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0. INTRODUCTION

Let us consider a real Hilbert space H and a closed convex cone K in H with its
vertex at the origin. The inner product and the corresponding norm in H will be de-
noted by (-, +> and |-, respectively. In the whole paper, we shall suppose that
A:H - H is a linear (in general nonsymmetric) completely continuous operator
in H and N: R x H — H is a nonlinear completely continuous mapping satisfying
the condition

(N) lim ]Xﬁv) = 0 uniformly on bounded subsets of R .
lvli=0 v

We shall study the bifurcation problem for the variational inequality
(1) ' vek,
(1) ' {v — pAv + N(u,v),w — vy 2 0 forall weK.

A pair [y, 0] € R x H is a bifurcation point of (I), (I) (with respect to the line of
trivial solutions {[ 1, 0]; x € R}) if in every neighbourhood of [, 0] in B x H there
exists [u, v] satisfying (I), (II), o] = 0.

For the proof of existence of bifurcation points of (I), (II), we shall develop the
method used in [4], [5] (cf. also [2], [3]) for the study of eigenvalues of the variational
inequality
4] ' uek,

(1) (u — pAu, w —u) =0 forall wek.

We shall consider the equation with the penalty

(b) v — pAv + N(u,v) + efv = 0

with the norm condition

og

a v 2 = N
@ ol = %
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where f8 is a suitable penalty operator corresponding to K (see Section 2), ¢, § are
real parameters. Couples of simple characteristic values u(®, u™ (0 < p® < p®)
of A having eigenvectors u®, u in the interior of K (with —u(®, —u™ ¢ K) will
be studied. The main idea is to prove that for an arbitrary small § > 0 there exists
a closed connected set C; of triplets 1, v, 2] € R x H x R satisfying (a), (b) and
containing [1(®, 0, 0], whose first component p lies in (4, uV) (except for the
point [x(?, 0, 0]), the second component v lies outside of K (except for some isolated
points) and which is unbounded in the third component ¢. By the limiting process
¢ = + oo along such a branch (for 6 fixed), we obtain at least one solution u(é), v(5)
of (I), (1) with pu(8)e (@, u™), [v(8)||> = 5, v(5) lying on the boundary of K.
The limit points of u(8) for 6 — 0 (which are bifurcation points of (1), (IT)) lie in (1‘?,
u) again. In this way, the existence of at least one bifurcation point [, 0] of (I),
(IT) with pg e (@, uV) is proved under certain assumptions. The obtained bifur-
cating solutions (3), v(d) are not simultaneously solutions of the equation

(E) v — pAv + N(p,v) = 0.

The existence of the branches C; will be proved on the basis of a global bifurcation
result of E. N. Dancer [1] (Section 4) by using some special properties of the equation
with the penalty studied in Section 3. The main results are formulated in Theorems
2.1, 2.2, 2.3 and the main idea of the proof (which is rather complicated in details)
is explained after Theorem 2.3.

Analogously as in [3], [4] for the problem (I), (II.), we shall consider simple
characteristic values u®, u‘™ of A only. It was shown in [5] that the existence of
characteristic values of (I), (II) lying between multiple characteristic values of A
can be obtained by aproximating 4 by operators for which u‘®, u* are simple. But
the situation is more complicated if we want to obtain bifurcation points of (I), (II)
and it is not clear at the first sight if this approximation method can be used.

Let us recall that E. Miersemann [7], [8] has investigated a similar problem
proving the existence of n bifurcation points of a variational inequality, where n is
a finite number determined by the character of K and the characteristic values of A.
Its method is based on a sup-min principle and it is in a certain sense more general
than the present one. (For example, the multiplicities of characteristic values of 4
do not play any role.) On the other hand, using the present topological method,
we can consider the general non-potential case. Particularly, operator A can be non-
symmetric. (In [2], [3], [4], symmetric operators A were studied, but this was un-
necessary at least in the case of simple eigenvalues of 4.) Moreover, under certain
assumptions the present theory gives an infinite sequence of characteristic values
of (I), (I1.) (see [ 3], [4], [5]) and bifurcation points of (I), (II) with the corresponding
eigenvectors and bifurcating solutions, which are not simultaneously eigenvectors
of A and solutions of (E).

A result concerning the existence of an infinite sequence of eigenvalues of a varia-
tional inequality was proved also in [6], but it is in a certain sense formal with the
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exception of the case when K is a halfspace. Further papers which are in some
connection with the bifurcation problem for variational inequalities were mentioned

in [4].

