m,) for each k,n =
=0,1,2,..., where fy = fand my = m, and

lim m",(f, E) = lim lim m",(f, E) = 11m m"(fE) =
k,n—> o n->ow k- n—
=m"(f,E) = 11mm (fio E) = lim lim m" o(fir E)

k=00 n— o0
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for each E e &(2). If (ayu) holds, then hm m" (fi, E) = m*(f, E) uniformly with
respect to E € S(2).

Corollary 2. Suppose (a;) and let m*,:? - L(X,Y), n = 1,2, ..., be operator
valued measures countably additive in the strong operator topology, and let
m",(E) - 0 for each E € 2. Suppose further that the Ly-pseudonorms m" (£, *),
k,n=1,2,..., are uniformly continuous on S(P). Then m",(f,*), n =1,2,...,
are uniformly continuous on &(#) and

llm(supm ofo T) + m*(f,T))=0.

Proof. Since m",(f, E) < liminf m",(f,, E) for each n =1,2,... and each
k

Ee &(2) by Lemma 1, m",(f, *), n = 1,2, ..., are uniformly continuous on &(2).
Hence m",(f, T) > 0 by Theorem 5 (take E = {t;te T, f(t) + 0} € S(2)). If
m"(f,, T) —> 0 as n —» oo not uniformly with respect to k = 1, 2, ..., then either
m” ( fio T) +> 0 for some k,, or there is a subsequence k, » o, n = 1,2, ..., such
that m* (£, T) + 0. In both cases we have a contradiction with Theorem 5.

2. ON INFINITE PRODUCTS OF OPERATOR VALUED MEASURES

Suppose that, for each i = 1,2, ..., T; is a non empty set, ?; is a o-algebra of
subsets of T; and m; : 2, - L(X, X) = L(X)is an operator valued measure countably
additive in the strong operator topology, such that m(T;) = I = the identity in
L(X) and m"(T;) = 1. Then clearly |m(A4)| < 1 for each A eg"i, i=1,2,....Let

us recall, see § 38 in [9], that a measurable rectangle in T = X T; is a subset of T
i=1

of the form E = X A;, where A;e P, for each i = 1,2, ... and A4; = T, for all but

i=1
a finite number of values of i. It is easy to see that the class of all finite unions of

pairwise disjoint measurable rectangles forms an algebra of subsets of T, which we
denote by Z. By ? = ® £; we denote the smallest o-ring containing £, i.e., # =
i=1

= &(&). For any measurable rectangle E = X A; define m(E) = my(A,) ... m(4,)...

..€ L(X). Then it is clear that m has a umque additive extension m : # — L(X).

Definition 1. We say that the product of the measures m;, i = 1,2, ..., exists on

0 o 0
P = Q@ P,, if there is an operator valued measure m = Q@ m;: Q@ #; - L(X)
i=1 i=1 i=1
countably additive in the strong operator topology, which extends m : 2 — L(X);
this measure is necessarily unique.
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The uniqueness of m : S(%) - L(X) follows immediately from the Hahn-Banach
Theorem, see [8, § I1.3], and from the uniqueness of the extension of a scalar measure
from a ring to the generated o-ring, see Theorem A in § 13 in [9].

Forn=1,2,...put T® = X T;and let 2", m™, etc. be the analogs of %, m,

i=n+1
etc. in T™.

Define the #-semivariation m” 4z of m : # — L(X) by thé equality
m"4(E) = sup {| Y. m(E)) x)|; E;e R, E,nE; =0 for i +j, x;€X,
=1

Ixj[ SLhij=1L..,rnr=12..1}.

IfEeRisof theform E = 4 x T™ with 4 € ® #,, then clearly
i=1

i=

(1) m(A) x = Ll...L"XA(tI, o ty) x dm,y .. dm,

for each x € X, see Theorem 1 in Part III. Since each E € £ is of the above form, from
the definition of m”, and from (1) we immediately obtain that 1 = m" (T;) <
S m"y(T) £ 1, ice., m*4(T) = 1. Using this fact, similarly as Lemma 1 in Part I,
we have:

Lemma 3. For each x € X let there exist a countably additive vector measure
he : @ Py — X such that p(E) = m(E) x for each measurable rectangle E. Then
i=1 0 =)

the product measure @ m;: ® P; — L(X) exists.
i=1 i=1

From the proof of the next lemma it is clear that its assertion remains valid for
an arbitrary ring £ and 2 = &(X).

