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DIRECT DECOMPOSABILITY OF TOLERANCES ON LATTICES, 

SEMILATTICES AND QUASILATTICES 

IVAN CHAJDA, Prerov, and JUHANI NIEMINEN, Oulu 

(Received November 27, 1979) 

In the paper [2] the authors considered tolerances on direct products of monoids 
and distributive lattices in order to obtain conditions under which a tolerance is 
a direct product of tolerances on direct factors. Actually, the following result is 
proved: 

Theorem. Let ^ and 93 be two monoids or two distributive lattices with greatest 
and least elements. Then the following two implications are equivalent: 

(1) Te LT{SH X 23) => there exist T^ e LT{Sä), T2 e LT(93) such that T = T^ x T2. 

(2) <a, b> e T=> Tjjfr^a, pr^b) x Tß{pr2a, рг2Ь) ç Т 

The aim of this paper is twofold: 

— to extend the above result for algebras in the title; 
— to prove that (2) of Theorem holds automatically in lattices, i.e. lattices have 

directly decomposable tolerances without any constraints. 

0. BASIC CONCEPTS 

Let Я1 = [A, F) be an algebra. By a tolerance T [or tolerance relation) on 2̂1 we 
mean a reflexive and symmetric binary relation on A with the Substitution Property 
with respect to F, i.e. Tis a subalgebra of the direct product Ш^ x 51. The set of all 
tolerances on an algebra Ш constitutes an algebraic lattice ЬТ(Ш) [1], and the meet 
in ЬТ(Ж) coincides with the set intersection. We denote the join in LT(5I) by v^ . 

Let 5t and 23 be two algebras of the same type, 21 x S3 their direct product and 
Те LT{4 X Ж). T is called directly decomposable if there exist T^ e ЬТ(Щ and 
T2 e ЬТ(Щ such that Г = Г̂  x Г2. If every tolerance on 21 x ^ is directly decom­
posable, we say that 21 x ® has directly decomposable tolerances. If ^ is a class of 
algebras such that for every pair 2t, S e ^ , 21 x © has directly decomposable 
tolerances, ^ is said to have directly decomposable tolerances. 

Let a and b be two elements of an algebra 21. Tj^a, b) denotes the least tolerance 
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on ^ collapsing the pair <a, b>, i.e. T^{a, b) = С][Т\ Те ЬТ{Ш) and {a, b} e Г}. 
Thus Tj^a, b) is a generahzation of the concept of a principal congruence. 

Let ^ and ® be two algebras of the same type and x an element of 91 x ©. When 
Xj = pr^x and X2 =рг2Х, [xi, X2] is a componentwise denotation for x. Further, 
if Т^еЬЦЩ and Т2еЬТ{Щ, we have {x, y} e T^ x T2 if <Xi,3;i>eTi and 
<^2J 3̂ 2) S ^2- As noted in [2], the direct product of two tolerances is a tolerance 
on the direct product of the corresponding algebras. 

1. TOLERANCES ON DIRECT PRODUCTS 

The aim of this section is to give conditions under which the identity 

(1) (Ti X T,) V ^ , B ( S I X S2) = (Ti v ^ S , ) X (T, w.S^) 

is valid for two algebras 91 and 33 of the same type and for every J\, S^ e ЬТ{Щ) 
and every T2, S2 e LT(33). It is worth noting that (l) holds for congruences T ,̂ T2, -Ŝ  
and 52 on any algebras 91 and ^ of the same type, see [3]. 

An algebra is called idempotent if for every m-ary polynomial ^(x^, ..., x„,) 
over 9t and for every a e Л, q(a, ..., a) = a. 9Ï is called superidempotent if it is idem-
potent and for every m-ary polynomial q and every two elements a and Ь of 9t there 
are elements с and d such that q{k, ..., k, a, k, ..., k) =• a and q{k, ..., /c, b, fc, . . . 
..., k) = b, where /c is с or J according to the following rule: if к on /th place is с (d) 
in the expression for a then к on the iih place is also с (J) in the expression for b, 
and vice versa. When 9( is a lattice, it is superidempotent: the elements с and d 
corresponding to given a and b are a v b and a A b. 

Theorem 1. Let ^ be a class of superidempotent algebras of the same type, where 
for every 91 G ̂  and every T, S e ЬТ(Ш), <^u,vyeTvj^S if and only if there 
exists a positive integer N such that for every even n > N there are elements 
Ui, Vf of 91 (f = 1, ..., n) and an n-ary polynomial p over 91 with the properties 

(i) p(wi, ,.., w„) = w and p{v^, ..., v^) = v; 
(ii) {ui, Vi} E T for even and <м ,̂ г;̂ > e S for odd values of i (i = 1, ..., n). 

