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1. INTRODUCTION

The divergence theorem for vectors fields of class C! in R" is well known and its
proof can be found in many textbooks. In 1955, Bochner considered the possibility
of reducing the regularity of the vector fields to a mere assumption of differentiability.
In [2], he proved such a theorem under the additional condition of continuity for the
divergence of the field, and weakened in [3] this assumption into Lebesgue integra-
bility together with an auxiliary condition. This last one was shown to be superfluous
by Shapiro [20], using a rather involved argument based on multiple trigonometric
series.

The divergence theorem can be viewed as a n-dimensional generalization of the
fundamental theorem of calculus telling that

(1) j () dx = £(8) ~ £(a).

for a differentiable function of one variable, at least when the left-hand member has
a meaning. As it is well known neither the Riemann nor even the Lebesgue integral
is powerful enough to be able to integrate an arbitrary derivative. One needs the more
general theory of Denjoy [4] or of Perron [18] to obtain a type of integral for which
(1) holds for every differentiable f. Kurzweil [12], in 1957, and independently
Henstock [6], in 1961, have shown that those type of integrals could be recovered
by a technically slight but conceptually basic modification of Riemann’s original
definition. This modification can be easily adapted to the n-dimensional case (see
eg. [7,13,15,17]) and raises the question of knowing if the obtained integral allows
the proof of a divergence theorem under a mere differentiability assumption on the
vector field. This does not seem to be the case and is the reason why we introduce
here a new concept of integral (on an interval) for functions from R" into a Banach
space. We modify the Kurzweil-Henstock definition by taking the limit of the
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Riemann sums non-uniform with respect to the so called irregularity of the partition,
which measures the way in which the stretching of the intervals of the partition
differs from that of the original interval (see Section 2). Such an approach was ini-
tiated in our paper [16], with the so-called RP-integral, but this integral is in fact
too general to have the nice properties usually wanted. The one introduced here, and
called the GP-integral (see Section 3) has the linearity, positivity, restriction and ad-
ditivity properties of the integral, except that it is unknown if the GP-integrability
over members of a finite partition in intervals of an interval implies the GP-integra-
bility over the interval (see Section 4). We also show that a Levi’s type monotone
convergence theorem holds for the GP-integral but it is still unknown if a dominated
convergence theorem is valid (see Section 6). Section 5 is devoted to the proof of
the divergence theorem and of a corresponding Stokes theorem for differential
forms with differentiable coefficients. Some applications of those theorems given in
[16] can be immediately adapted to the present setting and other will be given in
another paper.

Finally let us notice that more general abstract versions of the Kurzweil-Henstock
approach have been given by Henstock [9, 10, 11], McShane [17] and others, but
they do not seem to contain the present integral when specialized to the considered
situation.

2. RIGHT-CLOSED INTERVALS, L- AND P-PARTITIONS AND RIEMANN SUMS
As usual, a right-closed interval I = Ja, b] in R" will be defined as the cartesian
product of n right-closed intervals Ja;, b;] of R where
a;<b,(1=i<n)

and the (n-dimensional Lebesgue) measure m(I) of I = Ja, b] will be given by

m(I) = iI:]l(b,- —a).

If

by—a,=b,—a,=...=0>b,—a,,

Ja, b] will be called a right-closed cube in R" we shall denote by [x| the norm |x| =
= max |xi| of x in R".

Definition 1. The rate of stretching o(I) of the right-closed interval I = Ja, b] is

defined by
o(I) = [ max (b; — a;)]/[ min (b; — a,)]
1Z5isn 1<iZn

= fis

Clearly, o(I) 2 1, o(I) = 1 when n = 1 and, for n = 2, o(I) = 1 if and only if I
is a right-closed cube.
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The following concept is due to McShane [17]. We denote by int 4, cl 4, bdry 4
the interior, closure and boundary of a set A.

