Ján Jakubík
On value selectors and torsion classes of lattice ordered groups

Persistent URL: http://dml.cz/dmlcz/101745

Terms of use:

© Institute of Mathematics AS CR, 1981

Institute of Mathematics of the Czech Academy of Sciences provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these Terms of use.

This document has been digitized, optimized for electronic delivery and stamped with digital signature within the project *DML-CZ: The Czech Digital Mathematics Library* http://dml.cz
ON VALUE SELECTORS AND TORSION CLASSES OF LATTICE ORDERED GROUPS

JÁN JAKUBÍK, Košice

(Received November 7, 1979)

In this note we will investigate a problem proposed by J. Martinez [7] on the relation between value selectors and torsion classes of lattice ordered groups.

1. PRELIMINARIES

We shall use the standard notation for lattice ordered groups (cf. Conrad [1] and Fuchs [2]). The group operation will be written additively.

The system of all convex l-subgroups of a lattice ordered group G will be denoted by $c(G)$; this system is partially ordered by inclusion. Then $c(G)$ is a complete lattice; the lattice operations in $c(G)$ are denoted by \wedge, \vee.

In what follows we shall consider objects belonging to some type of the following hierarchy:

1) lattice ordered groups and their elements;
2) classes of lattice ordered groups;
3) classes of classes of lattice ordered groups.

Let \mathcal{G} be the class of all lattice ordered groups. Let A be a nonempty subclass of \mathcal{G}. Consider the following conditions for A:

(a) If $G \in \mathcal{G}$ and if $\{H_i\}_{i \in I} \subseteq A \cap c(G)$, then $\bigvee_{i \in I} H_i \in A$.
(b) If $G \in A$ and $H \in c(G)$, then $H \in A$.
(c) A is closed with respect to homomorphisms.

The class A is said to be a torsion class, if it satisfies (a), (b) and (c) (cf. Martinez [5], [6], [7]; a different terminology (using the term 'hereditary torsion class') has been applied in [4], [8]). Each variety of lattice ordered groups is a torsion class (Holland [3]).

Let T be the class of all torsion classes; T is partially ordered by inclusion. Then T is a complete lattice [5]. Several properties of the lattice T were established in [5], [9].
2. VALUE SELECTORS

The notion of a values selector was introduced in [7]. Let us recall some definitions and results concerning this notion.

Let \(G \in \mathcal{G} \), \(x \in G \). A convex \(l \)-subgroup of \(G \) maximal with respect to the property of noncontaining \(x \) is called a value of \(x \). A convex \(l \)-subgroup of \(G \) is said to be a value if it is a value of an element of \(G \). Let \(M_0(G) \) be the set of all values of \(G \).

A value selector is a function \(M \) assigning to each lattice ordered group \(G \) a subset \(M(G) \) of \(M_0(G) \) such that the following conditions are fulfilled:

1. If \(H \in c(G) \), then \(M(H) = \{ C \cap H : C \in M(G) \) and \(C \nsubseteq H \} \).
2. If \(K \) is an \(l \)-ideal of \(G \), then \(M(G/K) \supseteq \{ C/K : C \in M(G) \) and \(C \supseteq K \} \).

(Of course, we also assume that the mapping \(M \) is defined intrinsically, i.e., if \(\varphi \) is an isomorphism of a lattice ordered group \(G_1 \) onto a lattice ordered group \(G_2 \), then \(M(G_2) = \{ \varphi(C) : C \in M(G_1) \} \).

Let \(M_1 \) and \(M_2 \) be value selectors. We put \(M_1 \leq M_2 \) if \(M_1(G) \subseteq M_2(G) \) for each lattice ordered group \(G \). Let \(\{ M_i \}_{i \in I} \) be a family of value selectors; we define \(M_i(G) = \cap_{i \in I} M_i(G) \) and \(M_i(G) = \cup_{i \in I} M_i(G) \) for each \(G \in \mathcal{G} \). Then \(M_1 \) and \(M_2 \) are value selectors, and \(M_1 = \bigwedge_{i \in I} M_i \), \(M_2 = \bigvee_{i \in I} M_i \).