Then the identity (1) is valid for all 9t, 23 G ̂  and every T^, S^ e LT(9l), T2, S2 G 
G LT(93). 

Proof. The proof is a modification of the proof of [2, Thm. 1]. Evidently T^ x T2, 
S^ X ^2 я {Ti VA^I) ^ (^2 Vß>S2), whence it remains to prove the inclusion 
(T, v^S,) X (T2 Vj,S2) ^ (T, X T2) yA.B{S, X S2). 

Let 01, bi^e A and «2? b2 E В be elements such that ([a^, «2], [b^, 62]) G 
е(Г1 v ^ S i ) X (T2 V5S2). Then <ai, b^) G T̂  v ^ S ^ and («2, ^2) G T2 V552. 
According to the assumption, there are two positive integers N^ and N2 such that 
for every even integer n > max [N^, N2) there exist elements w ,̂ ..., w„ and t;i, ..., i;„ 
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of 9(, Wj,..., ŵ  and v[,..., i;̂  of ©, and n-ary polynomials p and q over ^t and 33 
having the properties 

(i) ];(wi, ...,u„) = a i , p(i;i, ..., Ï;„) = b^, q{u[, . . . , < ) = аг and q{v[, . . . , < ) = Ьг; 
(ii) (Ui, Vi} e Ti and <w-, yj) e T2 for even and <м ,̂ У,> e S^ and (MJ, yj) e ^2 for 

odd values of i, г = 1, ..., n. 

We define now an n^-ary polynomial r as follows: r{yi, ..., y^i) = p{q{xi^, .., 
..., Xi„), ..., ^(x„i, ..., x„,)), where x,,j = y^j,-i).n+j' ^et ĉ  and d^ be elements 
of И such that q{ki, ..., fc^-, Wj-, /c^,..., /ĉ ) = w,- and g(/Ci,..., /c,-, Vi, ki, ..., /ĉ ) = Vi, 
where /c,: is ĉ - or J,-, i = 1, ..., n. Furthermore, <c ,̂ Cj>, <(ij, (i,) G S^, T^ for every 
value of i. Accordingly, we can now write the following scheme: 

- t and s are indices, t, s = 1, ..., n; 
- for each separate value of t, z, = w^ = k^ when 5 ф f, and ẑ  = ŵ , w^ =^ v^ 

when s = t; 
- <[z .̂, wj], [w,, i;;]> G Ti X T2 when ^ is even and ([z^, wj], [w ,̂ Î;Q> e S^ X S2 

when r is odd. 

Moreover, r{[zi, w/J, [z2, u\], ..., [z„, < ] ) = [r{z^, ..., Z„, Z j , . .., Z ,̂, . .., Z„j, 

r{u[, . . . , Ml, M2, . . . , Wi, W3' . . . , KJ] = [ r (Wi, fci, . . . , /Ci, /C2, ^25 ^ 2 . •••. ^ 2 . ^3» • • • 

..., /c„, M„), r{u[, ,..,u[, U2, ..., < ) ] = [^1, «2] and similarly r{[w^, v^], [^2, t^'J, ... 

..., [w„, i;,̂ ]) = [bj , 62]. Obviously, ^l x © is superidempotent when ^l and © are, 
whence one can derive from the polynomial r a new polynomial r* such that r* 
is {n^ + ./Vary, where 7 is even and r*(j;i, ..., y„2 + j) = pri{r{y^, ..., >v), Уп^ + и ••• 
..., y,j2+j). But then, according to the superidempotency of ^t x © with respect to r*, 
[ßi, ^2] and [bi, 62]? we have two sequences of elements and a polynomial r* 
over 2̂1 X Î© such that (i) and (ii) hold for every even m > n^ — 2 and thus (Jßi, a2^, 
[bi, b2]>G(Ti X T2) v^xß(S'i X 52). This completes the proof. 

A join-semilattice S = (5, v ) is called down directed, if for any two elements 
a, b e S there is a common lower bound с of a and b in S. An up directed meet-
semilattice is defined dually. A quasilattice Q = (Q, v , л ) is a structure, where v 
and л are commutative, associative and idempotent (see Plonka [4]), i.e. £l is 
a join-semilattice with respect to v and a meet-semilattice with respect to л . Q is 
a lattice if and only if the absorption laws hold in Q. €l is down directed, if it is down 
directed as a join-semilattice, and up directed, if it is up directed as a meet-semilattice. 
Obviously, down directed join-semilattices and quasilattices as well as up directed 
meet-semilattices and quasilattices are superidempotent. 

Theorem 2. Let ^€ be one of the following classes of algebras: 

(i) the class of all lattices; 
(ii) the class of all down directed join-semilattices; 

(iii) the class of all up directed meet-semilattices: 
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(iv) the class of all down directed quasilattlces; 
(v) the class of all up directed quasilattices. 