Definition 2. A L-partition of a right-closed interval I = Ja, b] is a finite family
= {(x" 1", ..., (x" I")}

where the I’ are right-closed intervals such that {I',...,I"} is a partition of / and
where
xiecdl (1<j<m).

A special case of L-partitions, is introduced in Riemann integration.

Definition 3. A P-partition of a right-closed interval I = Ja, b] is a L-partition

o= {x.1,.. "1}
such that
xecdl/ 1<j<m).

It is important to measure how the I/ of a L-partition differ in shape from I.

Definition 4. Let
= {(x' 1), ..., (x I")}

be a L-partition of the right-closed interval I. The irregularity Z(H) of IT is the posi-
tive number defined by

(1) = [ max a(1))/o().

We see that X(I7) is independent from the choice of the x/ (1 < j < m) and so is
really a characteristic of the set partition {I', ..., I"} of I. The following special type
of L-partition was introduced in [16]. ~

Definition 5. A L-partition IT = {(x',I'), ..., x", I™)} of I is called regular (shortly
a RL-partition or a RP-partition in the special case of a P-partition) if I/ is similar
tol foreach1 <j < m.

Obviously, for a RL-partition IT, o(I) = o(I) (1 £ j £ m), so that, 2(IT) = 1.

With McShane [17], let us call gauge on clI any positive mapping & defined on
cl I, and introduce the following

Definition 6. If 0 is a gauge on clI, a L-partition IT = {(x*, 1), ..., (x™, I™)} is
called o-fine if
I < B[x;6(x%)], 1<j<m,

where Bla;r] = [ay—r,a;+r] x ... x [a, — r, a, + r] is the closed ball of
center a € R" and radius r > 0 relative to our norm.
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The following simple result has been implicitely used or explicitely rediscovered
many times under various forms (see eg. [15] for its elementary proof based on the
theorem of nested closed intervals, its historical development and its use in unifying

the treatment of several theorems in basic analysis).

Cousin’s lemma. If I is a right-closed interval of R" and § is a gauge on cll,

then there exists at least one 6-fine RP-partition of I.
Consequently, there will always exist a d-fine P-partition [T of I such that 2(IT) = 1.

Let now V be a vector space over R or C, and f be a function of R" into V defined
oncll.

Definition 7. If I1 = {(x*,I'), ..., (x™, I")} is a L-partition of I, the Riemann sum
S(1 f, H) associated to f and IT is the element of V defined by

S(L, 1, 1) :jilf(xf) m(l’) .

We can now prove the following.
Lemma 1. Let 6 be a gauge on clI. Then, for every o-fine L-partition II of I there

exists a 0-fine L-partition IT of I such that
(1) < 2/a(1)

and
S(I, f, ) = S(I, f, IT) .
Proof. Let IT = {(x',I"), ..., (x™, I")} with I’ = Ja/, b'] (1 £ j £ m). Then

there exists integers r; ; = 1 such that,

r;imin (b — af) < bl — al < (r;,

15ksn

; + 1) min (b — aj),
1<kzn
1jEsm, 1=5in.

. % r;, right-closed intervals I”*, 1 <

Hence if we partition I/ into r; = r;; X ..
< k < r; by dividing the i*" side in r; ; equal parts, we obtain the L-partition

I={x,":1<ksr, 1<j<m)

which is still -fine and moreover is such that

. o+ 1 .
o(l”")<maxﬁ—’~'——§2, 1£k<r;,, 1ZjEm,
1gign T,

and
S(1, £, fI) =j§m:1 kglf(xi) m(I7¥) =,-§1 () (kim(p',k)) =
=j§1f(xj) m(F) = S(I, £, 1) .
617



Consequently
(1) < 2/o(1)
and the proof is complete.

Remark 1. One shall check easily that a result like Lemma 1 does not hold for
P-partitions.

