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INTRODUCTION

It is a truism that biological systems are complex. It has further come to be
regarded as axiomatic that complex systems in general are “‘counter-intuitive”. To
set the stage for the subsequent discussion, it will be helpful to study these two propo-
sitions a bit further, and establish some relationships between them.

The term ““complexity” is almost as hard to define as is life itself. Many approaches
to complexity attempt to treat it as if it were an intrinsic property of a system, or class
of systems, related somehow to entropy or “information”. These approaches seek
to obtain a single quantitative measure of complexity, in terms of the number of
elements, interactions or operations required to characterize some aspect of system
behavior. I would rather suggest that complexity is not an intrinsic property of a sys-
tem; it must also reflect something about the manner in which we, as observers,
can interact with the system.

Roughly, then, T would suggest that complexity is a property of system descriptions
rather than of systems themselves. Indeed, we may say that a system appears complex
when it is possible to genmerate many apparently independent descriptions of its
behaviors. Each such independent description must arise out of a different process
for observing the system, and hence out of a distinct available mechanism for us to
interact with the system. Thus, a stone usually appears simpler than an organism,
because we have only a few ways to interact with the stone, and many ways to
interact with the organism. As we multiply our capabilities for interaction with the
stone, its complexity grows; as we narrow our capability to interact with an organism,
its complexity diminishes. Thus, complexity appears as.a contingent rather than as
an intrinsic property, and ultimately reflects interactive capabilities expressed in
observation or measurement. It is these capabilities which provide the elements for
corresponding system descriptions.

With this as background, let us consider what is meant by the proposition that
complex systems are “counter-intuitive”. Roughly, such a proposition connotes the
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absence of an expected implication between two or more aspects of system behavior.
If each such behavior arises from a particular mode of interaction or observation,
and generates a corresponding system description, then the assertion of “counter-
intuitive” behavior implies a logical independence between these modes of description.
Let us be more precise about this: imagine a class K of systems, each of which can
be described in two ways. Suppose that a body of experience exists which indicates
that in some available subclass K’ < K, one of these descriptions implies something
“about the other. We then come to expect that such an implication will hold for every
system in K; such an expectation provides the intuitive basis for relating the two
descriptions. However, as soon as we encounter a system not in K’, the implication
relation breaks down and we can say that such a system behaves in a “counter-
intuitive” manner.

Such a breakdown of an expected implication between modes of system description
is what we shall call a bifurcation. In general, a bifurcation indicates a situation
in which distinct modes of system description are logically independent; i.e. in which
properties of one description do not imply corresponding properties of the second.
As will be seen, this usage subsumes the traditional mathematical definition, but
substantially extends its scope. In general terms, a bifurcation manifests a situation
in which the incompleteness of a given mode of system description becomes manifest,
and hence must be supplemented or replaced by another. In the study of natural
systems, such as biological organisms, the fundamental problems all ultimately
concern the inter-relationships of different modes of description, and for this purpose
the notion of bifurcation, or the absence of bifurcation, becomes a crucial tool. In
the sections which follow, we wish to explore some of the ramifications of such ideas,
treating bifurcation phenomena in the context of natural systems, and arising out
of the comparison of differing modes of description of such systems.

SYSTEM OBSERVATION AND DESCRIPTION

In the preceding section, we suggested that each mode of description of a system
arises from a corresponding behavior or interaction of the system which we can
observe; conversely, each mode of observing a system generates a system description.
In the present section, we shall develop some general properties Of the relation between
system interactions (observations) and the descriptions to which they give rise.

The basic unit of system description, and of system measurement, is a single
observable. Intuitively, an observable of a system is a quantity which can induce
dynamics in some appropriate meter; i.e. in some other system with which the given
one can interact. A system can be regarded, at least in part, as simply a collection
of observables; i.e. as a family of capabilities to induce dynamics in other systems.

