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In [6], I. DoBRAKOV has given a very thorough and interesting treatment of the
Fubini Theorem for the integration of vector-valued functions with respect to
operator-valued measures. This note contains some additional observations on such
Fubini-type theorems. In particular we establish several weak-type Fubini Theorems
where the functions under consideration may only be scalarly integrable and not
necessarily integrable. Examples are presented which show that this type of pheno-
mena can actually occur.

Throughout let .#, A" be o-algebras of subsets of S, T, respectively. Let X, Y, Z
be (real) B-spaces with L(X, Y) the space of bounded linear operators from X into Y.
Let p: M— L(X,Y), v: ¥ - L(Y, Z) be set functions which are of finite semi-
variation and countably additive in the strong operator topology. We can define
a product measure, 4 X v, on measurable rectangles 4 x B, A€ #, Be A", by
i % V(A x B) = v(B) u(A). The product has a finitely additive extension to the
algebra &/ generated by the measurable rectangles and we say that the product
p x v exists if p x v has an extension to the o-algebra X generated by &/ which is
countably additive with respect to the strong operatory topology on L(X, Z) ([6],
Def. 1.).

An -measurable function h: T — Y is said to be scalarly v-integrable if h
is z'v-integrable for each z'eZ'. (Here, z'v is the Y’ = L(Y, R)-valued measure
2’ v(B) (y) = <z, ¥(B) y>.) If h is scalarly v-integrable, its v-integral over any Be A,
B h dv, is the element of Z” defined by ([ h dv, z’) = [p h dz'v (see [10] for the
properties of scalarly integrable functions and the connection with the Dobrakov
integral developed in [4], [5].).

In Theorem 2 we present a result analogous to Theorem 15 of [6] for scalarly
integrable functions. In Examples 3 and 4 we present examples which show that the
Fubini Theorem may indeed hold for functions which have integrals which are Z"-
valued. This result thus represents an interesting appendix to the general Fubini
Theorem of Dobrakov ([6], Th. 15). In Example 5, we present an example which
illustrates how pathological the “partial integral” may be when the sections of the
function are only assumed to be scalarly integrable.
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As noted by Dobrakov in Example 1 of [6], in trying to establish a Fubini-type
result for a function f: S x T — X it is necessary to assume that the sections f(-, f)
are integrable. This condition can be difficult to establish in practice and it would
be desirable to have some sort of condition on the function f which would insure
this as well as the measurability of the “partial integral” ¢ — [5f(+, t) du. That is,
it would be desirable to have a Tonelli-type of result for the Dobrakov integral.
Such results have been derived for the more restrictive integral of Dinculeanu ([3])
in [1] and [8]. In Theorem 8 we present such a Tonelli-type result and compare it
to the Theorems of Huneycutt ([8]) and Bandyopadhyay ([1]).

We first establish a technical lemma which will contain results which are used
later. For any measure v its variation will be denoted by |v| ([3], § 3). If z’ € Z', then
z'visa Y’ = L(Y, R)-valued measure so the product p x z'y can be formed resulting
inan X' = L(X R R’)-valued measure. The lemma contains some statements concerning
this product.

Lemma 1. Let z' € Z', h: T —» Y be A -measurable and u x v exist.
(i) Z(p x v) =p x z',

(i) [2m x v < ) > |29 = [[2/] || x |v

(iii) jf fz |h| d|2’v| < oo for each z,

then h is scalarly v-integrable.

B

Proof. For (i) if A x B is a measurable rectangle, then (z’, u x v(4 x B)) =
= z' v(B) u(A) so (i) holds. The product z'(x x v) exists by the assumption that the
product u x v exists and the product u x z'v exists since z'v is of bounded variation
([6] Th. 3; [9] Cor. 1). Hence, (i) must hold on X by uniqueness.

The first inequality in (ii) holds by Theorem 1(iv) of [1]. The second inequality
in (ii) holds since |z'v| < |2/ |¥].

For (iii), Theorem 6 of [4], implies that h is z'v-integrable for each z' € Z', i.e.,
h is scalarly v-integrable. '

We now establish the weak Fubini Theorem. The result is the direct analogue of
Theorem 15 of [6] for scalarly integrable functions.