3. GENERALIZED RIEMANN INTEGRALS AND THEIR RELATIONS WITH
CLASSICAL INTEGRALS

The following definition was introduced independently by Kurzweil [12] (who
assumed n = 1 and showed its equivalence with the Perron integral [18]) and
Henstock [6, 7], and, for the L-integral by McShane [17].

See [8, 9,10, 11, 13, 17] for more details and much more general settings and see
[15] for an elementary and systematic treatment of integration in R" using this
approach. Let I — R" be a right-closed interval, X be a Banach space over K = R
or C with norm ||. |, and let f be a function of R" into X defined on clI.

Definition 8. We say that f is P-integrable (resp. L-integrable) over I if there
exists J € X such that, for each ¢ > O there exists a gauge 6 on cl I with the property
that for every é-fine P-partition (resp. L-partition) IT of I, one has

Istr.1.11) ~ 7] < s.

Clearly, Riemann integrability of f over I corresponds to restricting é to be a con-
stant gauge in the definition of P-integrability. Moreover, every L-integrable function
over I is P-integrable over I and the two following basic results were proved by
McShane [17]:

a) the above definition of L-integrability restricted to constant gauges is equi-
valent to the Riemann integrability over I;

b) fis L-integrable over I if and only if f is Lebesgue integrable over I.

Denoting respectively by R(I, X), L(I, X) and P(I, X) the class of Riemann-Graves
[5], Lebesgue-Bochner [1] and of P-integrable functions, we have the following
inclusions

R(I, X) < L(I, X) = P(I,X),

and classical examples [15] show that the inclusions are strict ones.

We now introduce a more general concept of integral, the GP-integral (for Gauss-
Green-Goursat-Perron because of its links with definition 8 and of its importance
in the divergence theorem an in the Goursat version of the Cauchy theorem for
holomorphic functions) and its corresponding GL-integral.
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Definition 9. We say that f is GP-integrable (resp. GL-integrable) over I if there
exists J € X such that, for each ¢ > 0 and for each n = 1, there exists a gauge d
on clI with the property that for every d-fine P-partition (resp. L-partition) IT of I
with

)y sn
one has
IS5, m) - J] <.

Clearly every P-integrable function over I is GP-integrable over I and the two
concepts coincide with the Perron integral if n = 1. In fact the P-integrability is
a GP-integrability which is uniform with respect to the irregularity of the P-par-
titions.

Also GL-integrable functions over I are GP-integrable over I and L-integrable
functions over I are GL-integrable over I. We now show that the converse of the last
assertion holds, so that the classes GL(I, X) and L(I, X) coincide.

Proposition 1. If f is GL-integrable over I, then f is L-integrable over I, with the
same integral.

Proof. Let ¢ > 0,
n = max (1, 2/o(1)) ,

and let d be the corresponding gauge on cl I such that for each -fine L-partition IT
of I with 2(fT) < 7, one has
Is(t.7. 1)~ J] s e

Let now IT be a d-fine L-partition of I; by Lemma 1, there exists a d-fine L-partition IT
of I such that
X(fT) < 2[o(I) and S(Lf, [T) = S(I,£,1T).

Consequently, 2(IT) < 5 and hence
IS@ £, ) = J|| = |S@. £, 1) = J| < &
which completes the proof.
Finally the following concept had been introduced in [16].

Definition 10. We say that f is RP-integrable over I if there exists J € X such that,
for each ¢ > 0, there exists a gauge 6 on cl I with the property that for every J-fine
RP-partition IT of I, one has

Is(r.,m) — ] <.

As, for a RP-partition II, Y(IT) = 1, we see that every GP-integrable over I is
RP-integrable, so that we have the following chain of inclusions

R(I,X) = (I, X) = GL(I,X) = P(I,X) = GP(I, X) = RP(I, X).
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We shall show in the next sections that, in contrast with the RP-integral, the GP-
integral conserves most of basic properties of the P-integral but is still general enough
to allow a divergence theorem for arbitrary differentiable vector fields.