Let \(M \) be a value selector. We denote by \(T(M) \) the class of all lattice ordered groups \(G \) such that \(M(G) = M_0(G) \). For each torsion class \(A \) and each \(G \in \mathcal{G} \) we put

\[
A^\wedge(G) = \{ H \in M_0(G) : A(G) \nsubseteq H \},
\]

where \(A(G) \) is the join of all convex \(l \)-subgroups of \(G \) belonging to \(A \).

Then we have (cf. [7]; Lemmas 1.1—1.3):

2.1. Lemma. For each value selector \(M \), \(T(M) \) is a torsion class.

2.2. Lemma. For each torsion class \(A \), \(A^\wedge \) is a value selector; moreover, for \(G \in \mathcal{G} \) we have \(G \in A \) if and only if \(A^\wedge(G) = M_0(G) \).

2.3. Lemma. If \(A \) is a torsion class and \(M \) is a value selector, then \(T(M)^\wedge \leq M \) and \(T(A^\wedge) = A \).

The following problem has been proposed in [7]:

'The function \(M \to T(M) \) preserves arbitrary intersections. But it is unknown whether it also preserves joins. It would be of interest to know it, for it would shed light on the following question: If \(A \) is a torsion class, is there a largest value selector \(M \) such that \(T(M) = A^\wedge \)? There is always a smallest, namely \(A^\wedge \). In view of the inequality in 1.3, the author doubts that it preserve joins.'
3. THE MAPPINGS \(s_1 \) AND \(s_2 \)

Let \(G \in \mathcal{G} \) and \(X \subseteq G \). We denote \(X^\delta = \{ g \in G : |g| \land |x| = 0 \text{ for each } x \in X \} \). If we consider several lattice ordered groups then we sometimes write \(X^\delta(G) \) rather than \(X^\delta \). It is well-known that \(X^\delta \) is a convex \(l \)-subgroup of \(G \).

The following lemma is easy to verify.

3.1. Lemma. Let \(0 < x \in G \) and suppose that the interval \([0, x]\) is a chain. Then \(\{x\}^\delta \) is a linearly ordered group.

3.2. Lemma. Let \(0 < x \in G \) and suppose that the interval \([0, x]\) is a chain. Then \(x \) possesses a unique value \(B + \{x\}^\delta \), where \(B \) is the value of \(x \) in \(\{x\}^\delta \).

Proof. Put \(\{x\}^\delta = A \) and let \(\{A_i\}_{i \in I} \) be the set of all convex \(l \)-subgroups of \(A \) such that \(x \notin A_i \). Denote \(B = \bigvee_{i \in I} A_i \). The fact that the system of all convex \(l \)-subgroups of a linearly ordered group is linearly ordered and 3.1 imply that \(B \) is the unique value of \(x \) in \(A \).

We set \(\{x\}^\delta = C, B + C = D \). Clearly \(C = A^\delta \). Hence we obtain by a routine calculation that \(D \) is a convex \(l \)-subgroup of \(G \). Moreover, \(D \) is a direct sum of its \(l \)-subgroups \(B \) and \(C \), and \(B \lor C = D \) is valid in the lattice \(c(G) \). We also have \(x \notin D \).

Let \(D_1 \) be a convex \(l \)-subgroup of \(G \) with \(x \notin D_1 \). Let \(0 \leq d_1 \in D_1 \). Then \(x \leq d_1 \).

Let \(x \land d_1 = y, -y + d_1 = z, -y + x = y_1 \). We have \(z \geq 0, 0 < y_1 \leq x \) and \(y_1 \land z = 0 \). This and the fact that \(A \) is linearly ordered yields \(a \land z = 0 \) for each \(0 \leq a \in A \). Thus \(z \in A^\delta \) and hence \(d_1 \in D \). Therefore \(D_1 \subseteq D \), which completes the proof.

If \(I \) is a linearly ordered set and if \(G_i \) is a linearly ordered group for each \(i \in I \), then \(\Gamma_{i \in I} G_i \) denotes the lexicographic product of the system \(\{G_i\} (i \in I) \) (cf., e.g., Fuchs [2]).

Let \(N \) be the set of all positive integers and let \(P = \{p_n\} (n \in N) \) be the set of all primes. Further, let \(R_0 \) be the set of all rational numbers (with the natural linear order).

