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BIFURCATION POINTS OF VARIATIONAL INEQUALITIES 

MILAN KUCERA, Praha 

(Received March 2, 1979) 

0. INTRODUCTION 

Let us consider a real Hubert space Я and a closed convex cone К in H with its 
vertex at the origin. The inner product and the corresponding norm in Я will be de­
noted by <•, •> and | | '[ | , respectively. In the whole paper, we shall suppose that 
A : H -> H is a linear (in general nonsymmetric) completely continuous operator 
in Я and N : IR x Я~->Я is a nonlinear completely continuous mapping satisfying 
the condition 

(N) lim —^^-^- = 0 uniformly on bounded subsets of R . 

!|vll-o ||г;|) 

We shall study the bifurcation problem for the variational inequality 

(I) veK, 

(II) <i; — ßAv + N(jLi, v), w — v} ^ 0 for all w e К , 
A pair [/ios 0] e ^ x Я is a bifurcation point of (I), (II) (with respect to the Une of 
trivial solutions {[//, 0]; jn e R}) if in every neighbourhood of [jno, 0] in R x H there 
exists [li, v] satisfying (I), (II), ||г;|| Ф 0. 

For the proof of existence of bifurcation points of (I), (II), we shall develop the 
method used in [4], [5] (cf. aiso [2], [3]) for the study of eigenvalues of the variational 
inequality 
(I) UEK, 

( I I I ) <M — /лЛи, w — w> ^ 0 for all w e К . 

We shall consider the equation with the penalty 

(b) V - piAv + N{ix, v) + eßv = 0 

with the norm condition 

(a) IMP = 7 ^ , 
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where j5 is a suitable penalty operator corresponding to К (see Section 2), e, Ô are 
real parameters. Couples of simple characteristic values ß^^\ f.i^^^ (O < /г̂ ^̂  < /x̂ ^̂ ) 
of A. having eigenvectors u^^\ u^^^ in the interior of X (with -u^^\ -u^^^ ф K) will 
be studied. The main idea is to prove that for an arbitrary small ^ > 0 there exists 
a closed connected set C^ of triplets \_fi, v, e] e R x H x R satisfying (a), (b) and 
containing [ß^^\ 0, 0], whose first component /i lies in {fi^^\ jn^^^) (except for the 
point \_1л^^\ 0, 0]), the second component v lies outside of К (except for some isolated 
points) and which is unbounded in the third component г. By the Hmiting process 
г -^ -f 00 along such a branch (for ô fixed), we obtain at least one solution ß[ö), v(ô) 
of (I), (II) with ß{o) E {fi^''\ fi^^^\ \\v{ö)\\^ = ô, v{ô) lying on the boundary of K. 
The hmit points of fi(ô) for ^ -^ 0 (which are bifurcation points of (I), (II)) lie in {ß^^\ 
fi^^^) again. In this way, the existence of at least one bifurcation point [/(Q, 0] of (I), 
(II) with /̂ 0 G {fi^^\ fi^^^) is proved under certain assumptions. The obtained bifur­
cating solutions /x(^), v(ô) are not simultaneously solutions of the equation 

(E) V - fiAv + N{ii, i;) = 0 . 

The existence of the branches C / will be proved on the basis of a global bifurcation 
result of E. N. Dancer [ l ] (Section 4) by using some special properties of the equation 
with the penalty studied in Section 3. The main results are formulated in Theorems 
2.1, 2.2, 2.3 and the main idea of the proof (which is rather comphcated in details) 
is explained after Theorem 2.3. 

Analogously as in [3], [4] for the problem (I), (HL), we shall consider simple 
characteristic values /x^^\ /î ^^ of A only. It was shown in [5] that the existence of 
characteristic values of (I), (II) lying between multiple characteristic values of A 
can be obtained by aproximating A by operators for which ii^^\ }л^^^ are simple. But 
the situation is more comphcated if we want to obtain bifurcation points of (I), (II) 
and it is not clear at the first sight if this approximation method can be used. 

Let us recall that E. Miersemann [7], [8] has investigated a similar problem 
proving the existence of n bifurcation points of a variational inequahty, where n is 
a finite number determined by the character of К and the characteristic values of A. 
Its method is based on a sup-min principle and it is in a certain sense more general 
than the present one. (For example, the multiplicities of characteristic values of A 
do not play any role.) On the other hand, using the present topological method, 
we can consider the general non-potential case. Particularly, operator A can be non-
symmetric. (In [2], [3], [4], symmetric operators A were studied, but this was un­
necessary at least in the case of simple eigenvalues of A.) Moreover, under certain 
assumptions the present theory gives an infinite sequence of characteristic values 
of (I), (IIL) (see [3], [4], [5]) and bifurcation points of (I), (II) with the corresponding 
eigenvectors and bifurcating solutions, which are not simultaneously eigenvectors 
of A and solutions of (E). 

A result concerning the existence of an infinite sequence of eigenvalues of a varia­
tional inequality was proved also in [6], but it is in a certain sense formal with the 
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exception of the case when К is a half space. Further papers which are in some 
connection with the bifurcation problem for variational inequahties were mentioned 
in [4]. 

1. NOTATION. CLASSIFICATION OF CHARACTERISTIC 
VALUES AND BIFURCATION POINTS 

Let Я, K, A be the same as in Introduction. We shall denote by дК and K^ the 
boundary and the interior of K, respectively, and suppose that K^ Ф 0. The strong 
convergence and the weak convergence will be denoted by -^ and -^, respectively. 
The set of all real characteristic values of the operator A and of the variational ine­
quality (I), (IIL) will be denoted by r^ and Гу, respectively, i.e. 

^A — {l^^ ^l ^ "" A*̂ ^ ~ Ö for some ue H, \\u\\ ф 0} , 

Гу = {fie R;{î), ( IIL) are fulfilled for some ueH, \\u\\ Ф 0} . 

Further, denote by Ej^fx) and Ey{ij) the set of all eigenvectors of A and of (I), (IIL), 
respectively, corresponding to fi. That means Еу(1л) = {иеН; \\u\\ Ф 0, (I), ( IIL) 
is fulfilled}. Set E^ = [J E^{ß), Ey = [J Ey{ß\ 

цегл Мегрл 

Definition 1.1. We shall write 

fi e r^^i if /I e r^ and E^{fi) n X^ Ф 0 ; 

fi e r^^b if /̂  e r^ \ r ,̂,- and £^(/i) n Ж Ф 0 ; 

ß G Гд g if fier^ and Ej^fi) n К =^ 0 ; 

fi € ryj, if fxevy and Ey{p) с дК, 

We shall say that the elements of r^ ,-, r^ ,̂ and r^ ^ are the interior characteristic 
values, boundary characteristic values and external characteristic values, respective­
ly, of A. The elements of r^^, will be called the boundary characteristic values 
0/(1), (IIL). 