4. BASIC PROPERTIES OF THE GP-INTEGRAL
We conserve the notations of Section 3. By using the fact that if 6, and ¢, are
gauges on cl I, then ¢ defined by
8(x) = min (8,(x), 6,(x)), xecll

is a gauge on cl I such that every d-fine L-partition of I is both J,-fine and J,-fine, it
is easy to prove the following uniqueness result.

Proposition 2. There exists at most one J € X which satisfies the conditions of
Definition 9 for the GP-integrability.
Consequently, this J will be called the GP-integral (shortly the integral) of f over I

and denoted by
jf or ‘[f(x) dx .
1 I

Similar elementary arguments immediately lead to the linearity properties of the
GP-integral.

Proposition 3. If f and g are functions from R" into X defined on cl1 and GP-
integrable on I, then f + g is GP-integrable on I as well as cf for every c € K, and,

o f,(f rg)= f}f + Lg’ L("f )= cqf )

The following inequalities for the GP-integral are immediate consequences of the
corresponding properties of the Riemann sums and of Definition 9.

Proposition 4. If f and | f| are GP-integrable over I then one has

Lf < L]lf

Proposition 5. If f and g are real functions defined on cl I, GP-integrable over 1
and such that

f(x) £ g(x), xecll,
then one has
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As 0 is clearly GP-integrable over I with an integral equal to zero, it follows from
Proposition 5 that the GP-integral of non-negative function will be non-negative.
Notice also that in Proposition 4, the GP-integrability of f and | f|| has to be assumed,
the GP-integral being in general not absolutely integrable, like Perron-type integrals.

Of importance is the following Cauchy criterion of GP-integrability.

Proposition 6. f is GP-integrable over I if and only if for each ¢ > 0 and for each
n = 1, there exists a gauge 6 on clI with the property that for all 5-fine P-parti-
tions Il and I1' of I with

(m)ysqn, X)) <y,

one has
(2) |S@. £, 1) = S(1. 1, IT’)

Proof. Necessity is an easy consequenee of Definition 9. For sufficiency, let
n z 1 be fixed. Then, by taking successively ¢ = 1/k (k = 1,2, ...) in (2), we obtain
a sequence (8, ).y« of gauges on cl I such that

| <e.

Ser1(x) £ 0x), xecll, keN*,
and such that for all §,-fine P-partitions IT, and IT, of I with

Xm)<n, ()<,
one has

N 1

o IS5, 1) = S(. 1] 5

For each k e N*, select such a P-partition II,; then if g = k, IT, is §,-fine and hence
o,-fine so that

@ Is.1,1) = s, £, 1) = <

which shows that (S(1, f, ITy))ien is a Cauchy-sequence in X. Set

J =lim S(I f, 11,) ,

k=
so that by (4) one has
(5) IS5, m) - J] < i . keN*.
Let now ¢ > 0 be given, m € N* be such that

2lm < e,

and let (x) = 6,(x). Then if IT is a 6-fine P-partition of I with Z(IT) < n, we have
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by (3) and (5)
IS@. 7, ) = J| = |ISU. /. 1) = S, £, )| + |SU. 1, 1) = T <

and the proof is complete.

e,

SR

The Cauchy criterion is useful in establishing the restriction property of the GP-
integral.

Proposition 7. If f is GP-integrable on I then f is GP-integrable on every right-
closed interval K < I.
Proof. We can write

€
INK =y L

i=1

where the If are right-closed intervals. Let ¢ > 0 and # = 1 and let
(6) n' = [o(I)]"* max (3 o(K), o(L"), ..., o(), o(1)) .