Let \(f \) be a one-to-one mapping of the set \(R_0 \) onto \(N \) and let \(R_1, R_2 \) be infinite subsets of \(R_0 \) such that (i) \(R_1 \cap R_2 = \emptyset \), \(R_1 \cup R_2 = R_0 \), and (ii) both \(R_1 \) and \(R_2 \) are dense subsets of \(R_0 \). For each \(x \in R_0 \) let \(K_x \) be the set of all rational numbers of the form \(\lfloor p_m^n \rfloor \), where \(n = f(x), m \in N \) and \(l \) is any integer. We consider \(K_x \) as an additive group with the natural linear order. If \(x, y \in R_0 \) are distinct, then the linearly ordered groups \(K_x \) and \(K_y \) fail to be isomorphic. We denote by \(H_0 \) the class of all lattice ordered groups \(H \) that can be expressed as

\[H = \Gamma_{i \in I} H_i, \]

where

(i) \(I \) is a convex subset of \(R_0 \);

(ii) for each \(i \in I, H_i \) is isomorphic with \(K_i \).
From the definition of H_0 it follows that if K is a homomorphic image of a lattice ordered group H belonging to H_0 then either K belongs to H_0 or $K = \{0\}$. The same is valid for each convex l-subgroup of H.

Let $H \in H_0$ be as in (3) and let $0 < g \in H$. Let us denote by i_0 the least $i \in I$ with $g(i) \neq 0$. If $i_0 \in R_i$ ($i \in \{1, 2\}$), then the element g will be said to be of type R_i. Let $R_i(H)$ be the set of all elements of H which are of type R_i ($i = 1, 2$). We have $R_1(H) \cap R_2(H) = 0$. If ϕ is an isomorphism of H onto a linearly ordered group $H' \in H_0$, then $\phi(R_i(H)) = R_i(H')$ ($i = 1, 2$).

An isomorphism ϕ of a lattice ordered group G_1 into a lattice ordered group G_2 is said to be convex if $\phi(G_1)$ is a convex l-subgroup of G_2. Let G be a lattice ordered group and $0 < x \in G$. The element x will be called of type R_1 if there exist $H \in H_0$ and a convex isomorphism ϕ of H into G such that $x \in \phi(H)$ and $\phi^{-1}(x) \in R_i(H)$. Let $R_1(G)$ be the set of all elements of G which are of type R_1. The set $R_2(G)$ is defined analogously. Then $R_1(G) \cap R_2(G) = 0$ is valid. Moreover, 3.2 implies that each element $x \in R_1(G) \cup R_2(G)$ possesses a unique value $v_0(x)$ in G. We put

$$s_1(G) = \{v_0(x) : x \in R_1(G)\}, \quad s_2(G) = \{v_0(x) : x \in R_2(G)\}.$$

3.3. Lemma. The mappings s_1 and s_2 fulfil the condition (1).

Proof. Let G be a lattice ordered group and let G_1 be a convex l-subgroup of G. We have to verify that $s_1(G_1) = \{C \cap G_1 : C \in s_1(G) and C \not\subset G_1\}$.

Let $C \in s_1(G_1)$. There is $x \in R_1(G_1)$ such that $C = v_0(x)$. Let B be the convex l-subgroup of $\{x\}^{\delta(G_1)}$ that is maximal with respect to the property of non-containing x; i.e., B is the value of x in $\{x\}^{\delta(G_1)\delta(G_1)}$. Then B is also the value of x in $\{x\}^{\delta}$. From 3.2 it follows that

$$C = v_0(x) = B + \{x\}^{\delta(G_1)}.$$

Further, we have $x \in R_1(G)$. Thus x has a unique value in G; let us denote this value by $C = v_0(x)$. Then $C \in s_1(G)$, $C \subset G_1$ and by using 3.2 again we obtain

$$C = B + \{x\}^{\delta}.$$

Since $\{x\}^{\delta(G_1)} = \{x\}^{\delta} \cap G_1$, we get $C = C \cap G_1$. Thus $s_1(G_1) \subseteq \{C \cap G_1 : C \in s_1(G) and C \not\subset G_1\}$.