A closely related concept is that of state. For present purposes, it is sufficient to
regard a state s of a system S as connoting the specific dynamics which S can induce
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in any particular meter at a specific instant of time. That dynamics, or its correspon-
ding attractor, or some parameter value associated with that attractor, represents
the value of the observable in question, evaluated on the state s.

Modern physics is dominated by the proposition that all “physically real” events
involve observables evaluated on states. Furthermore, it is usually supposed that it
suffices to consider observables which take their values in real numbers; i.e. the
attractor states of all meters can be effectively parameterized by real numbers. Thus
for present purposes, an observable is simply a mapping f: S —» R from states to
real numbers. The image f(S) is what is usually denoted as the spectrum of the
observable f. More generally, however, an observable represents a mapping {rom a set
of states of a system S to a set of attractor states of some other system with which S
can interact.

Clearly, if our only access to the system S were through the single observable f,
we could not distinguish two states s and s’ for which f(s) = f(s"). Thus, we would
in fact not be observing S itself, but rather a quotient set S/R, where R, is the equi-
valence relation on S defined by writing s R, s" if and only if f(s) = f(s). By defini-
tion, there is a 1—1 correspondence between S/Rf and the spectrum f(S); in these
circumstances, f' (S) would be for us “the state space” of the system S.

Now f(S) is a set of real numbers, and hence comes equipped with a variety of
natural structures. In particular, f(S) is a metric space. We can employ such structures
in f(S) to impute corresponding structures to S/R, and thence to S itself. In particu-
lar, via the metric structure on f (S), we can say that two states s, s’ of S are “close”
if the corresponding values f(s), f(s') are close in f(S). It cannot be too strongly
emphasized, however, that such a topological structure is not intrinsic to S, but is
imputed to S through a process of system description derived ultimately from
observation in the fashion we have described.

Suppose now that we are given another observable g. We can repeat the above
argument; g can be regarded as a mapping g : S — R with spectrum g(S); this
spectrum is in 1—1 correspondence with the quotient set S/Rg, and we can impute
another topology to S/R,, and thence to S, through the metric properties of g(S).
Using the observable g alone then, we have another “state space” representation of S.

We can now ask: how does the description of S obtained from the observable f
compare with the corresponding description obtained with the observable g? We
shall consider here primarily the metric properties, in the following form: if f(s")
is close to f(s), under what circumstances will it be true that g(s’) is also close to
g(s)? Stated another way: if s' “approximates” to s under f, when will it also “ap-
proximate” to s under g? )

This kind of question is closely related to the compatibility of the mapping g
with the equivalence relation R;; i.e. the capability of g to distinguish states in-
distinguishable (or approximately so) under f. Basically, we proceed as follows.
Given a state 5 in S, consider the set of all states s’ for which |f(s) — f(s")| is small.
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Look at the image under g of this set of states. If this image lies in a sufficiently small
neighborhood of g(s), we shall say that s (or more accurately, its equivalence class
under f) is a stable point of g with respect to f. It is clear that the set of all stable
points of g with respect to f comprise an open set in S/R, under the topology coming
from f(S). The complement of the set of stable points will be called the bifurcation
set of g with respect to f. Obviously, near a bifurcation point, the proximity of two
states s, s’ of S as viewed by the observable f does not imply their proximity as viewed
by g; at a stable point this implication does obtain. Thus, on the stable points the
f-description may be replaced by the g-description; on the bifurcation points it may
not be. Stated another way: on the stable points, the g-description conveys essentially
the same “‘information” as does the f-description, and is hence redundant to it; on
the bifurcation points, the g-description conveys “new information”, distinct from
that conveyed by the f-description.

In the discussion of the previous paragraph, we can interchange the roles of f
and g, and obtain the dual concept of the stable points and bifurcation points of f
with respect to g. These represent complementary subsets of S/R, (or g(S)), and are
thus generally quite different from the corresponding subsets of S/R, considered
in the preceding paragraph. Thus, given a pair of descriptions, we obtain two distinct
notions of stability and bifurcation, depending on which of the descriptions is chosen
as the reference.