By Cauchy criterion there exists a gauge ¢ on ¢l I such that for all 6-fine P-partitions IT
and IT of I with

¢ (msn, XM)sn,
one has
0 IS(.f. 1) = SUf )] < e

The restriction of § to cl K and to ¢l L (1 < i £ g) being a gauge on those sets,
let IT,: be a 5-fine RP-partition of I! (1 < i < q) and let ITx and T be two d-fine
P-partitions of K with '

©) X)) £, X(g) <n.
If, explicitely,
g = {(x*,K"),...., ", K™},

i ={&,K"),...,&, K"},
M= {(x", '), .., (", L"™)}, 1<i<gq,

then

n={xK)1<jsm (x7, L"), 1<j,Ssm, 1Si=<q}
and

I={®K)15jsm L"), 1<j,=m, 15i<q}

are o-fine P-partitions of I such that

(10) S(L, f, ) = S(I, f, 1) = S(K, f, Ig) — S(K, f, ).
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Moreover, the IT,. being regular, one has by (6) and (9),

x(m) = [o(D]™" max [o(K), (L] =

= [a(I)]‘llmjaxm[d(Kf), o(L)] £ [o(I)"* max [o(K) Z(IT K),II:iasxq o(l)] <

IAIA
WAIA

and similarly
(M <y.
Using (8) and (10), we get
IS(K, £, 1T) = S(K, £, )l < ¢
and the proof is complete.

We can now prove the (finite) additivity property of the GP-integral.

Proposition 8. Let {K', ..., K"} be a partition of I into right-closed intervals K'
(1 £ 1= r). Then, if f is GP-integrable on I, one has

ff=i 5.
I =1 J g1

Proof. The existence of the [: f follows from Proposition 7. Let ¢ > 0 be given
and let

n = max [1, [o'(I)]“llgléxra(K’)] .

Then there exists a gauge 6, on adh I such that for each ,-fine P-partition I1, of I
with 2(I1,) < 5 one has

<t
r+1

swﬁna—ff
I

and there exists a gauge J, on cl K' such that for each §,-fine P-partition Ty, of K'
with Z(ITg:) £ 1, one has

<, (1=21=q).

= H = =

SKLf,Og)— | f —

Kt

Let § be the gauge defined on adh I
8(x) = min (34(x), 85(x), ..., 8,(x))

where for each x € adh I, the minimum is taken only on those 6,(x) which are defined
at x. Taking then J-fine RP-partitions ITg: of K! (1 £ I £ q), say

Og = {(x""), K"':1<j,smy)
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and letting
m={x"",K"):1<j<m, 1=1=gq},
we obtain a J-fine P-partition IT of I with
(1) = [o(D]™" max o(K"") = [o(I)]"" max o(K') < 1.

SN
IAIIA

Consequently,

Ji-E s

and the result follows, ¢ > 0 being arbitrary.

< e,

+ )
=1

Hwiﬂm—jf

Kt

k—W¢m

Remark 2. The P-integral has, with respect to additivity, the property that if I is
partitioned into the right-closed intervals I' and I? and if f is P-integrable over I
and over I?, then f is P-integrable over I. (see e.g. [7, 8, 10, 11, 14, 15, 17]). The
corresponding proof does not seem to extend to the GP-integral. The reason is that if
5, and &, are respective gauges on cl I* and cl I?, and if we define  on ¢l I by

8(x) = min (5,(x), + distance (x,cl1?)) if xeclI'\cll?,
§(x) = min (6,(x), 1 distance (x,clI')) if xeclI*~clI',
3(x) = min (5,(x), d5(x)) if xeclI' ncll?,

this gauge forces every (%/, I) of a d-fine P-partition IT of I to be such that I/ < I*
ifx/eclI*~clI?and I’ = I?if ¥/ e c1 I> \ cl I'. Then such a 6-fine P-partition nicely
restricts into a 6,-fine P-partition IT, of I' and a &,-fine P-partition IT, of I? giving
easily the result. The problem with the GP-integral is that when we start with such
a o-fine P-partition IT with Z(ﬁ) < 7, we have no control for the rate of stretching
of the I’ A I' or IV n I? associated to an x’ e clI' n ¢l I, and hence no control
on X(I1,) and X(IT,).