R e m a r k l.L The basic properties of the sets r^j, r^j,, r^ Ĵ ^У,Ь ^^^ ^^^ relations 
between them are explained in [4, Remark 1.2]. (Its assertion holds also for non-
symmetric operators.) Let us remember only that fie r^j if and only if fie Гу with 
Ey{fi) n X^ Ф 0. This follows from the fact that и e K^ is a solution of (I), (IIL) 
if and only if w — fiAu = 0. Hence, we can also speak about interior characteristic 
values of (I), (IIL) but they coincide with interior characteristic values of A (cf. 
Remark 1.4). 

The following lemma is a modification of Lemma 1.1 from [4] which was proved 
for symmetric operators only. 

Lemma 1.1. If fie r^^j, then Ey(fi) = E^(fi) n K, 
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Proof. Let Wi G Ey(jLi) n дК be arbitrary. It is sufficient to show that м̂  e Ej^jn) 
(see Remark 1.1). There exists u* e E^*[fi) n K^ and we have 

<Wi — juAui, UQ} = <Wo — fiA'^UQ, Wi ) = 0 . 

If MI — fiAui Ф 0, then there exists z e H such that 

<Mi — JÂAU^, Z> < 0 and WQ + z еК , i.e. 

<Mi — fxAui, w - - Mi> < 0 for W^UJ^+UQ+ZGK 

and this contradicts to the assumption u^ e Еу(ц). Hence, u^ e Ej^fi). 

R e m a r k 1.2. If [JUQ? 0] is a bifurcation point of (E) then JJLQ e r^. Moreover, if 
/i„, y„ satisfy (E), /i„ -> ^0. \Ы\ -^ 0, i;„/||t;„|| -- щ, then i;„/||i;„|| -> MQ e £^(//o)- This 
is well-known and easy to see. Analogously, if [/IQ, O] is a bifurcation point of (I), (II) 
then /xo € Гу\ if/г„, v^ satisfy (I), (II), ji„ -> /io, |i^„|| -^ 0, t;„/||i;„|| -- MQ, then t^„/||t;„|| -> 
-> Mo e Ev{ßo)- Let us prove this assertion. Setting u^ = v„l\\v„\\, (II) can be written as 

(1.1) /u„ - fi„Au„ + ^ f e ^ , w - u„ \ è 0 for all w € К . 
\ |P"i / 

We have v„€ К by (I) and therefore also u„e К and UQSK (a. closed convex set is 
weakly closed). Hence, (1.1) implies 

\Ы\ I 

Ш I 
Using the complete continuity of A, the assumption (N) and w„ -^ MQ, we obtain 
from here 

0 ^ lim <w„, Wo> - Иш <M„, w„> = ||wo||^ - Hm Цм^р . 

Thus, w„ -^ Wo and ||wo|| = 1. Passing to the limit for n -> +00 in ( l . l ) (using (N) 
again) we obtain (IIL) for ji = JIQ, и = UQ-

R e m a r k 1.3. Analogously as in the case of equations, a characteristic value of (l), 
( I IL) iĴ ĉ d not be a bifurcation point of (I), (II). 

R e m a r k 1.4. If veK^, then v satisfies (I), (II) (with a fixed fi) if and only if it 
satisfies (E). Of course, ifvedK fulfils (E), then v also satisfies (I), (II), but a solution 
of (I), (II) lying in дК need not satisfy (E). 

R e m a r k 1.5. It follows from Remark 1.4 that [/̂ o, 0] is a bifurcation point of (I), 
(II) with the corresponding solutions /i„, v^ satisfying 

(ib) v„eK\ fin-^fio, Ы-^О 
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if and only if [JUQ, 0] is a bifurcation point of (E) (with the same solutions //„, f„). 
We can say that it is an interior bifurcation point o/(E) and of (I), (II). These bifur­
cations are not interesting from the point of view of variational inequalities. 

R e m a r k 1.6. Now, let us consider that 

1there are solutions ji„, r„ of (I), (II) with v^ e дК, \\v,^\\ -> 0, ji^ -^ ßg, 
there is no solution /i, v of (I), (II) with |/i — ;Uo| < (5, ||Ü|| < Ô, V E K^ 
(for some ô > 0). 

In this case we can say that [̂Wo, 0] is a boundary bifurcation point of (I), (II). 
It can be simultaneously a boundary bifurcation point o/(E) (i.e. there exist solutions 
/i„, v„ satisfying simultaneously (E) and (bby)) or an external bifurcation point 
of (E) (i.e. a bifurcation point of (E) with solutions lying outside of К only near 
[/̂ Oî ö])- ^ f course, [/̂ 0? 0] need not be a bifurcation point of (E). In the case of an 
interior or boundary bifurcation point of (E) we obtain ^Q E r^j u r^ д, (see Remark 
1.2). Hence, if we know that }Лд ф r^ j u Гд „̂ then \_fiQ, 0] is either an external bifurca­
tion point of (E) or it is not a bifurcation point of (E); in both cases, there is no 
solution of (E) near [/(Q, O] which is simultaneously a solution of (I), (ll). This situa­
tion will be our main point of interest. 

R e m a r k 1.7. We shall say that /i e r^ is simple if its algebraic multiplicity is one. 
00 

(The algebraic multiplicity is the dimension of U Ker (/ — ßAy, where Ker В 
/с = 1 

denotes the null-space of B.) If /г e r^ is simple, then dim £^(/i) = dim £^*(/z) = 1 
(Л* denotes the operator adjoint to A) and <(w, w*> Ф 0 for и e E^[fi), w* e £^*(/i), 
||i/|| Ф О Ф ||w*|| (see [11]). 

. 2. BOUNDARY BIFURCATION POINTS OF VARIATIONAL 
INEQUALITIES AND BRANCHES OF SOLUTIONS 

OF THE EQUATION WITH PENALTY 

In the following, we shall assume that the closed convex cone К is such that there 
exists a nonhnear completely continuous operator ß : H -> H with the following 
properties: 

(P) ßu = 0 if and only if w G X ; {ßu, и} > 0 for all ифК (i.e. ß is the penalty 
operator corresponding to K); 

( H ) ß{tu) = tßu for all t > 0, и E H (i.e. ß is positive homogeneous); 
(M) (^ßu — ßv, и ~ v} ^ 0 for all u.veH (i.e. ß is monotone); 
(ß, К) if и E К ^ V ф К, then ф , и} < 0. 