To illustrate these concepts, let us look at a well-known mathematical example.
We may describe a dynamical system in two distinct ways: (a) in terms of a vector
field on a manifold, or (b) in terms of the attractors of the system. Invariably the
vector field description is taken as the reference; thus we say that two dynamical
systems are close if their vector fields are close in some appropriate norm. The
problem of structural stability revolves around determining when it is the case that
two dynamical systems whose vector fields are close are also close in terms of their
attractors. The implications of structural stability (e.g. in terms of the “robustness”
of dynamical descriptions of real systems) are well known.

On the other hand, we may interchange the roles of the two descriptions, and refer
the vector-field description to that involving attractors. Intuitively, we would then
ask: under what circumstances is it true that closeness in terms of attractors implies
closeness of the corresponding vector fields in some norm? Such a question has
profound implications, e.g. for modelling and simulation; it arises naturally out of
the preceding considerations, but as far as we know it does not appear to have received
any systematic study.

Before proceeding to some simple applications of these ideas, let us draw one
elementary consequence from them. Suppose that f and g are two observables such
that the bifurcation sets of f with respect to g, and of g with respect to f, are empty.
Under these circumstances, it is appropriate to say that the two observables are
equivalent; with respect to metric properties the two observables are everywhere
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interchangeable. Moreover, in these circumstances, the relation between f and g
is one of conjugacy; i.e. we can establish a commutative diagram of the form

S —————> S|R;,

S —

which allows us to “translate” the f-description into the g-description. This is again
what we would expect from a study of purely mathematical examples of the concepts
of stability and bifurcation. This equivalence (between observables rather than
between states) will become important to us subsequently.

To conclude this section, we may note that the results we have obtained for
descriptions arising from single observables may be generalized to descriptions in-
volving any number of observables. To illustrate this, let us indicate how we may
construct a more comprehensive description from a pair of observables f, g than that
arising from either observable alone. )

The utilization of a pair of observables essentially allows us to define a new equi-
valence relation R;, on S, where we define R;; = R, n R,. We now observe that
we can always define a mapping

0:S/R,, - f(S) x g(S)

which is in general 1—1 and into. This map arises from the fact that every equi-
valence class in S/R 14 1S the intersection of a unique class in S/R ;and a unique class
in S/R,; we associate each of these classes with the corresponding elements in f(S)
and g(S) respectively. The image of this map corresponds to a “two-dimensional
state space”, in which the observables f and g play the role of “‘state variables”.
It may be noted that the map 6 is onto if and only if every R -class intersects every
R,-class and conversely; i.e. iff the respective bifurcation sets are maximal. If these
bifurcation sets are both empty, then as we would expect, the image of 0 collapses
to a one-dimensional subset of f(S) x g(S). This kind of representation can be
extended in the obvious way to any number of observables. In each case, we obtain
a topological space, in which the arguments given above can be repeated word for
word. ,
Fuller details may be found in a forthcoming monograph [1].
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APPLICATION: ARE BIOLOGICAL DESCRIPTIONS
REDUCIBLE TO PHYSICAL ONES?

The prevailing idea among many biologists is that all biological descriptions are
ultimately effectively reducible to physical ones; ot even more strongly, that all bio-
logical descriptions are effectively derivable from physical ones. In the present section,
we wish to explore how this idea can be tested, in the context of the discussion pre-
sented above. ’

To begin, let us cast the reductionistic hypothesis in terms of observables. A bio-
logical system, such as an organism, is surely also a physical system, and hence may
be described in terms of the traditional observables with which physics is concerned.
A dominant role here is played by the energy (Hamiltonian) of the system. On the
other hand, the biological behaviors of the organism can be described phenomeno-
logically; the ingredients for such descriptions are new observables of a fundamentally
biological character. The reductionistic assertion is that each phenomenological
observable arising in a biological description can be expressed in terms of the under-
lying physical observables. From this we can conclude that such biological observ-
ables cannot bifurcate with respect to the underlying physical ones. If such a bifurca-
tion can be demonstrated, we could conclude that the corresponding biological
observables could not be expressed as functions of the underlying physical ones,
but rather comprise a logically independent mode of description of our system near
the bifurcation points.