5. A DIVERGENCE THEOREM FOR DIFFERENTIABLE FUNCTIONS
Let I = Ja, b] be a right-closed interval in R", U = [0, 1] and let .# be the n-
simplex defined by
(11) JU" SR, u=(u,..,u,)l>

> (ay + uy(by — ay), ..., a, + u,(b, — a,)),
so that
F(U") =clI and det S, = m(l),

for every u € U", where £, denotes the differential of . at u.
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Let f be a function from R" into K" which is differentiable on an open domain Q
containing cl 1. Thus, f is continuous on Q and the integral of the (n — 1)-form w,
defined by

N

(12) wy =Y (=1)7"fidx; A ..oAdx; AL A dx,
i=1

(where the symbol ~ denotes that the corresponding term is missing) over the
(n — 1)-complex 0.7 is defined as usual (see e.g. [15] or [21]) by

(13) L oy =a§0(—1)’“1 ilf,.(f"'“(v)) (b; — a)" ' m(I)do .

yn-1 i=
In this expression, #** is the (n — 1)-simplex defined by
(14) J U S R, o= (v, .0, 0,-q)
> (ay + vy(by — ay), ooy ayoy + vp—y(by—y — ay—y), a, + ob, — a),
sy + 0l(brst = Qir)s oo Ay + V- 1(by — a,)),
(1£k<n a=01),

and the integrals are Riemann integrals of continuous functions. We also define as
usual the divergence of f by the formula

divf =Y (of[ox;) .
i=1
We can now state and prove the following version of the divergence theorem.

Theorem 1. Let f be a function of R" into K" which is differentiable on an open
domain Q. Then, for every right-closed interval I in R" such that clI < Q, div f
is GP-integrable over I and

(15) jdivf=J o,
I 54

where # is the n-simplex defined by (11) and the right-hand member is defined
by (13).

Proof. Let I = Ja, b] = Jay.b;] % ... X Ja,, b,] be a right-closed interval
in R" with closure in Q, and let ¢ > 0 and 5 = 1 be given; then, by the differentiability

of f, for each x e cl I, there exists 5(x) > 0 such that, for every y € B[x; 6(x)], one has
(16) 17G) = 1(x) = fily = %)| < ef2nn'm(1) o(I) ,

where f denotes the differential of f at x. We define in this way a gauge 6 : x |> (x)
on cll. Let IT = {(x',I'), ..., (x", I")} be a d-fine P-partition of I, with 2(IT) < 5
and

P =1d%, ] = Jai, bi] x ... x Jad, bi] .
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If #7 denotes the n-simplex defined by
FU > R, (ug,.nu,) b (al + uy(b] = al), ..., a) + u,(b] — a))),

so that #/(U") = I’ (1 £ j £ m), then, by a well known result about integrals of
(continuous) differential forms, one has

m
f o = Z ;.
0.5 i=1 Jogi

Consequently, if we define the functions g’ and h’ from R" into K" by the relations
9() =) + fly = %), W) =1(y) - g'(y) 1=)j=m),

and if we define the corresponding differential form w,; and @, according to (12),
we obtain

(17) “S(I,div 1,00 - j o,

oF

’z [éiv 1) m(F) -f wf]

o5

i [divf(xj)m L) —J‘ o —j w,,,»jl .

Now, w,; is a (n — 1)-differential form of class C' and

dw,; = div f(x))dx; A ... A dx,,

so that the classical Stokes theorem (see e.g. [15] or [20]) or a direct computation
gives

J Wy —_—'J dng = din(xj) m(Ij), (l <j= m)
Xzl gJ

Therefore, the relation (7) becomes

m
Z @yl =
i=1 Jogi

(18) “S(I, div £, I7) — J o

S IR

n-1

where the #7°"* are defined from the #/ according to formula (14). But, by (16) and
the fact that I7 is J-fine, we have, for all ve U*™ 1,

[Bl(7 @) < [ef2nn m(1) o(D] | #7(0) = ¥']| <

< [e)2np m(I) o(I)] (max (b} — ai)), 1Sj<m1<isn a=01).
1<i<n
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Introducing these inequalities in (18) and using the fact that X(IT) < 5, we obtain
finally,

and the proof is complete.