R e m a r k 2.1. The assumptions (Р), (Н), (M) were used also in [4], (ß, К) is a sHght 
modification of (ß, K^) from [4]. In [4], still further assumptions (CC), (SC) were 
considered, but it is explained in [5] that they were useless. Examples of penalty 
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Operators satisfying our assumptions were given in [4], [5] and will be discussed 
in Section 5. 

R e m a r k 2.2. If ft e r^j n rj^*j is simple, then there exist unique и e Ej^ji) n (—К), 
и"" EEJ^*{}X) n (~iC) with ||M|| = ||w*|| = 1 and we have (u^u"^} Ф 0 (see Remark 
1.7). In the sequel, we shall consider couples of simple characteristic values ß^^\ pS^^ e 

^ ^A,i ^ ^A*,i such that 

(U, U*) sign <zî >̂, uty = sign iu^'\ uty 

for u^^-^EEj/J^)n{-K), u^eE^.{fi'^^)n{-K) (j - 0, 1). 

Of course, in the case of a symmetric operator Ä we have u^^'^ = uj and (U, U*) 
is automatically fulfilled for each couple /л^^\ ц^^^ e r^ i n r^* -, 

Theorem 2.1. Let ß^^\ fi^^- e r^j n r̂ *̂ ^ be simple and let (U, U*) be fulfilled. 
Suppose that (N) is fulfilled and there exists a completely continuous operator ß 
satisfying (P), (H), (M), (ß, К). Then there exists a bifurcation point [/x , O] of 
(I),(II)wz:r/z/i^e(/i<4/.<i)). 

R e m a r k 2.3. If there is a bifurcation point [fio, 0] of (E) with jj.^ e {ILI^^\ /^^) and 
with the corresponding solutions jn^, v„ of (E), v„eK, \\v„\\ -^ 0, ji„ -> fi^, then the 
assertion of Theorem 2.1 is trivial (see Remark 1.4). If there is no such a bifurcation 
point of (E), then 

(2.1) for each fi e (/x^°\ jn^^^) n r^ there exists ^ > 0 such that there is no solution /л, v 
of (E) with |/i ~ fi\ < Ô, 0 < \\v\\ < Ô, 

In this case the assertion of Theorem 2.1 follows from Theorems 2.2, 2.3 formulated 
below. Moreover, Theorems 2.2, 2.3, describe more precisely the character of the 
bifurcation point under the consideration and explain how it can be obtained from the 
branch of the solutions of the equation with the penalty. Particularly, it is given the 
existence of a boundary bifurcation point of (I), (II) (in the sense of Remark 1.6) 
which is neither a boundary nor an interior bifurcation point of (E) (Remark 1.5), 
because only external bifurcation points of (E) can He in {fi^^\ fi^^^) under the as­
sumption (2.1). Let us remark that (2.1) is ensured for example if ju(^^\ fi^^^) n 

Definition 2.1. For each (5 > 0 fixed we shall denote by Q the closure [in R x H x 
X R) of the set of all triplets [/x, v, в] e R x H x IR satisfying the conditions s Ф 0 
and 

(a) • № = 7 ^ . 
1 + £ 

(b) Î; - fiÄv + N{ii, v) -h eßv = 0. 

R e m a r k 2.4. The condition (a) cannot be fulfilled with е е ( - 1 , 0 ) . It is clear 
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from here that if Q о is an arbitrary connected subset of Q containing a point of the 
type [//, 0, 0], then e ^ 0 for all [/i, v, s] e Q o-

Theorem 2.2. Let the assumptions of Theorem 2.1 and (2Л) from Remark 2.3 be 
fulfilled with <м -̂̂ \ uj} > 0 in the assumption (U, U*). Then for each ô e (0, ^o) 
(with some ÔQ > 0 fixed) there exists an unbounded closed connected subset C^Q 
of CQ containing [/i^°\ 0, 0] such that the following implications are true for all 

(c) if [̂ a, V, г] ф [Д, О, 0] for all ß e r^, then v фК; 

(d) if [fi, V, e] Ф [AI^^>, 0, 0], then ß e {ii^'\ /î ^>). 

U [ßn^ ^ю e j ^ Q t o . fin -^ + 0 0 . ßn -^ ß(^\ ^n - " K ^ ) , * ) ^^^W î̂ n -^ 4 ^ ) . /^(<5)e 

6 (//̂ ^>, /i<^>), \\v{ô)f = Ö, v{ô) e ÔK, fi{ô), v{ô) satisfy (l), (II) and do not satisfy (E). 
The limit points of n{ô)for (5 -> 0 lie in (ii^^\ /л^^^) n Гу^,. 

Theorem 2.3. Let the assumptions of Theorem 2.1 and (2.1) from Remark 2.3 
be fulfilled with (^u^^\ w*> < 0 in the assumption (U, U*). Then for each ô e (0, д^У 
{with some ÔQ > 0 fixed) there exists a subset C^]Q of Q with the same properties 
as in Theorem 2.2 but with (d) replaced by 

(di) if [iu, Î;, e] Ф [/i<i>, 0, 0] , then /i e (/ .^^/^^) , 

and containing [ß^^\ 0, 0] instead of [fi^^\ 0, 0]. 

P r o o f of T h e o r e m s 2.2, 2.3 will be given in Section 4 on the basis of a global 
bifurcation result. But first, an investigation of some properties of sets of solutions 
of (b) is necessary and this is the subject of Section 3. 