As we have defined it, observables are simply quantities which are capable of
inducing dynamics on other systems, such as meters. If we are given a system S,
then the characterization of S as a physical system is obtained by causing the states
of S to interact with appropriate meters, which in effect evaluate physical observables
on these states. In this way, as indicated above, we obtain a description of S as
a physical system.

Now let us suppose that we use the states of S to induce dynamics on some other
system S’. By definition, this dynamics must be expressible in terms of one or more
observables of S. The question is whether the observables of S responsible for in-
ducing the dynamics on S’ are the same ones as we measure when we characterize
the states of S with our meters (or more generally, are definite functions of these
observables).

To answer this kind of question, we must generate two descriptions of S, which
are to be compared. One description of S is already given; it arises from the set of
meters through which we physically characterize the states of S. Further, we can
obtain a second description of S, through the fact that its states induce dynamics in S’.
For we can also characterize the states of S’ through the employment of the same
meters which characterize the states of S. Schematically, we have a diagram of the
following form:
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S - S

meters meters

(description of S) (description of S).

Here the dotted arrow represents the association of a state of S with an asymptotic
state (attractor) of S’ generated by the induced dynamics. If we interpret the descrip-
tion of these asymptotic states of S’ as also being descriptions of the states of S
which generate them, we have the two descriptions of S which we require. One of these
descriptions is obtained directly from our meters; the other involves the dynamics
induced by S in §’, and hence essentially involves those observables of S which
generate this dynamics.

Clearly, if the second description bifurcates with respect to the first, it follows
that the dynamics induced by S on S’ involves observables distinct from those mea-
sured by our meters. Furthermore, these new observables are not reducible to those
we measure directly, at least on the bifurcation points. These “new” observables
must then enter as independent elements of system description, on exactly the same
footing as those defined by our meters. Indeed, we may use the dynamics induced
by S on S’ to construct a new meter, in terms of which the observables of S which
generate the dynamics may be defined. Such techniques of “‘bio-assay” are in fact
widely used to measure the activities of organic substances, such as hormones.

It then becomes an empirical question to determine whether the observables
manifested in biological interactions are distinct from those appearing in our physical
descriptions of the system. A good place to look for such new “biological”” observables
is in situations involving specificity or discrimination mechanisms. We suggested
long ago [2] that primary genetic processes would provide good candidates for the
isolation of such observables (although the character of the argument given therein
was quite different). More recently, Comorosan has applied the same circle of ideas
to ane mpirical study of the observables involved in enzyme-substrate interactions [ 3].
From his work, he concludes that simple substrates for enzymes may exist in classes
of states which appear indistinguishable to our physical meters, but which may be
split (discriminated) by enzymes; the enzymic discrimination appears as a small but
significant modification of reaction rate. Independent experimental confirmation of
this work has been reported [4], and further study would be desirable.

The implications of such considerations for reductionism in biology are obvious.
It should be stressed, however, that there is nothing “unphysical” about such new
biological observables, just as there was nothing ‘““unphysical” about, e.g., spin. It
is perhaps not surprising to find that interactions between complex systems reveal
capabilities not manifested on interaction with simple systems; the concept of
bifurcation of descriptions provides an explicit probe of these capabilities, and of
how they are logically inter-related.
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ABSENCE OF BIFURCATION: MODELLING AND SIMILARITY

In the present section, we wish to consider some of the ramifications of diagrams
like (1), which represent the context for the development of concepts of similarity
between systems.