Lemma 4. Let the product measure m: P — L(X) exist. Then m"(E) = m" 4(E)
for each E € R, particularly m"(T) = m* 4(T) = 1.

Proof. From the definitions and the Hahn-Banach Theorem we immediately
obtain that m*(E) = sup v(x*m, E) for each E € 2 and m" 4(E) = sup vg(x*m, E)
x*|=1 x*s1
for each E € A. Sincelml"a(T) = 1 and since by assumption m is co:lnltably additive
in the strong operator topology, vg(x*m, *) is countably additive and bounded by 1
for each x* € X* with Ix*| < 1. Thus v(x*m, E) = vg(x*m, E) for each E e # and
each x* € X*, see § 5 in Chapter I in [2]. Hence m"(E) = m" 4(E) for each E € &.
A measurable n-cylinder in T is a subset of T of the form E = 4 x T™, where

>

n
Ae® 2, see §38in [9] The class of all measurable cylinders in T forms an algebra
i=1

618



of subsets of T which we denote by 4. Elements of & are called finite dimensional
measurable subsets of T. Clearly # ¢ & < 2. If for each n = 2, 3, ... the product
measures ® m; ® 2, — L(X) exists, then clearly m: % —-)L(X) has a umque

i=1 i=1

additive extension m : # — L(X) such that m restricted to ® 2, is equal to ® m,.
i=1 i=1

Lemma 5. Let the semivariation m”*; be continuous on ?; for each i =1,2,....

Then for each n = 2,3, ... the product measure @ m;: ® #; - L(X) exists, and
i=1 i=1

the F-semivariation m* & of m: % — L(X) is continuous on %. Particularly

m: F — L(X) is countably additive in the norm topology of L(X).

Proof. The first assertion of the lemma immediately follows from Theorem 3
in Part III. Suppose m" ; is not continuous on &. Then there is an ¢ > 0 and a se-
quence E e #,k =1,2,...,suchthat E, \ 0and m",(E,‘) >e¢gforeachk=1,2,....

According to Theorem 1 in Part III we have the equality

mE)x = | ( .(gzm,-) (E™) x dm,

T, i=

for each E € # and each x € X. Hence
N

e <m"g(E,) < mAx((.gmi)ym (E), Ty)

foreach k =1, 2, .

/\

We now show that for each E € & the function ¢, — ( ® m) gz (E", Tl) t1 e Ty,

is #,-measurable. Let E€ & be of the form E = 4 x T("°) where A € ® 2, le
i=1

t; € Ty, and let a positive integer m be fixed. According to the definition of the &#)-
semivariation take B; e "), B; = A", B; n B; = 0 for i % j and x;€ X, |ij <1,
i,j=1,...,r, so that

N

S <1 G+

Since each Bj, j =1,...,r, is finite dimensional, there is an n; = ny such that

ny v
B; = C; x T™ with C;€ ® 2, for each j = 1, ..., . But then

i=2
N\ AN

|28 m) (B) x| £ (8 m) (4) = (& m)sar(a”).
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N

k
Since the sequence ( ® m,) (4"), k = 2, 3, ..., is nondecreasing,
i=2
P N\

© k
( ® mi)‘g(:) (Atl) = llm( ® mi) (A“) .
i=2 k= i=2

Since t, € T; was arbitrary, this equality holds for each ¢, € T;. According to Theorem

N
k

6 in Part III the functions t; — ( @ m;) (4"), t, € T}, are 2 ;-measurable for each
i=2

k = 2,3, ..., hence their limit is also 2,;-measurable, which we wanted to show.
Put

N
F, = {zl, LeTy (@ m)ga (EY) > %}
i=2

Then F, € 2, by the above proved measurability, and ¢ < m" z(E,) < m"{"(F,) + e

foreachk = 1,2,....8Since Fi, k = 1, 2, ..., is a decreasing sequence of sets from £,
and since m” ; is continuous on £, there exists at least one point 7; € T; such that
m”* (A" = e for each k = 1,2, .... Now similarly as in the scalar case, see the

proof of Theorem B in §38 in [9], we obtain a contradiction with E, N\ @. The
lemma is proved.