Now let $C \in s_1(G)$ such that $C \not\subset G_1$. There is $x \in R_1(G)$ with $C = v_0(x)$. Let B be the value of x in $\{x\}^{\delta}$. Then $C = B + \{x\}^{\delta}$. We shall show that $x \in G_1$.

By way of contradiction, assume that x does not belong to G_1. From $C \not\subset G_1$ it follows that there exists $0 < g_1 \in G_1$ such that $g_1 \not\in C$. If $g_1 \geq x$, then $x \in G_1$, which is a contradiction. If $0 < z \in G$ and $z \leq x$, then the structure of lattice ordered groups belonging to H_0 yields that either $z \in B$ or the value of z in $\{x\}^{\delta}$ coincides with B. If $g_1 < x$, then $g_1 \not\in B$ (because $g_1 \not\in C$) and thus the value of g_1 in $\{x\}^{\delta}$ coincides with B; but in this case there is a positive integer n with $ng_1 > x$, implying $x \in G_1$.

309
Hence we can suppose that \(g_1 \) is incomparable with \(x \). Put \(y = x \land g_1, z = -y + + g_1 \). Then \(y \in B \) and \(z \in \{x\}^{\delta} \), hence \(g_1 \in C \), which is a contradiction. Therefore \(x \in G_1 \) and so \(B \subseteq G_1 \).

The relation \(x \in R_1(G) \cap G_1 \) implies \(x \in R_1(G_1) \). Thus

\[
C \cap G_1 = (B + \{x\}^{\delta}) \cap G_1 = (B \lor \{x\}^{\delta}) \cap G_1 = (B \land G_1) \lor (\{x\}^{\delta} \land G_1) = B \lor (\{x\}^{\delta} \land G_1) = B \lor \{x\}^{\delta(G_1)} = B + \{x\}^{\delta(G_1)} = v_{G_1}(x) \in s_1(G).
\]

We have proved that \(s_1 \) fulfils (1). The same proof can be applied to \(s_2 \).

3.4. Lemma. The mappings \(s_1 \) and \(s_2 \) fulfill the condition (2).

Proof. Let \(K \) be an \(l \)-ideal of a lattice ordered group \(G \) and let \(C \in s_1(G), C \supseteq K \).

We have to verify that \(C/K \) belongs to \(s_1(G/K) \).

According to the assumption there exists \(x \in R_1(G) \) such that \(C = v_G(x) \). As above, put \(A = \{x\}^{\delta}, B = v_A(x) \). For each \(y \in G, Y \subseteq G \) put \(\tilde{y} = y + K, \tilde{Y} = \{y + K\}_{y \in Y} \). The structure of \(A \) yields that the lattice ordered group \(\tilde{A} \) belongs to \(H_0 \) (the case \(\tilde{A} = \{0\} \) is impossible because \(\bar{x} \in \tilde{A} \) and \(\bar{x} \notin K \)); moreover \(\bar{x} \in R_1(\tilde{A}) \) and \(\bar{B} = v_A(\bar{x}) \). Thus \(\bar{x} \in G \).

Put \(D = \{x\}^{\delta} \). From 3.2 it follows that \(\bar{C} = \bar{B} + \bar{D} \). Hence in order to prove that \(\bar{C} = v_G(\bar{x}) \) it suffices to verify that

\[
\bar{D} = \{\bar{g} \in \bar{G} : |\bar{g}| \land \bar{x} = \bar{0}\},
\]

the symbol \(\bar{0} \) denoting the zero element in \(\bar{G} \).

If \(\bar{g} \in \bar{D}, \) then there is \(g_1 \in \bar{g} \cap D, \) hence \(|\bar{g}| \land \bar{x} = |\bar{g}_1| \land \bar{x} = |\bar{g}_1| \land \bar{x} = \bar{0} \). Conversely, suppose that \(\bar{g} \in \bar{G} \) and that \(|\bar{g}| \land \bar{x} \bar{0} \) is valid. There exists \(0 \leq g_2 \in |\bar{g}| = |\bar{g}|. \) We have \(\bar{g}_2 \land \bar{x} = \bar{0}, \) hence \(0 \leq z = g_2 \land x \in K. \) Put \(g_3 = -z + + g_2, x_1 = -z + x. \) Clearly \(x \notin K, \) thus \(0 < x_1 \leq x. \) Moreover, we have \(g_3 \land x_1 = = 0. \) This and the fact that \(\{0, x\} \) is a chain imply \(g_3 \land x = 0. \) Hence \(g_3 \in D \) and therefore \(|\bar{g}| = \bar{g}_3 \in \bar{D} \). Thus \(\bar{g} \in \bar{D}, \) which completes the proof for \(s_1. \) The proof for \(s_2 \) is analogous.