In general, suppose that f, g : A — B are conjugate maps, related by a com-
mutative diagram of the form

R— B
|
() ¢ v
A———B
g

We shall interpret such a diagram as follows: the expression b = f(a) is invariant to

(i) the replacement of a by ¢(a);
(ii) the replacement of f by g;
(iii) the replacement of b by y(b).

We shall introduce the following terminology: for a in A, the element ¢(a) will be
called its corresponding element; likewise for b in B, y(b) will be its corresponding
element. Then the assertion of conjugacy between f and g means precisely that
corresponding elements are mapped by g onto corresponding elements. The invariance
of the relation b = f(a) to these replacements is the abstract analog to the Law of
Corresponding States in thermodynamics.

Now let us suppose that S is a system, and that we are given two descriptions
F=(f1s..ofm) G = (g1, ---» g,) of S, where the f; and g; are observables. Suppose
further that the set of bifurcation points of the G-description with respect to the
F-description is empty. Then as we have seen, there is a sense in which the F-
description implies the G-description on every state of S. We saw also that (under
mild assumptions) each such description can be regarded as giving rise to a manifold,
in which the f; and g; respectively can be regarded as local coordinates. Under these
circumstances, we can write a functional relation of the form

(3) - (gh"'»gn)= ‘p(fl""’fm)

valid for every state s in S. Such a relation can be regarded as an equation of state
for S. It should be noted that the mapping @ is not itself a system observable, but
rather expresses a relation between observables (i.e. between descriptions of S).

In general, a single function of m variables can be regarded as a 1-parameter family
of functions of m — 1 variables, indexed by the range of one of the arguments.
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Thus in particular, &(f, ..., f,,) can be regarded as a 1-parameter family of functions

D,(fas-ees f)

where the index r runs through the spectrum f,(S) of f,. Suppose it is the case that
all the functions in this 1-parameter family are conjugate (the condition under which
this is true can be expressed in terms of the bifurcation set of f; with respect to each
of the other f;); then given any two elements r, r' in the spectrum of f;, there is a dia-
gram of the form

D¢ L Y
¢r,r' Wr,r
X Y
b,

with the properties we have noted above (here X is the manifold determined by the
observables f5, ..., f,, Y is the manifold determined by the observables g, ..., g,).

In terms of the system S, this process amounts to regarding S as being composed
of a 1-parameter family of (sub)systems S,, each of which is described by the cor-
responding equation of state determined by &,. The assertion that the &, are all
conjugate amounts intuitively to asserting that all the systems S, are similar; this in
turn means the following: the replacement of a given S, by S,. can be “annihilated”
by replacing corresponding elements by corresponding elements in the equation of
state; i.e. by coordinate transformations in the domain and range of the @,.

We can imagine this process continued, in such a way that the original function ¢
can be expressed as a p-parameter family of conjugate functions of m — p variables,
of the form

(pn...r,,(fm—er 1 "fm)

and that p is maximal for this property (i.e. any set of p + 1 of the observables f;
gives rise to non-conjugate functions). Then the system S has accordingly been
decomposed into a p-parameter family of systems S, , , and all of these systems are
similar. Once again, this means that an arbitrary transition (ry, ..., r,) = (r}, ..., })
can be annihilated by replacing corresponding elements by corresponding elements.

It may be noted that the above considerations can be regarded as an abstract form
of the “Buckingham II-Theorem” [5] which was originally obtained through very
special dimensional arguments.

Another way to express the above construction is the following: the bifurcation
set of the description of S obtained from the observables (fu-p+ 1> ---fm) With
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respect to the description obtained from the observables (fi, ..., f,,) is empty, and the
value p is maximal for this property.

Now let us introduce some picturesque but not entirely unjustified terminology.
We shall call the set of parameter values ry, ..., r, the genome of the corresponding
subsystem S, , ; the domain of the map &, will be called the set of environments
of the system, and the range of this map will be called the set of phenotypes. Then
the equation of state asserts simply that a specification of a particular genome in
a particular environment uniquely determines the corresponding phenotype.