Theorem 6. Let X contain no subspace isomorphic to ¢y, particularly let X be
a weakly complete Banach space, see pp. 160 and 161 in [1]. Then the product
measurem : P — L(X) exists and its semivariation m”" is continuous on P, hence m
is countably additive in the norm topology of L(X).

Proof. According to *-Theorem in Section 1.1 in Part I each semivariation m",
n

i=1,2,...,is continuous on £;. Hence by Lemma 5 the product measure ® m, :

n i=1
:® 2; - L(X) exists for each n = 2,3, ..., and m : F - L(X) is countably additive
i=1
in the norm topology of L(X). Thus m(:) x : & — X is a countably additive and
bounded vector measure for each x € X. Since X contains no subspace isomorphic

to ¢,, by Theorem on Extension on pp. 178 —179 in [10] there is a countably additive
extension m(+) x : §(#) = @ 2, > X for each x € X. Now the product measure
i=1

m: 2 — L(X) exists by Lemma 3. Since m"(T) = 1 by Lemma 4 and since ¢, ¢ X,
the semivariation m” is continuous on £ by *-Theorem in Section 1.1 in Part I.
Thus the theorem is proved.

Remark. We note that similarly as in the scalar case, see Exercise 2 after § 38 in
[9], the results of Lemmas 3, 4, 5 and of Theorem 6 remain valid if o = {1,2, ...}
is replaced by any ordinal number o.
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The next theorem, an addendum to Part II, is a generalization of the classical result
of Scholium 5.3 on p. 132 in [11].

Theorem 7. Let X be a Banach algebra with the unit e and let T and S be locally
compact Hausdorff topological spaces. Let further U:Cy(T) - X be a weakly
compact linear operator, and let V : Co(S, X) — X be a bounded linear operator
such that:

a) V:Co(S) = X is weakly compact (Co(S) is naturally imbedded in CyS, X)
by the correspondence f — e . f, fe Co(S)),

b) ¥(x.g) = x.V(g) for each x € X and each g e Cy(S), and

c) the semivariation I" of the representing measure I : %,(S) » L(X) of V, Vg =
= [sgdl, ge Cy(S, X), which by a), b), and Theorem 2 in [7] exists, is con-
tinuous on B(S).

(Note that if ¥V : Co(S, X) - X is unconditionally converging, particularly weakly
compact, then by Theorem 3 in [7], a) and c) are automatically fulfilled.)

Then there is a unique weakly compact linear operator W:Co(T x S) » X
such that W(f. g) = Vg . Uf for each fe Cy(T) and each ge C,(S). At the same
time [W| < |U|. [V| (V] is considered in L(C((S, X), X)).

Proof. Let m : By(T) - X be the representing measure of U: Co(T) - X, see
(A) before Theorem 2 in [7]. Then the product measure I ® m: By(T x S) > X
exists by c) and Theorem 3 in Part III, and |[I ® m| (T x S) < |m| (T).1"(S) =
= |U|.|V| by Theorem 2 in Part III and Theorem 2 in [7]. For he Co(T x S)
put Wh = [r,s hd(I ® m). Then W :Co(T x S) — X ic a weakly compact linear
operator, and |W| = |l ® m| (T x S) < |U|. |V| by(A) before Theorem 2 in [7].
According to Theorem 5 in Part IIL, {75 hd(I @ m) = [s 1 h(+, s) dm dI for each
he Cy(T x S), hence W(h. g) = Vg. Uf for each fe Cy(T) and each ge Cy(S).
The uniqueness of W immediately follows from the fact that the set of all finite linear
combinations of functions of the form f. g with fe Co(T) and g e Co(S) is dense
in Co(T x S) by the Stone-Weierstrass Theorem, see Lemma 5.2.2 on p. 132 in [11].