(L div £, 17) - j waH < [ejn m(@)] Xm) [ 3 m@)] = <.

This theorem improves earlier results of Bochner [2, 3] and Shapiro [20]. By
using the concept of GP-integral instead of the Lebesgue integral, we can avoid any
unnatural integrability assumption in the divergence theorem in the same way as
Perron integral allows integrating all derivatives. In fact, when n = 1 and with the
usuals conventions for O-differential forms and boundaries of 1-simplexes, Theorem 1
above just reduces to the Perron’s form of the fundamental theorem of calculus [18].

We can deduce from Theorem 1 a more general version of the Skotes theorem.
Let ¢ : 4 — R™ be a twice differentiable mapping where 4 < R" is open and contains
U", and let w be a (n — 1)-form with coefficients differentiable on an open set Q
containing ¢(4). Denoting as usual [15, 21] by ¢*4 the pullback by ¢ of the k-form
A on Q, it is known [19] that under the above assumptions one will have

(19) ¢p*(dw) = d(¢*w)
Now ¢*w is a (n — 1)-form which is differentiable on 4 and then it can be written

P*o =Y (=1)"1g;dx; A ... A g;, A .o Adx,

i=1

where the real functions g; are differentiable on 4. By Theorem 1, div g is GP-
integrable on |0, 1]* and one has

(20) J divg =-[ o*w
10,177 oun

where %" is the standard n-cube defined by
u" U > R", u—->u.
Now, as
d(¢*w) = divgdx; A ... A dx,,

fan d(@*w) is well defined by the usual formula

J d(p*w) =J div g,
an an

so that (20) can be written, using moreover (19), as

j <0*(dw)=f P*w,
un oun
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i.e. by definition (see e.g. [21]) of the integral of a k-form over a k-simplex,

-[dw='[ w.
@ o9

We have thus proved the following version of the Stokes theorem.

Corollary 1. Let A = R" and Q = R™ be open sets such that U" < A and ¢(4) = Q.
Then for every twice differentiable (n — 1)-simplex ¢ : 4 — R™ and every (n — 1)-
form w which is differentiable on Q one has

jdwf .
® o9

One shall notice that in formula (21), the left hand member is the GP-integral
defined in (20) and the right-hand member is a usual sum of Riemann integrals of
continuous functions.

6. A MONOTONE CONVERGENCE THEOREM FOR THE GP-INTEGRAL

We shall show in this section that a monotone convergence theorem of Levi’s
type holds for the GP-integral. Its proof, modelled on that given by Henstock [8]
for the corresponding result for the P-integral, depends on the following proposition,
extending the Saks-Henstock lemma [8] to the GP-integral. The notations are those
of Section 3.

Proposition 9. Let f be a function of R" into X defined on clI and GP-integrable
onl. Let ¢ > 0, 5 = 1 be given and let 6 be a corresponding gauge according to
Definition 9.