* Theorem 2. Let f:S x T— X be X-measurable with f(+,t) p-integrable for
each t and F :t > (s f(+, t) du v-measurable. Then f is scalarly p x v-integrable
iff F is scalarly v-integrable and in this case

(F) Lxrfdu xv= LF dv = f | 0 aus) o),

where the integrals may be Z"-valued.

Proof. Let z'eZ'. If f is scalarly u x v-integrable from Dobrakov’s Fubini
Theorem ([6], Th. 15) applied to the measure z'(p x v) = p x z'v (Lemma 1 (1)),
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we have [g,rfdz'(u x v) = [r [sf(s, t) du(s)dz’ v(t). Hence F is scalarly v-in-
tegrable and (F) holds.
The converse is established in gxactly the same way.

For bounded functions we have the following general result (compare with Theorem
16 of [6] and Theorem 8 of [7]).

Corollary 3. Létf be bounded and satisfy the hypothesis of Theorem 2. Then (F)
holds.

Proof. Note the function F is bounded ([4], Th. 14) so both f and F are scalarly
integrable ([4], Th. 6).

A measure p: # — L(X, Y) is said to be strongly bounded (dominated or with
continuous semi-variation) if whenever {4,} is a sequence from . which decreases
to the null set, the semi-variation, 2, of u satisfies 2(4,) — 0. Recall, if p is strongly
bounded and h:S — X is bounded and ./#-measurable, then h is p-integrable
([4], Th. 5). For strongly bounded measures, we have the following:

Remark 4. If the measure p is strongly bounded, each f(-, t) in Corollary 3 is
p-integrable ([4], Th. 5). Moreover, if {f,} is a sequence of simple functions which
converge pointwise to f on S x T with |[£,(s, 1)| < ||f(s, ?)| for s€ S, te T, then
the Bounded Convergence Theorem for u gives [s f,(*, 1) du = [sf(+, t) du so that F
is measurable and (F) always holds in this case. If v is also strongly bounded, then f
is also p-x v-integrable since p x v is then strongly bounded ([7], Th. 6) and (F)
holds with the integrals being Z-valued. This gives the analogue of Theorem 8 of [7]
for the Dobrakov integral. Since the Dobrakov integral is more general than the
Bartle integral treated in [7], this generalizes Duchoti-’s result.

We now present two examples which show that the integrals in (F) of Theorem 2
can indeed be Z"-valued, i.e., a weak-type Fubini Theorem holds. The first example
is extremely simple and is presented for that reason. The measures involved are only
countably additive in the strong operator topology and not in the uniform operator
topology. The second example shows that equation (F) may hold in Z” even when the
measure p is countably additive in the uniform operator topology. It is somewhat
more complex than Example 5 and is modelled on some of the examples of [4].

Example 5. Let e, be the n'™ unit vector, e, = {e,;};>,. Define f: N x N - ¢,
by f(k, j) = 6,;e;. For each k define s, € L(co, ¢o) by mx = x,e,, where x = {x;}. The
sequence {4} induces a measure on the power set, 2, of N by u(E) = Y. y; since the

© keE

series 2 W is’ unconditionally convergent in the strong operator topology. Thus,

k=1
the measure u is countably additive in the strong operator topology and has finite
semi-variation with A(E) = 1 for E non-void. Since ||u(E)|| = 1, u is, however, not

countably additive in the uniform operator topology.
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The product measure exists since pu x u(i, j) x = J;;%;e; and the series Zu x
i,j
x u(i, j) x is unconditionally convergent in ¢, for each x € c,. Actually, the measure

u x pissupported on the diagonal of N x N and has essentially the same form as p.
In particular, 4 x p has bounded semi-variation and is countably additive in the
strong operator topology.

First we have [yxpfdu X pu= Zp x p(i, i) f(i, i) = Zel, the series being
weak* convergent in ¢£%. The “partlal integral” is [p f(k J) du(k) = F(])

Z dyse; = e; so each f(-, ) is p-integrable, and we have fp F du = Zy,e =

=Xer
Thus the integrals in (F) may indeed be scalar-type integrals with values in Z”
and not in Z.

Example 6. Partition N by o; = {2/7,2/"* +1,..,27 — 1}, j = 1,2,..., and
note each o; consists of 2/~ * integers. For each k define y, = ¢;/2/~* if k e 5; and
define y, € L(¢". ¢;) by mx = x¥,. Then {1} induces a measure on 2 to L(¢*, c,)
by u(E) = Z W, where the series converges unconditionally in the strong operator

topology since Z wx = Z Y xxe;/2/ 7" and { Z xi}; is bounded for x = {x,} e £*.