Then (1) is true for each %^e'^ and for every T^.S^e ЬТ{Щ, Гз, ^2 e LT(93). 

Proof. We have to show that when ^ e ^ , Z S e ЬТ{Щ and U,VGA, then 
{u, v} E T V ̂  S if and only if there exists an even positiev integer N such that for 
every even integer n > N there are elements м^,..., w„ and v^, ,.,,v„ and an n-ary 
polynomial p over Ш such that (i) and (ii) of Theorem 1 hold. After proving this the 
assertion of the theorem follows from Theorem 1. We shall present the proof only 
for lattices; the proofs for (ii) —(v) are analogous and hence we omit them. 

As proved in [1, Thm. 2], <w, v} e T v^S if and only if there is a polynomial 
P*(.Vi, .••, Уш) ^^^ elements м*,..., w* and i;*, ..., y* such that <i/f, i;f> e Г or 
{uf, vfy e iS, z = 1, .... m, p*(wt? •••» w*) — и and p*(i^i,..., v^) = v. Thus if the 
conditions (i) and (ii) of Theorem 1 hold, then <w, t;> e T v д S. So it remains to show 
the converse and we shall do it by modifying the polynomial p*(yi, ..., Ут) and the 
sequences м*,..., w* and f*,..., i;* in a suitable manner. 

Let us denote w* л . . . л м* л i;f л ... л f* by «*. Trivially, <a*, a*> G Г, S, 
t/f V fl* = uf and î;f V a* = vf for each i, / = 1, ..., m. If <w*, г;*> e S, we put 
Ml = w* and i;i = i;*, and if <w*, i;*> ^ S, we put u^ = v^ = a*, «2 = ^î and 
f. 2 = y*; clearly then <М2? ̂ 2> ^ ^- Assume that <w*, Ü*> e iS, whence MJ = w* 
and ^1 = V*. If now <W2, t̂ 2> ^ '̂ ? we put 1/2 = ^2 and i;2 = f*, and if {w*? ^2) Ф T, 
then we put M2 = ^2 — ̂ *- l̂ ^ that case <М2, i^i) ^ Tand because then {м*? ^1) ^ »̂^ 
we put U2 ~ M3 and v^ = v^. So from м*,..., w*, from t;f, ..., t̂ * and from a* we 
can easily construct two new sequences Wj, ..., W2/c and v^, ..., V2k such that {w ,̂ г;̂ > e 
G Tfor even and <м ,̂ г;̂ > e S for odd values of z, i = 1, . . . , 2/c. Assume that <w*, i;*> ^ 
^ S, and so 1/1 = ^1 = «*, ^2 = wt and ^2 = v^l. Then we replace j ^ ^ in the poly­
nomial p*(ji , ..., Уш) by the expression Xi v X2 and obtain a new polynomial 
p'{xi, X2, У2^ -"^ Ут)- After performing all similar necessary modifications in the 
polynomial p* we have a new one: p{xi, ..., X2k)» Because wf v a* = uf and 
i;f V a* = i;f, p(wi, ..., U2k) = и and р{р^, ..., i;2fc) = y. Now we may put N = 
== 2/c — 2 and if n > N, we put i/̂  == i?,- = a* for i = 2k + 1 , . . . , и, and moreover 
17(xi,..., x„) = p{x 

1? •••5^2fe) V ^2fc+i V .. . V x„. In this case the conditions (i) 
and (ii) of Theorem 1 also hold, and the required result follows from [1, Thm. 2]. 

It is proved in [2] that the identity (1) implies a similar identity for an arbitrary 
number of tolerances on direct factors, i.e. 
(2) Ул.в{Ту X S, I 7 e Г} = V^{^y | 7 e Г} x y,{S, \уеГ} 
( г is an arbitrary index set) in the class of all distributive lattices with a least and 
a greatest element as well as in the class of all monoids with a unit element. In the 
following we extend this result. The proof follows from that of [2, Thm. 2], where 
the unit element is substituted by a lower bound (by an upper bound) of the elements 
under consideration and the operation о by v (by л ) . Hence the propf is omitted. 
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Theorem 3. Let ̂ é' be one of the classes (i) —(v) of algebras in Theorem 2. Then (2) 
15 valid for each pair ^ , 93 e ^ and for every Ту e ЬТ{Щ S^ e ШЩ, where Г 
is an arbitrary index set. 

2. DIRECT DECOMPOSABILITY 

Theorem 5 of [2] can be generalized in the following way: 

Theorem 4. Let % and 33 be two algebras of the same type satisfying (2). Then 
the following conditions are equivalent: 

(1) ^l X S has directly decomposable tolerances; 

(2) <a, ЬУеТ implies T^{a^, b^) x Tß{a2, b2) Ç T for each Те ТТ{Ш). 