From 3.3 and 3.4 we obtain:

3.5. Lemma. \(s_1 \) and \(s_2 \) are value selectors.

4. THE MAPPINGS \(s_1' \) AND \(s_2' \)

In this paragraph we shall use the same notation as in § 3. Let \(R_{01} \) be the class of all lattice ordered groups \(H \) such that \(H \) is isomorphic to some \(K_t, t \in R_1. \) The class \(R_{02} \) is defined analogously. We put \(R_0 = R_{01} \cup R_{02}. \)
Let \(G \in \mathcal{G}, \quad 0 < x \in G \). If there exists a convex \(l \)-subgroup \(H \) of \(G \) with \(x \in H \) such that \(H \) belongs to \(R'_{01} \), then the element \(x \) is said to be of type \(R_{01} \). The elements of type \(R_{02} \) or \(R_0 \), respectively, are defined analogously. Let \(R_{01}(G) \) be the set of all elements of \(G \) which are of type \(R_{01} \). Similarly we define the sets \(R_{02}(G) \) and \(R_0(G) \). According to 3.2, each element \(x \in R_0(G) = R_{01}(G) \cup R_{02}(G) \) possesses a unique value \(v_0(x) \) in \(G \). Put

\[
\sigma_0(G) = \left\{ v_0(x) : x \in R_0(G) \right\}, \quad \sigma_0(G) = \left\{ v_0(x) : x \in R_0(G) \right\}.
\]

4.1. Lemma. \(s_{01}, s_{02}, \) and \(s_0 \) are value selectors.

The proof is analogous to that used in § 3 for \(s_1 \) and \(s_2 \), and therefore will be omitted.

Put \(s'_i = s_i \cup s_0 \) for \(i = 1, 2 \) (i.e., \(s'_i(G) = s_i(G) \cup s_0(G) \) for each \(G \in \mathcal{G} \)). From 3.5 and 4.1 we obtain

4.2. Lemma. \(s'_1 \) and \(s'_2 \) are value selectors.

Let us denote by \(A_0 \) the class of all lattice ordered groups \(G \) such that either \(G = \{0\} \) or \(G \) is a direct sum (= discrete direct product) of lattice ordered groups belonging to \(R_0' \). Similarly we define the classes \(A_1 \) and \(A_2 \). It is easy to verify that all these classes are torsion classes (this follows also immediately from [9], Thm. 2.6).

Put \(B_i = T(s'_i) \). For each \(K_i \in R_0' \) we have \(s_0(K_i) = \{ \{0\} \} = M_0(K_i) \), hence \(K_i \in T(s_0) \subseteq T(s'_1) \). Because each lattice ordered group \(G \in A_0 \) is a join of lattice ordered groups belonging to \(R_0' \) and since \(T(s'_1) \) is a torsion class (cf. 2.1) we infer that

\[
A_0 \subseteq T(s'_1)
\]

is valid.

For each \(G \in \mathcal{G} \) we denote by \(A_0(G) \) the join of all convex \(l \)-subgroups of \(G \) which belong to \(A_0 \). Then \(A_0(G) \) belongs to \(A_0 \) as well.

4.3. Lemma. \(s_1(G) \cap s_2(G) = \emptyset \).

Proof. By way of contradiction, assume that \(C \in s_1(G) \cap s_2(G) \). According to 3.2 there exists \(0 < x \in R_1(G), \quad 0 < y \in R_2(G), \quad B_1 \in c(G), \quad B_2 \in c(G) \) such that

\[
C = B_1 + \{x\}^\delta, \quad C = B_2 + \{y\}^\delta,
\]

where \(B_1 \) is the value of \(x \) in \(\{x\}^\delta \) and \(B_2 \) is the value of \(y \) in \(\{y\}^\delta \). Since \(R_1(G) \cap \cap R_2(G) = \emptyset \) we have \(x \neq y \). If \(x < y \), then \(x \in B_2 \subseteq C \), which is impossible; similarly, \(y \not< x \). Hence \(x \) is incomparable with \(y \); because \([0, x] \) and \([0, y] \) are chains, it follows that \(x \wedge y = 0 \), and thus \(y \in \{x\}^\delta \subseteq C \), which is a contradiction.