3. INTEGRATION BY SUBSTITUTION

First we generalize the classical result on integrals with respect to a transformed
measure, see [9, Theorem C in § 39]. Let 2 be a §-ring of subsets of a non empty
set S, and let ¢ : T — S be a (2, 2)-measurable transformation, i.e., let ¢~ '(2) = 2.
For Be 2 put (mp~')(B) = m(¢~'(B)). Then clearly mp~':2 - L(X,Y) is an
operator valued measure countably additive in the strong operator topology with
the finite semivariation mp~! on 2, and [z fd(me™") = [,-1s,f(o(+))dm for
each 2-simple function f: S — X and for each B € S(2). Moreover, we have:
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Theorem 8. Let f:S — X be a 2-measuraple function and let ¢ : T— S be
a (2, 2)-measurable transformation. Then f((p()) . T— X is ¢~ !(2)-measurable.
Further, f is integrable with respect to mp™! . 9 _, L(X, Y) if and only if flo(*))
is integrable with respect to m : ¢~ (2) > L(X, ¥). In that case

(1 [satme=y = sto(:am

~i(B)
for each B e &(2).

Proof. Let f,:S—> X, n=1,2,..., be a sequence of 2-simple functions such
that f,(s) — f(s) for each s € S. Then £,(¢(*)), n = 1,2, ..., are clearly ¢~ (2)-simple
functions, and £,(¢(t)) - f(¢(t)) for each t € T. Hence, by definition, f(¢(+)): T > X
is ¢~ '(2)-measurable.

Let f be integrable with respect to m¢ 1. Then, according to Theorem 7 in Part I,
we may suppose that [gf,d(mo~') > [3fd(mp~') for each Be S(2). Since
[5fyd(mo™") = fo-18) £i(@(*)) dm for each n =1,2,... and Be &(2), f(¢()) is
integrable with respect to m: ¢ '(2) > L(X,Y) and [,-z f(o(*)) dm =
= [ fd(mp~") for each B e &(2) by Theorem 7 in Part I.

Let now f(¢(+)) be integrable with respect to m: ¢~ 1(2) » L(X,Y), and let
us have the sequence f,, n = 1,2, ..., from above. For n = 1,2, ... and Be &(2)
put

,andlet,u(B):i L m(B) Be3(2).

A(B) = sup :
(B) Z1 21 + pS)

De©(2)
D<B

Then u:&(2) - <0,1) is monotone, subadditive, continuous, and N € &(2),
#(N) = 0=p,(N) =0 for each n=1,2,.... Put F= {s, seS, fi(s) +0}.
n=1

Then F € &(2), and by the Egoroff-Lusin Theorem, see Section 1.4 in Part I, there
is an Ne S(2), N < F, and a sequence F €2, k= 1,2, ..., such that u(N) =0,
F, # F — N, and on each Fy, k = 1, 2, ..., the sequence f,, n = 1, 2, ..., converges
uniformly to f. Thus f. xy, and f. xg,, k = 1,2, ..., are integrable with respect to
mo ™!, see. Theorem 9 in Part I. Hence

[ Aotam=] r.xdme™) <0
@~ 1(BnN) B
for each Be &(2) and

f S xp d(mo™1) = J £(0(*) - Ao-15,) dm

B ¢~1(B)
foreachk = 1,2,...andeach Be ©(2) by the paragraph before. Since by assumption
S(9(+)) is integrable with respect to m : ¢ }(2) - L(X,Y),
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Lf r dmp™1) = f T xena 4

~4(B)

[ Aty i = [ stetyam
9~ 4(B) @~ 1(B)

for each B € ©(2) by the countable additivity of the integral | f(¢(*)) dm on ¢~ 1(2).

Since f. xp, = f- Zr-n» f- Xp—y is integrable with respect to me ' and

[7-mevatme =  flo()) dm

~14(B)

for each B e G(2) according to Theorem 16 in Part I. Hence f = f. yz_n + f- An
is integrable with respect to m¢o ™', and (1) holds. The theorem is proved.

In what follows, f: T— X is a given Z-measurable function, F = {t; teT,
f(H)*0}, P =2nF, and m: 2 > L(X,Y) is an operator valued measure
countably additive in the strong operator topology with the finite semivariation m*
on Z;.