The D’Arcy Thompson “Theory of transformations” [6] asserts essentially that
closely related species are similar. In our terminology, this translates into the asser-
tion that if the genomes of two systems are close in some appropriate norm, then
the phenotypes are corresponding. This formulation permits a number of interesting
and potentially testable conclusions to be drawn; space precludes us form entering
upon a fuller discussion here, but details may be found elsewhere [7] Moreover,
the above discussion allows us to meaningfully extend the functional concepts of
genome and phenotype to non-biological systems; this permits, for example, a better
understanding of the significance of non-biological morphogenetic metaphors, such
as critical phenomena and diffusion-reaction mechanisms, which seem at first sight
to be devoid of any plausible genetic component.

Another facet of the above formulation which may be mentioned is the following:
if we keep the genome fixed and modify the environment, we obtain a corresponding
change in phenotype governed by the equation of state. Likewise, if we keep the
environment fixed and modify the genome, we again obtain a change in phenotype.
Such phenotypic changes can be regarded as adaptations of the phenotype to the
imposed modifications. They are imposed by the requirements of invariance of the
equations of state. In general, if we study what varies when a perturbation is imposed
on a biological system, we obtain a theory of adaptation; if we study what remains
invariant under such a perturbation, we obtain a theory of homeostasis. What we
wish to stress is that adaptation and homeostasis represent different aspects (descrip-
tions) of the same basic phenomena.

ri..rp

Let us now turn briefly to the concept of modelling and model systems. Intuitively,
we may say that some structure S’ is a model for another structure S if, in a given
set of circumstances, S’ may be substituted for S with no observable change; i.e. if
this substitution is invisible under the given circumstances. Thus, given an observable
f:S - R, we may replace a state s by any state s’ for which f(s) = f(s'); under these
circumstances we may say that s’ models s. Likewise, we may replace an observable
by a conjugate observable, if we simultaneously replace each element of the domain
and range by the corresponding elements. We may likewise replace a system by
a similar system. It is clear that the formalism we have developed above, based on
the comparison of system descriptions, is likewise a general theory of modelling.
As noted above, the appearance of bifurcations indicates where a modelling relation
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breaks down. However, it is equally significant to note where such a relation is
maintained; this is the province of the concept of similarity.

Let us conclude with one final variation of the diagram (2). Let us suppose that
we have a pair of conjugacy relations, of the form

A U B B— Y% ¢

¢ v ¢ v’

A— B B— > C
f g

so that we may say that f, f' are similar, g, g’ are similar. As noted above, this
means that we can replace f by f’, and g by g’, as long as we also replace correspon-
ding elements by corresponding elements, and observe no change. Now, however,
let us compose the maps f and g, and let us ask whether the composite gf is conjugate
to the composite g’f’. It is evident that the conjugacy of the composites does not
follow in general from the conjugacy of the factors. Moreover, even if the com-
posites are conjugate, the elements of 4 and C which were corresponding in the dia-
grams considered separately will no longer in general be corresponding when the
maps are composed. This simple observation throws another kind of light on the
problem of reductionism: in general, the availability of models (descriptions) of the
components of a composite system does not allow us to construct a model for the
composite system itself. Conversely, a model for a composite system does not allow
us to construct models for the components. Hence we see in a particularly stark way
the difficulties faced in the analysis and the synthesis (design) of complex systems.
Furthermore, the failure of conjugacy to be preserved under composition of map-
pings raises some deep questions of a category-theoretic nature. In category theory,
composition of mappings is the basic operation, which is preserved by functors.
Since conjugacy is not preserved under composition, it cannot be a functorial relation,
and hence is not “natural” in the category-theoretic sense. Therefore it appears that
category theory cannot by itself provide us with an appropriate tool for the analysis
and synthesis of complex systems.
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