The ma in ideas of the p r o o f of T h e o r e m 2.2 are the following (for the precise 
proof see Section 4). It follows from a Dancer's global bifurcation result (Theorem 
4.1) that for each ô > 0 there exist closed connected subsets C/o ^^^ Q,o ^f Q 
starting from [fi^^\ 0, 0] in the direction и^^^ф К and -и^^^еК^ n £^(/i^°^), respec­
tively, and these sets either meet each other at a point different from [ß^^\ 0, 0] or 
they are both unbounded. Our aim will be to show that the first case cannot occur 
for Ö sufficiently small. This will be done by proving that all the points from C/o 
fulfil the implications (c), (d) and that v e K^ for all [//, v, s] e Q~o with /i e 
e </г̂ >̂, /î ^>>, [̂ (̂ >, 0, 0] Ф 111, V, г] Ф [/л^'\ О, 0]. The proof of (c), (d) is based 
on the following principles: 

(i) for an arbitrary ^ > 0, the values /i are locally increasing along C/^ near д = 
= fi^^\ 8 = 0 and fi == fi^^\ 8 = 0; this is the sense of Lemma 3.2; 

(ii) for ^ > 0 sufficiently small, C^^o cannot intersect the boundary of К with e > 0 
as long as pie {jn^^\ fi^^^} (this is a consequence of the assumption (2.1)) and 

*) The existence of such a sequence follows from the fact that C^̂ o is unbounded, from 
(c), (d) and Remark 2.4. 
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simultaneously Q^o cannot intersect the Hnes /i == fx^^\ ß = fi^^^ as long ^^юфК 
(this will follow from Lemma 3.1). 

When the existence of an unbounded set C/o satisfying (c), (d) is proved, then it 
suffices to show that by the limiting procès г -> + oo along Q%, solutions of (I), (II) 
with the announced properties can be obtained. This will follow from Lemma 3.3, 
which is a modification of the usual penalty method. The solutions obtained will he 
on дК and this together with the assumption that ii^^\ fi^'^^ 6 r^ . are simple and the 
implication (d) will ensure that 1л{о) e {fi^^\ fi^^^) for ô sufficiently small and that the 
hmit points of fi{ô) (ô -> 0) are in {i^^^\ ß^^^). 

The main ideas of the p r o o f of T h e o r e m 2.3 are the same as that of Theorem 2.2, 
but /X are locally decreasing along Q near fx = ß^^\ 8 = 0 and ß ~ ß^^\ e = 0 and 
this is the reason for the use of a branch C/o starting from l^ß^^\ 0, 0] instead of 
^ ^ ^ 0 , 0 ] . 

R e m a r k 2.5. The basic principle of the proof of Theorems 2.2, 2.3 is similar to 
that of Theorem 2.3 in [4]. However, in [4] the case N ~ 0 was considered and the 
operators in the penalty in the equation (b) were homogeneous. This made it possible 
to work with a more agreeable norm condition (a). The nonhnear term N forces us to 
consider the branches of solutions of (b) containing small v only, because the bran­
ches containing great v need not have properties necessary for our pourpose (implica­
tions (c), (d)). Moreover, it was sufficient to have a unique branch of solutions of 
(b) in [4] for obtaining an eigenvalue and eigenvector of (I), ( l l j , while in the present 
situation we need to obtain a continuum Q о (^ ^ (̂ ^ ^o)) of suitable branches for 
obtaining a system of bifurcating solutions. Of course. Theorems 2.1 — 2.3 from 
[4] can be obtained from the present Theorems 2.1 — 2.3 by choosing N ~ 0 and by 
a suitable transformation between the branches S and C. In this case, ^ > 0 can 
be chosen arbitrarily; we obtain ß^ = ß^, v(ô) = ^д . и^. 

R e m a r k 2.6. In some cases it is possible to show that there exist infinitely many 
of couples ß^^\ //^^ satisfying the assumptions of Theorem 2.2 (see Section 5). Then 
we obtain the existence of infinitely many boundary bifurcation points of (I), (II) 
which are neither interior nor boundary bifurcation points of (E) (cf. Remark 2.3). 

3. PROPERTIES OF THE EQUATION WITH PENALTY 

In this section the equation (b) (Definition 2.1) with a penalty operator of the type 
described in Section 2 will be studied. 

R e m a r k 3.1. If s,> 0, v„eH {n = 1, 2, ...) and ejv„ - - / , then (P), (ß. К) 
imply immediately 

(3.1) </, u} = lim е,ф,, и} SO for all w e iC. 
If / Ф 0, then even 

(3-2) </, w> < 0 for all ueK\ 
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Indeed, if the last assertion is not true, then there exist u^ G Я, «2 ^ ^ ° such that 
if,Ui} > 0, </, W2> = 0. Hence, </, U2 + tUi} > 0 for all t > 0, but this contra­
dicts (3.1) because U2 + tu^eK for t sufficiently small. 

R e m a r k 3.2. If 8„ > 0, u^e H, ueK (n = 1, 2, . . . ) , м„ -- w, e„j5w„ ---/, then 
(P), (ß, К) imply e//?w„, w j à 0, </, w> = lim s^ißu^, и} й 0. Particularly, 

(3.3) </, м> _̂ lim inf e/i5w„, i/„> . 

R e m a r k 3.3. It is well-known that if w„ -^ м, ^i/„ -> 0 and (M), (P) are fulfilled, 
then и еК. Indeed, for an arbitrary v e H we have 

(ßv, V ~ и} = lim {ßv - ßu„, V - и„У ^ О 

by (M). Setting V = и + tw, WQ obtain 

{ß{u + tw\ w> ^ 0 for all weH , t > 0. 

Passing to the Hmit for ^ ~> 0 + , we obtain the last inequality for f = 0 and for all 
w E H, This is equivalent to ßu = 0, i.e. и еКЪу (P). 

Lemma 3.1. Let /^о^^л*,! <^nd let the assumptions (P), (ß, K) be fulfilled. If 
8„ > 0, v„e Я , e„ßvn -^ f with / Ф 0, then 

(3.4) и ~ fi^Au -\-f ^ 0 for all ueH. 

Proof. If (3.4) is not true, then we have 

и - IIQAU + / = 0 , 

w* — /Zo^*w* = 0 

with some w 6 Я and м* бК^ n E^*{IIQ). Using the relation <^Au, w*> = <Л*м*, w>, 
we obtain from here </, w*> = 0. This contradicts (3.2) from Remark 3.L 

Lemma 3.2. Suppose that (H), (N) are fulfilled. Let \_fi„, v„, e„] G /^ x Я x IR, 
e„ > 0, 

(b'^) Vn- ßnAVn + N{ii^, y„) + 8„jßt;„ = 0 

{n = 1, 2, . . . ) , [^„, i;„, £„] -^ [^0, 0, 0] in I? X Я X R, ix^ Ф 0, i;„/||i;J = i/„ -^ Wo-

(3.6) <t(o,w*>lim^^^^-^^^ -/io</?^o,w*> /or^ac/z W*G£^*(/ IO) , ii* + 0. 