Theorem 9. Let n: P, — I(Z,Y) be an operator valued measure countably
additive in the strong operator topology with the finite semivariation n* on 2,
let g : T— L(X, Z) be such that gx . x is essentially integrable with respect to n,
see Definition 2 in Part III, for each x € X and each E € Py, and let m(E) x =
= [ggx.ypdn = [ g(-) x dn for each x€ X and each Ee P;. Then m"(E) <
< n" (g, E) for each E € &(2), and the following conditions are equivalent:

a) fis integrable with respect to m, and
b) gf((af) (t) = g(t) f(1)) is integrable with respect to n. If they hold, then

dem=J‘gfdn for each Ee &(2).
E E

Proof. The inequality m"(E) < n"(g, E), E € €(2), immediately follows from
Corollary of Theorem 2 in Part II.

a) = b) and (1). Suppose a), and according to Theorem 7 in Part I take a sequence
of 2 ,-simple functions f,: T— X, n =1,2,..., such that f,(t) > f(f) for each
teTand [gf,dm — [pfdm for each E e &(2,), see Theorem 7 in Part I. Then
clearly (gf,)(¢) > (¢f)(t) for each te T and (g gf,dn = [z f, dm > [p fdm for
each E € §(2). Hence b) and (1) immediately follow from Theorem 16 in Part I.

b) = a). Suppose b), and let f, : T— X, n = 1,2, ..., be a sequence of P s-simple
functions such that £,(t) - f(t) for each te T. Then clearly (¢£;) (t) - (gf) (t) for
each teT and [gf,dm = (g gf,dn for each n=1,2,... and each Ee &(2).
For E e &(#) put
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o]
WE) =Y a(E) where p,(E) = supremum , n=1,2....

1
2" 1+ (T ’ FeG(®),FE

J.ﬁ,dm
F

Then p:&(2) - <0,1) is monotone, subadditive, continuous, and N € &(2),
w(N) = 0= p,(N)=0foreachn = 1,2, .... Hence by the Egoroff-Lusin Theorem,
see Section 1.4 in Part I, which remains valid for such u and for essentially measurable
functions, there is a set N € &(2;) with y(N) = 0 and a sequence H, € P, k =
=1,2,..., such that H, # F — N, and on each H,, k = 1, 2, ..., the sequence f,,
n =1,2,..., converges uniformly to fand the sequence gf,, n = 1, 2, ..., converges
uniformly to gf. Since m*(H,) + n*(H,) < + oo by assumption, by Theorems 14
and 16 from Part I we have

fdm = lim fndm=limj yﬁ,dn=f gfdn
EnHy EnHy

EnHg B> 0 ) EnHy n— o

for each Ee@&(#) and each k =1,2,.... Since (g yf,dm = [z xgf,dn =0
for each n =1,2,... and each Ee &(?), [p.yfdm = [p.ygfdn =0 for each
E e &(2). Since (f . xu,n) (1) = f(¢) for each t € T and since

J~ fdm=f gfdn-e.[gfdn
En(HkUN) En(HiUN) E

for each E € &(2) by the integrability of gf with respect to m, fis integrable with
respect to m and (1) holds in virtue of Theorem 16 in Part I. The theorem is proved.

When X is the space of real or complex numbers, then the next corollary is a clas-
sical result on the integration by substitution, see [9, § 32, Theorem A].

Corollary. Let X = Y be a Banach algebra and let n : ?; — L(X) be an operator
valued measure countably additive in the strong operator topology with the finite
semivariation n" on Py. Let further g : T — X be such that g . yg is essentially
integrable with respect to n for each E e P, and let m(E) = [ gdn for each
EeP;. Then m"(E) < n"(g, E) for each E € S(2;), and the following conditions
are equivalent:

a) fis integrable with respect to m, and
b) gf is essentially integrable with respect to n.

If they hold, then

Ifdm=ffd<fydn>=fgfdn for each E € &(2).

Proof. Theorem 7 in Part I immediately yields that g(*) X . xz is essentially in-
tegrable with respect to mand m(E) x = [ g(*) x dn for each x € X and each E € 2.
Now the corollary directly follows from the theorem.

Similarly as Theorem 9 one can prove
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Theorem 10. Let X < L(Z,, Z) and let n: P; — L(Z,Y) be an operator valued
measure countably additive in the strong operator topology with the finite semi-
variation n® on Py. Let further g : T — Z, be such that xg(+). xz is essentially
integrable with respect to n for each x € X and each E e P, and let m(E) x =
= [z xg(+) dn for each E € Z; and each x € X. Then m"(E) < n"(g, E) for each
Ee (S(Wf), and the following conditions are equivalent:

a) fis integrable with respect to m, and
b) fg is essentially integrable with respect to n.