Let

{x',K"),...,(x" K}, {L,..,L}
be such that
x'eclK',
K' = B [x,6(x")], (1=s1<7),

the K' (1 £ 1 < r)and I/ (1 £ j < r) being right-closed intervals which partition I
and satisfy the condition '

[e(D]™" max [o(K"), o(L)]

1
j

a1

IIA
=

IIATIA
NAIIA
b

s

Then

I\
™
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Proof. By Proposition 7 and 8, f is GP-integrable on K' (1 < I £ r) and on I/
(1<j<s)and

Jﬂtf =’; K'f+§: J\Lf‘

J=1JpLi
Let ¢ > 0, # 2 1,6 and {(x', K"), ..., (x", K"), {L', ..., I} be like in the assertion
and let £ > 0 be given.
There exists a gauge 6, on cl I/ such that §(x) < 6(x), x e cl I/ and such that

S(U, f, 1Ty) — j 7l <

<=
Li S

for every o -fine RP-partition IT,, of I/ (1 £ j < s). If, say,
My, = {(x"4 Y, ., (xFm, D) (1< <)
are such RP-partitions, then
m={xK),1<I<r (5% 1<k<sm
will be a 6-fine P-partition of I. Moreover,
(1) = [o(I)]* max {o(K'), o(L/¥): 1 S 1S, 1 Sk
= [o(1)] ' max {o(K"),o(L)): 1 S 11, 1 Sj<s} 9.

-] ) <o

) Hs(u, £ - f s

LJ

Consequently,

+

Se+¢

and, £ > 0, being arbitrary, the result follows.

We now have the following Levi’s type monotone convergence theorem for the
GP-integral.

Theorem 2. Let (f,)x* be a sequence of real functions defined on cl1 and such
that the following conditions hold:

1. For each k e N*, f, is GP-integrable on I. -

2. For each ke N* and each x € cl I, fi11(x) = fu(x).

3. The sequence (fi)x* converges point wise on cl1 to f.
4. The sequence ([} f,)in* converges to J.

Then f is GP-integrable on I and
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Proof. Let ¢ > O and # = 1 be given; then, for each k € N* we can find a gauge J,
on clI with the property that

) {ﬂumno—ﬁﬁ

< 8/2k+1

for every d,-fine P-partition II, of I with
Z(nk) =1.

Moreover there exists g € N* such that

Jﬁ—J

when k = g and for each x € cl I, there exists an integer p(x) = g such that
(23) Vlx) = S G| <. m(1)
when k = p(x). Define the gauge  on ¢l I by
3(x) = Opm(x), xecll,
and let IT = {(x",I'), ..., (x™, I")} be a 5-fine P-partition of I with X(I1) < #. Then,

< ¢f4

(29 S 1) = T] % 176 = Fronlo) @) +

m

) [f pen(¥’) m(l’) — fljfp(xf)]

+ +

i=1

Z J Jowny = J) -
j=1Jri

By (23), the first term in the right-hand member of (24) is clearly smaller than /4.
For the second we have, if

s = max p(x’),
1=jsm

then, we have

,-;1 [f peen () m(I7) — j 'fp(xf)il

IJ

s

<y

k=1

&
2k+1

s
<y,
k=1

&
< -
2

Z [fk(xj) m(I’) — f fk]
e v

by (22) and the Saks-Henstock lemma which can be used because foreach 1 < j = m
such that p(x’) = k, we have

P & B, 5(<)] = Bul¥, 5yn()] = Bul¥s 6,661
and moreover the I/ (1 < j < m) are such that

(o] mas oft) = X(11) S
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Finally, for the third term in (24) we have, if we set

r = min p(x’),
15jsm

so that s > r 2 ¢, using assumption (2) and Propositions 8 and 5,

ff, ) f_Z o Jf

Consequently,

- €
Z fp(xf) - J, é J —Jfré_
1 4

Jj=1 Jri
and hence the proof is complete.

Remark 3. To deduce from Theorem 2 a Lebesgue’s type dominated convergence
theorem for real functions requires the obtention of a result telling that if f, g, h are
integrable, with h = 0 and [ j[ |g| h, then max ( f, 9) and min (f. g) are integrable.
Such a result is true for the P- 1ntegral (seee.g. [11] or [14]) but again the correspon-
ding proof uses a device of the type described in Remark 2, and which does not
work for the GP-integral. The problem of the obtention of a dominated convergence
theorem for the GP-integral is therefore open.
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