Proof. (1)=>(2). The equality T^^Ja.b) = T^ x T2 evidently implies that 
Тл{^и bi) Ç= Г1, Тв{а2, Ьз) ̂  T2, and thus <a, b} e T implies that Tj^a^, b j x 
X Tß{a2, Ь^) ^T,xT2^T 

(2) => (1). Let 

Ti = {<ai, bi>| there exist ^2, ^2 of © such that 

<[ai, «2], [bi, 62]) e r ) and 

T2 = {<«2* ^2)! there exist a^, b^ of ^l such that 

i[a,, «2], [bi, b2]> e T} . 

By Theorem 14 in [1], T, = V ^ [ ^ > i , b,) \ {a, b} e Т} and T2 = УБ{ТВ(^2 , ^2) 
' <a, b> e Г}. Then it follows from (2) that Tj x T2 =« (Ул{'^л(<^1. ^i) 

(a, by e T}) X (VB{7^B(^2, b2) | <a, b> e Г}) ç У л х в { Г > 1 , Ь^) x Т^(а2, ^2) 
<a, Ь> G T} ^ T. The converse inclusion is evident. Because Т^ e ЬГ(^ ) and 

Т2 e LT(33), (1) is proved. 
Next we shall prove two lemmas, by means of which we can prove the second result 

from the introduction. 

Lemma 1. Let ^( = (A, F) be an algebra and a, b e A. <x, ĵ > e T^(a, b) if and 
only if there exists a binary algebraic function cp over % such that x = (p{a, b) 
and y = (p(b, a). 

Proof. Clearly the set of all pairs <x, y} for all binary algebraic functions cp from 
the theorem over ЭД constitute a reflexive and symmetric binary relation T having the 
Substitution Property and collapsing <а, b}, i.e. Tj^a, b) ^ T The converse inclusion 
is evident. 

Lemma 2. Let ̂  and Ж be two lattices. Then Tj^{a^, b^) x Tß{a2, b2) ^ Т^хв{^^ Щ 
for every pair <(a, b> of elements 0/ ^ x 93. 
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Proof. Let <x, y} 6 Т^{а^, b^) x Тв{а2, ^2). Then {x^, y^} e Tj^a^, b^), 
<̂ 2> У2У ^ Tß[a2, b2) and, according to Lemma 1, there exist (2 + n)-ary and 
(2 + m)-ary polynomials p and q such that x^ = p{^i, b^, c^, ..., c„), yi == 
= jp(bi,ai, Ci,..., c„), X2 = q{a2,b2,d^,...,d^) and у 2 = ^(^2, «2, ^ i , <^2.--.,^т)-Let 
s = max (m, /1) and let us put ĉ  = ĉ j and dj = d^^ for i = n,..., s and7 = m, . . . , s. 
Now we can construct a (4 + 5)-ary polynomial r as follows: r(x, y, k^,..., k^, 
^u ^2) = (̂ 1 л /)(x, y, /ci, ..., k,)) V (̂ 2̂ л g(x, y, /ci, ..., /c,)). But then p(x, y, Ci, . . . 
..., c„) = r(x, 3;, Ci,.. . , c„ /î, ö̂ ) and q{x, y, d^,..., d^) = r{x, y, J^,.. . , d,, g, h), where 
h = X V y V Ci V ,.. V c„ V dl v ... v d^ and g = x A y A c^ A ... A c„ A 

A d^ A ... A d^. Further, <x, y} = <[xi, X2], [j^i, з;2]> = <[К'^ь ^ i . ^1. ••• 
..., c„ h, g\ r{a2, b2, ^ 1 , ..., d,, g, h)\ [r(bi, a^, c^, ..., c„ /?, g), r(b2, ^2. ^i» ••• 
..., d,, g, /i)]> - <r(a, b, [c^, ^/J, ..., [c„ d J , [/i, Ö^], [Ö ,̂ /i]), r(a, b, [c^, J j , . . . 
..., [c„ ^ J , [/ï, 6 ]̂, \g, /i])> = <()9(a, b), ф(Ь, a)>, where ф(х, >̂ ) = 
= r(x, };, [ci, d^\ ..., [c„ J J , [/г, g~\, [g, h\). According to Lemma 1, <x, >;> e 
e T^^ß{a, b). This completes the proof. 

Now we can prove 

Theorem 5. The class of all lattices has directly decomposable tolerances. 

Proof. By Theorem 3, the class from the theorem satisfies the identity (2), and thus 
Theorem 4 can be used. According to Lemma 2, 2) of Theorem 4 holds, whence the 
proof is a direct consequence of Theorem 4. 
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