Particularly, if (ß, К) ÏS fulfilled, /̂ 0 > Ö, Wo^^. <^о, w*> > 0 for some м* G 
G£^*(/Zo)n(~-X^), Гйеп 

(3.7) l i m ^ ^ ^ ^ ^ ^ ' > 0 ; 
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if fiQ > 0, UQ фК, (UQ, W*> < Ofor some м* e EJ^JJXQ) n {-K^), then 

(3.7') Urn ^^^^Ilü^ < 0 . 

Proof. Denote w„ = t)„/||t;„||. Then (b'") can be written as 

(b^) u„ ~ ßnAUr, + ^'-^^ + e„iSu„ = 0 . 
IP« II 

This together with the assumption (N) and the complete continuity of A, ß impHes 
that u„ -> UQ, JIQ e r^, UQ G EJ^JHQ). Further, if w* e E^*{iio), then 

(3.8) M* - Afô *w* = 0 . 

Setting Я„ = l/ju„, Яо = 1/iUo, we obtain from (b~) and (3.8) 

Replacing A„, До by //„, //Q again and using (N), we obtain (3.6). 

Lemma 3.3. (cf. [4, Lemma 2.4]). Let ц^^\ jn^^^ e r^^i n г^*^ be simple, 0 < fi^^^ < 
< /î ^̂  and let the assumptions (P), (M), (ß, К) be fulfilled. Suppose that [//„, v„, 6„] e 
e R X H X R satisfy (b"') from Lemma 3.2 and the following conditions (with 
Ô > 0 fixed): 

(a^) ||t;„||̂  = - ^ ? ^ (n = l ,2 , . . . ) , e „ - > + a ) ; 

1 + e„ 

( O t;„^X« (n = l ,2 , . . . ) ; 

(d^) n„e{n^'\fi^'^) (n = l ,2 , . . . ) . 
/ / ju„ -^ /i((5), t;„ -^ и(<5) for some fjL{ô) e R, v{ö) e H, then v„ -> v{ô), ||t^(^)p = ô, 
/i((5), v{ô) satisfy (I), (II) and v{ô) e дК, \\v{ô)\\^ = ô.Ifô < ÔQ (ÔQ sufficiently small), 
thenii{ô)e{fi^''\fi<'^). 

Proof. It follows from (a~), (b~) that {snßv„] is bounded and therefore ßv„ -^ 0. 
Hence, v(ô) e дК by Remark 3.3 and (c~). Multiplying (b~) by v„ and v{ô), we obtain 

(3.9) <г;„, v„} - nXÄv„, v„y + <N{fx„, v„), v^) + 8„ф„, v„} = 0 , 

(3.10) {v„, v{ô)y ~ fi„iÄv„, v{ô)} + <iV(̂ .„, V,), v{ô)y + г„ф,, v{ô)y = О . 

Suppose that N{ß„, v„) -> h, Snß^n "̂  /• (This is true for a subsequence at least because 
N is completely continuous and {e„ßv„} is bounded.) We obtain from (3.9), (3.10) 
and (a'") that 

lim 8„фп, v„y ̂  -Ô' + n{ô) <Av{ô), v{ô)y ^ </i, v{ô)y , 

</, v{ô)y = - \\v{ô)l' + ii{ô) (A v{ô), v{ô)y -- </z, v{ô)y . 
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Using (З.З) from Remark 3.2, we obtain from here 

\\v{ô)\\' - lim \\v„l' = \\v{S)\\' - ^ ^ lim 8„ф„, v„y - </, v(ô)y ^ 0 . 

Hence v^ -^ v{ô), \\v{ô)\\ ^ lim ||Î;^,||, that means v„ -> v(ô), \\v(S)\\^ = ô. (More pre­
cisely, this is proved for a subsequence; but if this were not true for the whole sequence 
{v„}, then by the same procedure we could obtain another subsequence converging 
to v{ô) Ф V, which is not possible becuse v„ -^ Î^(^)-) Using this fact and (b'"), (P), (M), 
we obtain for an arbitrary w еК 

« ( 5 ) - ß{o) A v{ô) + N{ß{ol v{ô)), w ~ v{ô)y = 

= lim i^n - l^nAv^ + iV(ju„, t?„), w - i;„> = 

= Hm ß^ißw - ßv„, w - v„y ^ 0 , 

i.e. n(ô), v(ô) satisfy (II). It is sufficient to show that neither /г(^) = fi^^^ nor ß(^5) = 
= }л^^^ can occur for ô sufficiently small. If /л{о„) = ix^^\ 6^ -> 0, then we can sup­
pose K^n)/!^^«)!! -^ и e Ey^ii^^^) by Remark 1.2. Lemma 1.1 implies w e £^(/г^^^). 
But v(ô„)eôK, i.e. иедК and this contradicts the assumption that ^̂ ^̂  e r^ ^ is 
simple. Analogously for /л^^\ 

R e m a r k 3.4. In the sequel, the following modification of the situation from 
Lemma 3.3 will occur. We shall have [//„, v„, e„']G R x H x R satisfying (b'") from 
Lemma 3.2, [|Î;„|| > 0, s„ > 0 (n = 1, 2 , . . . ) , ||i;„|| -> 0, /i„ -> ß. We shall show that 
if w„ = ^WII^J -" ^, ^nß^n -^f, then w„ -> u, sju„ -^ f and 

(3.11) и - fiAu + / = 0 . 

First, (b"') can be written as (b~) (the proof of Lemma 3.2) again under the assump­
tion (H), and (3.11) follows by using the Hmiting process and (N). If {e„} is bounded, 
then it follows from (b~), (N) and the complete continuity of A, ß that {u„] contains 
a strongly convergent subsequence. This together with the assumption u^-^ и 
implies that u„ -^ u. (In the opposite case, we would obtain by an analogous con­
sideration another subsequence converging to UQ Ф W, which is impossible.) Now, 
it folows from (b"~) that also {e„j8w„} is strongly convergent. Further, let {e,,} be un­
bounded. Then there is a subsequence {г̂ t̂ } such that Sj,^ -» + oo. We obtain ßu/^^ -> 0 
because {s„ßu„} is bounded by (b~). Thus, и еКЪу Remark 3.3. The identity (b") 
implies 

<i/„, u„y - iin(Au„, ЫпУ + ( У"'„^"^, ^ Л -Ь s^ißu^, w„> = О , 

<w„, иУ - liMun. иУ + / ^ i r - \ t/) + e / K , uy = 0 

which together with Remark 3.2 implies that 

luP - lim ilwJP = lim s„ißu„, w„> - </; w> ^ 0 . 
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We have u„ -^ w, ||м|| ^ lim [|м„||, i.e. u„ ~> м, ||м|| = 1. Now, it follows from (b ) 
and (N) that {e„jSw„} is strongly convergent. 