If they hold, then

J.fdm=J‘fgdn for each Ee&(2).
E E

Theorem 11. Let n : #; — L(X, L(Z,Y)) be an operator valued measure countably
additive in the strong operator topology, let

n*"(E) = sup {l Y in(E,-‘j) x,-zjl, x;€X, z;€Z, Ixil <1,
i1 =1

|z £ 1, Ei ;e En Py, E; ;A E,, ;=0 for (i,)) * (i1, 1),

iy =1,..,r j,j;=1..,8rs=12..}< +o foreach EePy,

and let f. yg be integrable with respect to n for each E € P. Let further g : T — Z
be P-measurable, let g . yp be essentially integrable with respect to n(*) x : P4 >
— I(Z,Y) for each E€ P, and each x € X, and let m(E)x = [ g d(n(-) x) for
each E € Z; and each x € X. Then f'is integrable with respect to m if and only if g
is integrable with respect to (, fdn:P; — L(Z,Y). In that case

dem=fgd<ffdn) for each Ee&(2).
E E .

Remark. We do not suppose that the semivariation I* of , I(E) = [ fdn, E € 24,
is finite on 2 ;. Nevertheless, since n" " is finite on P;, we show that [ is finite

on the é-ring 25 = U Py {t: te T, |f(1)] £ k}. Since clearly &(2}) = &(2Z),
k=1

we may suppose without loss of generality that /" is finite on 2. To see that I" is
finite on 2}, let E'€ 2, be of the form E' = En{t:teT, [f(t)l < k}, where
E e P;. Take a sequence f, n = 1,2, ..., of 2 ¢-simple functions such that £i(1) —
— f(1) and |£(t)| 7 | £(t)| for each t e T, see Section 1.2 in Part I. By assumption,
f. xg is integrable with respect to n, hence by the proof of Theorem 15 in Part I
there is a subsequence f,,, k =1,2,...,aset Ne S(Qf) and a sequence Fy e 2,
k=1,2,..., such that (F, UN)nE ~ E and (; f,, . Xr,on dn — J¢ fdn uniformly
with respect to G e 2, n E. Hence I"(E') £ k. n""(E) < +c0.
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Proof. For k=1,2,..., put G, ={rteT, ly(t)[ Sk} nFeS(Zy). Let
fi:T= X, n=12,..., be Z,simple functions and let f(t) - f(¢) for each te T.
Forn =1,2,... and E € §(Z;) put

J f,dn
H

w(E)=  sup
HeG(#;),HSE

Jf,,dm‘+ sup
H

HeG(#),H<E

and let
1 w(E)
12" 1+ p(T)’

H(E) =

E e &(P?4). Then p:S(2,)— <0, 1) is monotone, subadditive, continuous, and
N e &(2,), u(N) = 0 implies that f. yy is integrable with respect to m and n and
HNfdm! + UNfan = 0. Thus by the Egoroff-Lusin Theorem, see Section 1.4
in Part I, there is a set N € (%) and a sequence F,€ 24, k = 1,2, ..., such that
u(N) =0, F, # F — N, and on each F;, k = 1,2, ..., the sequence f,, n = 1,2, ...,
converges uniformly to f. Hence, in virtue of Theorem 9 in Part I, f. y¢, ~F, is
integrable with respect to m and », and

EnGrnFy EnGgnFy

LEnG,nF)= j;.dn—ef fdn=I1En G, nF,)
E

EnGpnFy

and

NGrnFy

both uniformly with respect to E € &(¢) for each k = 1,2, ...
Let ke {1,2,...} be fixed. Since n* *(Gx N F,) < +00,

(i (fu — £) dn)z;

Jj=1 Ej

N
(l,,—li)(Gkr\Fk)=sup{ ez, |g =1,

E;e?;n0 G N Fy, Ean,=Q)forj=f=r,j,r=1,...,s;s’=1,2,‘... <
é”f;l_f;'“G,‘an~"A'\(Gkan)—>0 as n,i— o0.
N
But L(E 1 G, n F,) > I(E 0 G, 0 F,), hence (4, — 1) (G, 0 Fy) - 0. Thus

(£ 1)(9. G F) = [goner, . (1, D (G0 F) S k. (i, = 1) (G F) 0.