Jj=1 keoj keaj
Actually the measure u is countably additive in the uniform topology since it is
countably additive in the strong operator topology and |u = |y — 0. Since

ﬂ(E) = 1 for non-void E, u has bounded semi-variation.

Take v to be the measure of Example S. Then the product p x v exists since
u x vk, i) x = v(mx) = x,8,;e;/2' ! for k € o; implies the series

] e
Y, Luxvki)x= Z Z(Zxk)éuen/Z’ ' Z(Zxk) 2
i=1k=1 i=1j=1 kea; i=1 keoy
is unconditionally convergent in ¢, for x e £.
Define f: N x N — ¢! by f(k i)=¢if keo; and f(k, i) = 0 otherwise. First
we have [py yfdpu x v = Z Z Y oel2 ! Z e;. For the “partial integral”,

i=1j=1 keay

F(i) = [nf(k, i) du(k) = Z ter = e, so f(+,i) is p-integrable and [py Fdv =
=Y ve =) e '
i=1 i=1

One of the annoying features of Theorem 2 and Theorem 15 of [6] is the assump-
tion of measurability of the “partial integral”, t — [5f(-,t)du. We next present
an example which shows that if the sections f(-, t) are assumed only to be scalarly
integrable then the partial integral may indeed fail to be measurable. In light of the
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results of [6], it would be desirable to know if the same phenomena can occur
when the sections f(+, t) are actually integrable.

Example 7. Let 4, = [0,1], 4, = [0,1/2], 4; = [1/2,1], 4, = [0, 1/4], ... as
in Example I1.1.7 of [2]. Define f: N x [0, 1] — ¢, by f(k, t) = C4,(t) &. Note f
is measurable since each coordinate function of f is measurable (I.1.4 of [2]). Let
be the measure of Example 5, p: 2 — L(c, ¢o). The function f(-, t) is bounded
and, therefore, scalarly u-integrable with

F(r) = J FCLIC = S sl ) = 3 Calder,

the series converging weak* in /. But as shown in Example I1.1.7 of [2] the func-
tion F is not measurable with respect to Lebesgue measure on [0, 1].

Example 7 does show that if one is dealing with measures which are countably
additive in a topology weaker than the strong operator topology, then the partial
integral may fail to be measurable. This suggests that it may be difficult to formulate
very satisfactory Fubini-type theorems in locally convex spaces. These remarks follow
by noting that in Example 7 the function f is /*-valued and the measure u can be
considered to have values in L(¢*, /*). The measure p is thencountab ly additive with
respect to the topology of pointwise convergence on £* when /® has the weak*
topology. The functions f(+, t) are then “weakly p-integrable” (in the sense of [10])
with F(t) = [nf(s, t) du = ¥, C4,(t) e, the series being weak* convergent.

k

One of the difficulties in dealing with Fubini-type results for products of vector-
valued measures is that a function f:S x T— X may be badly behaved on sets
where the product measure p x v is zero due to the presence of zero-divisors. This
means that f may be integrable with respect to u x v while the sections f(-, ) are
badly behaved over sets with non-zero u measure. This is essentially the thrust of
Example 1 of [6]. In our next result we present a Tonelli-type result which gives
conditions for the sections f(-, t) to be well-behaved. To accomplish this we deal
with the measures | ,u] X Iz’vl in place of the measures z’'u x v of Theorem 2. Dealing
with these measures overcomes the difficulties discussed above.

Theorem 8. Let p have o-finite variation and suppose there is z, € Z' such that
|z,v| (B) = O implies 9(B) = 0. If f is Z-measurable and (s« |f(s, 1) [d|u| x
x |2'v| (s, ) < o for each z' € Z', then f(+,t) is p-integrable for 9-almost all t,
F:t— [sf(-,t)du is 9-measurable, f is scalarly p x v-integrable and (F) holds.

Proof. By the classical scalar Tonelli Theorem,

[ e olau @i = 1ol abl o] < o
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Hence (s | f(s, £)] d|u] (s) < oo for |zgv|-almost all ¢ and, hence, for 9-almost all .
By [4], Theorem 6, f(+, t) is p-integrable and by [6], Theorem 14, the function
F:t— [sf(+, f)du is 9-measurable. Since

Lum)u a2y (1) = j LHf(s,t)” dlu] () dlz3] (1) < 0 for ez,

Lemma 1 (iii) yields that F is scalarly v-integrable. Theorem 2 gives the desired con-
clusion. '

Note that Example 5 again illustrates that the integrals in (F) may indeed by Z’-
valued even when the hypothesis of Theorem 8 are satisfied.