4. USING DANCER'S GLOBAL BIFURCATION RESULT 

The aim of this section is to prove Theorems 2.2, 2.3. First, we shall explain 
a result of E. N. Dancer, which will be the basis of our considerations. 

Let Z be a real Hilbert space with an inner product (*, •) and with the correspon­
ding norm lll'JI!, L:X -^ X a linear completely continuous operator in X. Let G 
be a nonhnear completely continuous mapping ofRxX into X such that 

(N') lim ^ ' ' = 0 uniformly on bounded subsets of R . 

Ill^lll-o |||x|l| 

We shall study the bifurcation problem for the equation 

(B) X- PL L{x) + G(/i, x) = 0 , 
where /z is a real parameter. This is precisely the same problem as (E) in Section 1, 
but for reasons which will be seen later we consider a new space and new operators. 
In the sequel, X, L and G will be determined by H, A,N and ß from the previous 
sections. 

Denote by С the closure in (R x X) of the set of all nontrivial solutions of (B), i.e. 
С = {[//, x]eR X H; \\\x\\\ Ф 0, (B) is fulfilled} . 

Hence, a point [/i, 0] is a bifurcation point of (B) if and only if [/z, 0] e С Analogously 
as in Remark L2, 

X 
(4.1) if [/i„, X „ ] G C , fi„-^fi, | | |x„ | | | ->0, ттрттт-"^» 

then ßevj^, xe Е^(А) , " • -^ x . 
iFnlll 

Now, let JWQ e TL be simple (see Remark L7). Then [/io, 0] is a bifurcation point 
of (B) and the component CQ of С containing [^IQ, 0] is non-empty (see [10], [1]). 
Moreover, CQ "consists of two branches CQ and Co" starting from [//Q, 0] in the 
direction XQ and -XQ, respectively", where XQ e £^L(MO)- This result will be essential 
for us and we shall formulate it precisely. 

Denote by x* an eigenvector of the adjoint operator L* corresponding to Цо 
(i.e. XQ G £̂ •̂(̂ Uo)) and suppose that it is normed so that (x*, XQ) = 1 (see Remark 
1.7). Choose f] e (0,1) and set 

-^. = - { ^ . ^] e ^ X Z ; |(x, x*)| > ?;|||x|||} , 

< = {[fi, x] eK^; (x, X*) > 0} , К; = K^ = К,\К:^ , 
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There exists R > 0 such that 

C\{[iUo,0]}nB^(/Xo,0)c:K^, 

where J5K(/̂ O. O) = {[fi,x]eR x X; \fi - ßo\ + \\\x\\\ ^ Я} (for the proof see [10, 
Lemma 1.24]). For each гб(0, R} denote by D,"̂  and D~ the components of the 
sets {[MO, 0]} u (C n B,(/io, 0) n K^̂ ) and {[^o, 0]} u (C n ^ .̂(А^О, 0) n К; ) , respec­
tively, containing [̂ o» Ö]. Denote by Co,̂  and C^,. the components of CQ \ D~ 
and Co \ />г̂ , respectively, containing [jUo, 0]. Set 

CQ —. \j Co,r ? Ĉo — и ^o,r • 

The definition of Cj", CQ is independent of the choice of rj e (0, 1) (see [10, Lemma 
1.24]), Co , Co are connected and Co = Co u Co (for the proof see [10], cf. [1]). 
Further, it follows from the definition of Co , CQ and [10, Lemma 1.24] that 

(4.2) if [/i„, x j 6 Co \ K^ n By{ßQ, 0) for some 7 > 0 , 

liWII 
(4.3) if [fi„, x„] e Co \ K^ n By{fio, 0) for some 7 > 0 , 

/i„->/io, | | |xJ | | -^0, then ттгЛй-^-^о-
\\ы\\ 

Theorem 4.1 (E. N. Dancer [1, Theorem 2)]. Either both CQ and CQ are unbounded 
or C^ nCo Ф {[/^0,0]}. 

Remark 4.1. In the sequel, we shall utilize the properties of the bifurcation 
branches of the equation (B) in the following special situation. Under the assumptions 
of Theorem 2.1, we shall SQt X = H x R and introduce the operators L:X -^ X 
and G^ : R X X -^ X (for each fixed ^ > 0) by 

(*) L(x) = L{V, e) = [Л1?, 0] for all x = [v,a]eX , 

Gsifi, x) = Glii, V, г) = ÏN{fi, v) + sßv, г- — ^ ||t; |n 

for all fie R , x = [v, s] eX . 

In this special case the equation (B) (for Ĝ  instead of G, ô fixed) is equivalent to the 
equations (a), (b) from Definition 2.1. Hence, for the case of the operators (*) the 
set С introduced above coincides with Ĉ  from Definition 2.1. We shall use this origi­
nal notation and write also Ĉ  o? Qto* ^0,0 instead of Co, CQ, CQ in the case under 
consideration. 

Remark 4.2. It is clear that in the case of the operators (*) from Remark 4.1 
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we have ß в r̂ ,̂ [и, s] e Ejiji) if and only if /i e r^, e = 0, w e £^(д). The multiplicities 
of ß viewed as characteristic values of L and A are equal to each other. Particularly, 
11^^^ is a simple characteristic value of L under the assumptions of Theorem 2.1. 

Remark 4.3. If [̂WQ, 0] G С in the general situation from the beginning of this 
section, then /̂ Q e Vj^ (see Remark 1.2). The characteristic values of L are isolated 
and therefore there exists r > 0 (r = dist (/XQ, r^ \ [ßo])) such that if [д, x] e C, 
0 < |/z ~ //o| < ^ then [||x||| > 0. Particularly, if ц^е r^ in the situation from 
Remark 4.1 (i.e. /̂ o e r̂ ^ by Remark 4.2) then there exists г > 0 such that г > 0, 
||i;|| > 0 for all [/X, t;, e] e Co,̂ , ^ <\ii - ^Q\ < r, Ô > 0. 