Hence

J gdl, »j gdl,
EnGinFr EnGgnFi

j fam = _[ gdl
EnGinFy EnGrnFi

and therefore
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for each E e &(2y). Put f; = f. X6,~r. a0d gi = g . Xg.nr,- Then f; is integrable
with respect to m and g is integrable with respect to I Since f;(t) — f(t) m a.e. and
g:(t) — g(t) I a.e., Theorem 16 in Part I implies that f is integrable with respect
to m and [g f; dm — [ fdm for each E € S(2) <> g is integrable with respect to /
and [g g, dI - [ g dl for each E € &(2). The theorem is proved.

Our last theorem is

Theorem 12. Let Z < L(X, Z) and let n : 2, — L(L(X, Z), L(X, Y)) be an operator
valued measure countably additive in the strong operator topology with the finite
semivariation n™ on 2. Let further g : T —» L(X, Z) be P s~ measurable let g . xg be
integrable with respect to n for each E € 24 and let m(E) = [ g dn for each E € 2.
Then f is integrable with respect to m if and only if gf is integrable with respect

to n. In that case
dem:ffd(jydn):fyfdn
E E o E

Proof. Similarly as in Theorem 11 we may suppose that the semivariation I* of [,
I(E) = [ g dn, E € Py, is finite on 2, see Remark after Theorem 11 above.
Let fi:T>Xand g,: T> L(X,Z), n=1,2,..., be #4simple functions such
that f(t) > f(t) and g,(t) > g(t) for each te T. Then 9. . T—>2Z, n=12,..,
are # p-simple, and (g,.f;) (1) - (gf) (t) foreach te T. For Ee §(#?)and n = 1,2, ...

for each E € S(2).

put
u(E) = sup Jﬁ,dml + sup f g,dn sup J 9./, dm‘ ,
He®(#),H<E H He©(#),H<E H He®(2),H<E H
and let
&1 Ua(E)
ME —
(E) = ; 21+ 1 T)

Ee&(2). Then p:S(2)—<0,1) is monotone, subadditive, continuous, and
Ne3(?), u(N)=0= pu,(N) =0 for each n =1,2,.... Hence by the Egoroff-
Lusin Theorem, see Section 1.4 in Part I, there is a set N € (5(9’), N < F, with
MN) = 0, and a sequence Fye P, k = 1,2,..., such that F, / F — N, and on

each Fy, k = 1,2, ..., the sequence f,, n = 1,2, ..., converges uniformly to f and
simultaneously the sequence g,, n = 1, 2, ..., converges uniformly to g. Since all £,
and ¢g,, n=1,2,..., being P-simple functions, are bounded, sup ”ﬁ,”,,nk +
+ sup ]g,,[[;k < 4o for each k =1,2,.... Hence g¢,f,, n =1,2,..., converges

uniformly to gf on each Fy, k = 1,2, .... Since m"(F,) + n"(F,) < + oo for each
k=1,2,..., in virtue of Theorem 9 in Part I, f. x5, and gf. yp, k=1,2,...,
are integrable with respect to m and n, respectively,
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J‘j;l'kadm_’J‘f'Xdem’ fgn'Xden_)J‘g'Xdenv
E E E E

and

Jynﬁ.xpkdna‘[gf.xpkdn as n— o,
E E

uniformly with respect to E € 6(9’), for each k = 1,2,....

Since (f. xr,on) (1) = £(1) and (¢f . xr.on) (1) = (gf) () for each 1 € T, according
to Theorem 16 in Part I it is enough to prove that (pf. xr dm = [p gf. xr, dn
for each Ee S(#) and each k = 1,2, ....

Let ke{l,2,. } be fixed, and for E e &(2) put m,(E) = [z g, . x5, dn. Then

(E) (£9-%p. dn = m(E 0 F,) for each Ee &(%), sup m"(E) < sup g0l -

m*(F,) < + oo, for each E € &(2), and

I fi - g, dmy = J oufo - 1p, dn > J of - 15, dn
E E E

for each E e &(2). Since (f,. xr) (t) = (f. xr,) (1) for each te T, [z f. xp dm =
= [z gf. %5, dn for each E € S(2) by Theorem 1 in Part IV. The theorem is proved.
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