4.4. Lemma. Let \(y \in R_2(G), \quad y \notin R_{02}(G) \). Then \(v_0(y) \notin s_0(G) \).
Proof. Clearly \(s_{01} \leq s_1 \), hence 4.3 implies \(s_{01}(G) \cap s_2(G) = \emptyset \). Because of \(v_0(y) \in s_2(G) \) we have to verify that \(v_0(y) \notin s_{02}(G) \).

By way of contradiction, assume that \(v_0(y) \in s_{02}(G) \). Hence there exists \(z \in R_{02}(G) \) such that \(v_0(y) = v_0(z) \). From the structure of lattice ordered groups belonging to \(H_0 \) we infer that we have neither \(z = y \) nor \(z > y \). The cases (i) \(y > z \) and (ii) \(y \) is incomparable with \(z \) lead to a contradiction in a similar way as in the proof of 4.3.

4.5. Lemma. Let \(G \in B_1, \ C \in M_0(C) \). Then there is \(x \in R_0(G) \) such that \(C = v_0(x) \).

Proof. By way of contradiction, assume that \(C \neq v_0(x) \) for each \(x \in R_0(G) \). Then there is \(y \in R_1(G) \setminus R_{01}(G) \) such that \(C = v_0(x) \). Now the definition of \(H_0 \) implies that there is \(y \in R_2(G) \setminus R_{02}(g) \) with \(y < x \) (we use the density of \(R_2 \) in \(R_0 \)). From 4.3 and 4.4 we obtain \(v_0(y) \notin s^4(G) \) implying \(G \notin B_1 \), which is a contradiction.

4.6. Lemma. Let \(G \) belong to \(B_1 \). Then \(G = A_0(G) \).

Proof. Suppose that \(G \neq A_0(G) \). Then there is \(y \in G \setminus A_0(G) \). There exists a value \(C \) of \(y \) in \(G \) such that \(A_0(G) \subseteq C \). In view of 4.5, there is \(x \in R_0(G) \) with \(C = v_0(x) \). The convex \(l \)-subgroup \(C_1 \) of \(G \) generated by \(x \) belongs to \(A_0 \), hence \(x \in C_1 \subseteq A_0(G) \subseteq C \), which is a contradiction.

From (4) and 4.6 we conclude

4.7. Lemma. \(T(s'_1) = A_0 \).

Analogously we obtain

4.8. Lemma. \(T(s'_2) = A_0 \).

4.9. Lemma. Let \(H \) be as in (3) with \(I = R_0 \). Then \(H \in T(s'_1 \lor s'_2) \) and \(H \neq A_0 \).

Proof. If \(C \) is a value in \(H \), then there is \(0 < x \in H \) such that \(C \) is a value of \(x \). Since \(x \) belongs either to \(R_1(H) \) or to \(R_2(H) \), \(C \) belongs to \(\langle s'_1 \lor s'_2 \rangle (H) \). Hence \(H \in T(s'_1 \lor s'_2) \). Moreover, \(H \) is linearly ordered and thus \(H \) is directly indecomposable. Hence from \(H \neq R'_0 \) it follows that \(H \) does not belong to \(A_0 \).

4.10. Corollary. There does not exist any largest value selector \(M \) with \(T(M) = A_0 \).

Hence the above questions quoted from [7] are answered by the following

Proposition. The function \(M \rightarrow T(M) \) does not, in general, preserve joins. If \(A \) is a torsion class, then there need not exist a largest value selector \(M \) with \(T(M) = A \); moreover, the class of all value selectors \(M_1 \) with \(T(M_1) = A \) need not be directed.
References

Author's address: 040 01 Košice, Švermova 5, ČSSR (Vysoké učení technické).