Remark 4.4. The impHcations (4.2), (4.3) can be written as follows in the situation 
of Remark 4.1: 

(4.2') if [/i„, t;„, e„] еС^^\К~ ГЛ B,{fiQ, 0) for some r > 0, ^ > 0, 

/̂ n - Mo, |lt̂ «|| - 0, then Д -> 0, - - \ - . û «>; 
. Ы Ы 

(4.3') if [/i„, v„, £„] G С̂ ,й \X^^ n Brifio^ 0) for some r > 0, ^ > 0, 

/i„ ^ Ho, Ы -> 0, then ^ -^ 0, T ^ - - tî >̂ 
\h\\ Ы 

(where ŵ ^̂  G E^(fi^^^) n (-K^) as in (U, U*) - the assumptions of Theorem 2.1 are 
considered). Particularly, if [/x„, v„, г„] G CO,^, /̂ « -^ Mo» Ц̂̂пЦ -̂  0 with i;„ ̂  K, then the 
case (4.2') must occur because - u^^^ e K^. For the case of a general point [fi, 0, 0] G 
G Су, (4.1) together with Remark 4.2 give 

(4.1') if [/i„, v„, e„] G Q, [ju„, i;„, e j -> [Д, 0, 0], - ^ --u, 
V, 

then Д G r^, Й G E^{ß), ~~- -> M. 

IP«II 
Remark 4.5. Let us consider the situation from Theorem 2.1. It follows from the 

assumptions (2.1), (P) that for each ße{fi^^\ fj,^^^) n r^ there exists a neighborhood 
U{p, 0, 0) of [Д, 0,Ö]iti R X H X R such that 

if [fi,v,e]E{U{p,0,0)\{[fi,0,0]})nCö with Ô>0, then v4K, 

Remark 4.6. Under the assumptions of Theorem 2,2, Lemma 3.2 ensures that 
for each ^ > 0 there exists a neighborhood U{ß<^\ 0, O) of [fi^^\ 0, OjinR x H x R 
such that 

if lix,v,e]€U{^i^^\0,0), fiufi^'\ ^ФК, e > 0 , then 

Indeed, in the opposite case there exist 5 > 0 and [Мп, n̂» e j G Q such that /i„ ^ /i^^\ 
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8„> о, v„фK {n = 1, 2,...), [fx„, v„, 8„] -^ [ii^^\ 0, 0]. We can suppose v„j\\v„\\ -> 
-> u^^^ фК by Remark 4.4 and we have (fi„ - pS^^)\&n й 0, which contradicts (3.7) 
from Remark 3.2. 

Lemma 4.1 (cf. [4, Lemma 2.3]). Let all the assumptions of Theorem 2.2 be ful­
filled. Then there exists ô > 0 such that if ô e (O, ̂ o) ^hen for all [̂ц̂  t;, e] e C/o 
the implications (c), (d) from Theorem 2.2 hold. 

Proof. The set C^o is non-empty by Theorem 4.1 and Remark 4.1. Denote by C^i 
the component of the set 

{[fi,v,e]GClo; f^e{fi^'\fi^'^y} 

containing [ц^^\ 0, 0]. It follows from the definition of C^Q and Remarks 4.3, 4.4 
that there exist [̂ „, v„, e„] e C^o such that [/z„, v„, s„] -^ [fi^^\ 0, 0], \\v„\\ > 0, 
^n > Ö' ^nlhnW -^ u^^^ фК, i.e. also v„фK for n sufficiently large. Lemma 3.2 (the 
relation (3.7)) together with {и^-^'\ м*> > О in the assumption (U, U*) implies 
ßn > /̂ ^̂ ^ (for n sufficiently large). That means 

(4.4) C/j contains points [/x, v, e] with юфК (for an arbitrary ô > 0) . 

Now, we shall prove that 

(C) there exists ÔQ > 0 such that (c) is valid for all [/x, v, e] e C^^^ with ô e (0, ÔQ} 
arbitrary. 

Suppose the contrary. It follows from (4.4), Remark 4.5 and from the connectedness 
of С0,1 that there exist „̂ and [^„, v„, e j e С^̂ д such that 

(4.5) ^ „ > 0 , v„EdK, /z„e</^/.(^>>, ^ „ - ^ 0 , 

[ßn. Vn, e j Ф [A 0, 0] for all fier^n <̂ ^̂ >, /î i>> (n = 1, 2, ...) • 

The inclusion [/z, 0, 0] e Q can hold only for fier^ and therefore ||i; |̂| > 0 by (4.5). 
We have ||г;„|| -> 0 by (a) and we can suppose fi„-^ fie </i^^\ fi^^^} о r^ by (4.1). 
The case fi e {ii^^\ fi^^^) is not possible by (2.1) and fi = ß^^\ fi =- ii^^^ is not possible 
with respect to the assumption that ii^^^, ß^^^ e r^^ are simple and (4.1) holds. 

Further, we shall prove that 

(D) there exists ÔQ > 0 such that (d) is vahd for all [/z, v, s} e C^^ with Ô E (O, ^O) 
arbitrary. 

Suppose the contrary. Then there exist „̂ > 0 and [/x„, i;„, e j ^ Qt,i ^^ "̂  1, 2,...) 
such that „̂ -> 0 and either 

(4.7) fi„-l^''\ |Ы|>0 
or 

(4.8) ix„ = ß'''. 
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We can suppose that (c) holds on Q„,i. Then it follows from Remark 4.6 and from 
the connectedness of Q^4 that [ju^^\ 0, 0] ф Cs„,i^ Hence, we have \\v„\\ > 0 also in 
the case (4.8). We have \\v„\\ -> 0 by (a). Denoting u^ = Î^„/||Î^„||, we can suppose 
u„ -^ M, e„ßu„ -^ f. (The boundedness of {e„ßuj^ follows from (b)). We obtain from 
(b) applied to [ju„, v„, e„] by the considerations described in Remark 3.4 that u„ -^ w, 
eju„->f and 

(4.9) и - fi^J^Äu + / = О , 

where J = О or j = 1. The case / Ф 0 is not possible by Lemma 3.1. That means 
e„ßun -^ / = 0. For the proof of (D), it is sufficient to show that и e дК, because 
in this case (4.9) will contradict the assumption that ц^^^ e r^ j are simple. Suppose 
ифК. The case e„ -> 0 is impossible because (JL£„ — /x '̂'̂ )/e„ = 0 and this contradicts 
(3.7) from Lemma 3.2. Hence, we can suppose e„ ^ BQ > 0. But then ßu^ -> 0 and this 
implies иеКЪу Remark 3.3, i.e. иедК because и„фК by (c) holding on Q^д. 
Thus, ( D ) is proved. 