The conditions of Theorem 8 are only sufficient conditions for the conclusions of
the Fubini Theorem. to hold; they are by no means necessary as the following ex-
ample shows. '

Example 9. Let {t;} be a sequence in ¢, but not in ¢!, Define f: N x N - Co
by f(k, j) = tje;. Let u be the measure of Example 5. Then [py f(k, j) du(k) = t;e; =
= F(j)and fyxn fdp x v = [y Fdu = Y t;e;. Thus, both f and F are integrable.

J
However, if z' = {s;} € ¢! is non-zero. then [pyx py || d|u| % |2'4| = o0 and the
condition of Theorem 8 does not hold.

In attempting to apply Theorem 8 it is desirable to have conditions which insure
that the hypothesis on the measure v holds. We next observe that the condition on v
always holds if v is strongly bounded and, thus, Theorem 8 always holds for strongly
bounded v. '

Lemma 10. Let v be strongly bounded and set K = {[z’vl : “z’” < 1}. Then
there is a zo € Z', Iz{,“ < 1, such that K is uniformly absolutely continuous with
respect 10 |zgv|.

Proof. K is a bounded convex subset of ca(.#") which is uniformly countably
additive by the strong boundedness of v. The conclusion follows from [2], IX.2.5.

The strong boundedness of v is a sufficient condition for the hypothesis of Theorem
8 to hold. The measure u of Example 5 shows that it is not necessary. (For example,
take zg = {1/n%}.)

Concerning the integrability of the function f in Theorem 8 we have the follawing:

Corollary 11. Let u, v be as in Theorem 8. If the set function a:E — sup .
llz" I =1

e “f(s, t)” d[ul x |z’v1 (s.t) (E€ZX) is continuous from above at O, then the
conclusions of Theorem 8 hold with f u x v-integrable.

Proof. From Lemma 1 (i), |z'u x v| £ || x |2'v|. Therefore, o being conti-
nuous at () implies that the function fisin L;(u x v)([5], Def. 4) and is hence u x v-
integrable ([5], Lemma 1).
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Huneycutt ([8]) and Bandyopadhyay ([1]) have established Fubini-Tonelli
Theorems for the more restrictive integration theory of N. DINCULEANU ([3]). Due
to the fact that the Dobrakov integral is so much more general than the integral
of Dinculeanu, we can derive the results Huneycutt and Bandyopadhyay from Corol-
lary 11.

Corollary 12. Let p and v have o-finite variation. Let f : S x T — X be Z-measur-
able and satisfy [sxr ”f(s, t)ﬁ d]u] x ]vl (s, t) < co. Then the conclusions of Theo-
rem 8 hold with f being u x v-integrable.

Proof. From Lemma 1 (ii), ul X Iz’v =< ”z'“ |u| X Iv[ Hence, the hypothesis
of Corollary 11 are satisfied since E — [ [ f H d[u| X |v| is countably additive.

The following example illustrates that Theorem 8 is more general than Corollary
12. This is basically due to the fact that the Dobrakov integral is more general than
<hen integral of Dinculeanu.

Example 13. Let the sequence x = {t;} belong to ¢, but not to ¢*. Define f :
:N x N > ¢y by f(k, j) = 6,;te;. Let p be the measure of Example 5. Then
Inx v IF] dle] % Ju] = 3 |;] = oo so the condition of Corollary 12 does not hold.

J .
Let D be the diagonalin N x N, D ={(n,n):neN}LIfz' = {s;} e/, [yx N Hf” .
. dlyl X Iz’ul =Y lkakI < oo so Theorem 8 is applicable. In this example f is actually
k o

integrable with [pypyfdu x p =Y, t;je;. Actually Corollary 11 is applicable here
i=1
since if D is the diagonal of N x N, D = {(n, n) : n e N},

sup [ 1 all x 70l = sup 5 Jst] 5 sup ]
1 JE keEnD

llz’]l = llz’|| £1 keEAD

This shows that Corollary 11 gives a more general Tonelli-type result than Theorem
20f [1].
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