For the proof of Lemma 4.1, it is sufficient to show that 

(4.10) Cli = Clo for each <5 > 0 such that (c), (d) hold for all 

Consider that C^^^ Ф C^^Q for such a number (5 > 0. We have С/д n C^^Q \ С/Д = 
= {{ц^^\ О, 0]} by (d). This together with the definition of C^Q, Cl^ implies that 
there exist [/x„, v„, г„] e С^^О^^ОЛ ^^^^ ^^^^ ^n ^ ^^^ '̂ ^n > ^^ n = 1, 2, . . . 
[/i ,̂ t;„, e„]-> [/^>, 0, 0], vJ\\v„\\'-^u^^^фK. This contradicts (3.7) from Lemma 
3.2 and the proof of Lemma 4.1 is complete. 

Lemma 4.2. Let all the assumptions of Theorem 2.2 be fulfilled. Then there 
exists ÖQ > 0 such that if 5 e (O, ^o) ^^en for all [//, r, e] e ^"o the following 
implication holds: 

(c-) if ^ < ^ 0 , 0 ] Ф ^ , г ^ , е ] ф [ / . ^ ^ \ 0 , 0 ] , fi e (fi^'\ fi^'^} , then VEK\ 

Proof. By the definition, C^Q contains the points /г, v, s with v e K^. If the asser­
tion of lemma does not hold then it follows from here, the connectedness of Q~o 
and (2.1) that there exist ^„ -)• 0 and //„, v„, e„ satisfying (4.5) or one of the conditions 
(4.7), (4.8) with v„ e K, This leads to the contradiction as in the proof of Lemma 4.1. 

P r o o f of T h e o r e m 2.2. Let ÔQ > 0 Ы such that (c), (d) and (c~) hold for all 
[jU, V, s] from C/o and from Q~o, respectively, for an arbitrary ô e (0, ÔQ} (see 
Lemmas 4.1, 4.2). Then Q'̂ o n Q ' o = {[/^^4 0, 0]} for all (5б(0, 5o> because 
(c), (d), (c") are fulfilled simultaneously only for this point. Hence, C^^Q is unbounded 
by Theorem 4.1 and Remark 4.1 for all ô e (0, ^o)- Lemma 3.3, Remark 2.4 and (21) 
ensure the properties of sequences from C^Q announced in Theorem 2.2. The limit 
points of fi{ö) lie in {1л^^\ /г̂ ^̂ ) n ryj, by (d). Lemma 1.1 and Remark 1.2. 

P r o o f o f T h e o r e m 2.3 is essentially the same as that of Theorem 2.2, but the 
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roles of [ix^^\ 0, 0] and [ß^^\ 0, 0] are commuted. We consider the branches CIQ, 
Q~o starting from [̂ u<i), 0, 0] and replace (d) by (di) in Lemmas 4.1, 4.2. In the 
proof of a modified Lemma 4.1 we use (3.7') instead fo (3.7) (Lemma 3.2), i.e. C^Q 
is locally decreasing instead of increasing in neighborhoods of [fi^^\ 0, 0], [ß^^\ 0, 0]. 
All the other considerations are the same as in the proof of Theorem 2.2. 

5. APPLICATION 

Let us denote Я = {w e Wi{{0, l>); w(0) = u(l) = 0}. This is a Hubert space 
with the inner product 

<w, t;> = u"(x)v"(x)dx . 
Jo 

Define operators Ä : H -^ H, N : IR x H -^ H by 

{ÄU, v} = u\x) v'(x) dx for all u,ve H , 
Jo 

(N(fi, u), v} = g{fi, u'(x)) v'{x) dx for all fie R , u,ve H , 

where ^ is a real continuous function on IR^- satisfying the assumption 

Цщ ._A__L-i = 0 uniformly on bounded /i-intervals . 
t-^o t 

Then A is linear, completely continuous and symmetric, N is completely continuous 
and satisfies (N). Let us consider the bifurcation problem for the variational inequahty 
(I), (II) with these operators and with the closed convex cone 

X = {w бЯ; u{x) ^ 0, /: = 1, 2, ..., n) , 

where Х|е(0, 1) {i = 1,..., и, n positive integer) are given numbers. By a special 
choice of g, we obtain a variational inequality describing the behaviour of a beam 
which is simply fixed on its ends, compressed by a force proportional to ji and sup­
ported by fixed obstacles from below at the points x̂  (see [9]). We can use the penalty 
operator Д defined by 

n 

{ßu^v} = — J]u~'(xi)v{xi) for all u,veH, 

where w~ denotes the negative part of u. This operator satisfies the assumptions of 
Theorem 2.1. The operator A has only simple characteristic values jui^ = k'^n^ with 
the corresponding eigenvectors щ{х) = sin knx {k = 1,2, ...). The assumption 
(U, U*) is automatically fulfilled because A is symmetric. Hence, Theorem 2.2 asserts 
that if /c, / are positive integers [k < I) such that 
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sign sin/cTTXi = . . . = sign sin/cTix^ Ф 0 , 

sign sin/TIXI = . . . = sign sin kx„ ФО 

(i.e. ßk^UiETj^j) and if 

for each positive integer m e (k, /) there exist f, ; such that 

sign sin mnXi = — sign sin mnXj Ф 0 

(i.e. (fij,, III) глг^^а r^^^, then there exists a bifurcation point \ßk,b 0] of (I), (II) 

with fif^i€{k^n^', fn^). The bifurcating solutions [/г, v] obtained near [ßkj, 0] will 

be such that v(xi) ^ 0 for i = 1, ..,,n and v(xj) = 0 for at least one j and will not 

satisfy (E). 

For example, if n = 2, Xj = ^, X2 = | , then we obtain the existence of an infinite 

sequence [ßj,, 0] of bifurcation points of (I), (II) with ßj^ = fi^k-dAk-i ^ ((4^ — ^У ^^» 
{4k - 1)^ TT̂ ) (cf. [4, Section 4]). 

Analogously, we could consider the cone 

К = {ueH; u{x) ^ 0 for all x e <х^, yi), i = 1, . . . , n} , 

where Xj, j , - are given numbers, 0 ^ Xi < J i < . . . < x„ < j„ ^ 1, and the penalty 
operator ß defined by 

w, V e H . 
i=l Jo 

In this case the method gives a finite number of bifurcation points of (I), (II). The 

situation is analogous as in [4, Section 4], wehre it is described and illustrated 

in more detail. (The only difference is that here we obtain bifurcation points of (I), 

(II) while in [4], the eigenvalues of (I), ( IIL) are studied.) 
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