1. NOTATION. CLASSIFICATION OF CHARACTERISTIC
VALUES AND BIFURCATION POINTS

Let H, K, A be the same as in Introduction. We shall denote by K and K° the
boundary and the interior of K, respectively, and suppose that K° + . The strong
convergence and the weak convergence will be denoted by — and —, respectively.
The set of all real characteristic values of the operator A and of the variational ine-
quality (I), (II.) will be denoted by r, and r,, respectively, i.e.

ra={neR; u— pAu = 0 for some ueH, |ul| + 0},
ry = {pe Ry(I), (11.) are fulfilled for some u € H, |ju| + 0}.

Further, denote by E,(u) and E,(u) the set of all eigenvectors of 4 and of (I), (II.),
respectively, corresponding to u. That means Ey(u) = {ue H; |u| * 0, (I), (II.)
is fulfilled}. Set E, = U E (), Ey = U Ey(p).

nera nery

Definition 1.1. We shall write

pery; if per, and E,(u)nK°+0;
pery, if perysr,; and E (u)n 0K +0;
pery, if per, and E(u)nK=0;
pery, if per, and E,(u) < 0K.
We shall say that the elements of r, ;, r,, and r, , are the interior characteristic

values, boundary characteristic values and external characteristic values, respective-
ly, of A. The elements of r, , will be called the boundary characteristic values

of (1), (11,)-

Remark 1.1. The basic properties of the sets r, ;, 74 5, 74,0, 7'y, and the relations
between them are explained in [4, Remark 1.2]. (Its assertion holds also for non-
symmetric operators.) Let us remember only that e r4; if and only if u e r, with
Ey(u) n K° # 0. This follows from the fact that u € K° is a solution of (I), (II)
if and only if u — pAu = 0. Hence, we can also speak about interior characteristic
values of (I), (II.) but they coincide with interior characteristic values of A4 (cf.
Remark 1.4).

The following lemma is a modification of Lemma 1.1 from [4] which was proved
for symmetric operators only.

Lemma 1.1. If per,. ;, then Ey(u) = E (1) n K.
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Proof. Let u; € E (1) n 0K be arbitrary. It is sufficient to show that u, e E ,(u)
(see Remark 1.1). There exists ug € E44(1) n K° and we have

(uy — pAuy, ugy = {ug — pA*ug, u;) = 0.
If u; — pAu, % 0, then there exists z € H such that
{u; — pduy,z) <0 and ug +zeK, ie.
(uy — pAuy, w —ud <0 for w=u, +uy +zekK
and this contradicts to the assumption u, € E,(u). Hence, u, € E,(u).

Remark 1.2. If [u,, 0] is a bifurcation point of (E) then y, e r,. Moreover, if
Has U, satisfy (E), u, = po, [va]| = 0, v,/||va]] = 4o, then v,/||v,]| = uo € E4(u,). This
is well-known and easy to see. Analogously, if [, 0] is a bifurcation point of (I), (II)
then p, € ry; if ,, v, satisfy (1), (IT), u, = po> [va]] = O, v.f]|va]| = uo, then v,/|v,] —
— u, € Ey(po)- Let us prove this assertion. Setting u, = v,/||v,|, (II) can be written as

N(t, 0,)

leal

We have v, € K by (I) and therefore also u, € K and u, € K (a closed convex set is
weakly closed). Hence, (1.1) implies

<un —/,t,,Au,, + M: u0> ;0,

loa]

<u,,—,u,,Au,,+Mv—"), u,,> =0.

o]

Using the complete continuity of 4, the assumption (N) and u, — u,, we obtain
from here

(1.1) <u,, - wAu, + , W — u,,> >0 forall wekK.

0 < lim <u, uoy — lim <upu) = |Juo* = lim |u,|?.
n—+w n—+ o

n—+ o

Thus, u, - u, and ||ue| = 1. Passing to the limit for n — + oo in (1.1) (using (N)
again) we obtain (II,) for u = po, u = u,.

Remark 1.3. Analogously as in the case of equations, a characteristic value of (I),
(IT.) need not be a bifurcation point of (I), (II).

Remark 1.4. If ve K°, then v satisfies (I), (II) (with a fixed y) if and only if it
satisfies (E). Of course, if v € 6K fulfils (E), then v also satisfies (I), (II), but a solution
of (I), (1) lying in 8K need not satisfy (E).

Remark 1.5. It follows from Remark 1.4 that [u,, 0] is a bifurcation point of (I),
(II) with the corresponding solutions y,, v, satisfying

(ib) v, €K, > o, |va =0
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if and only if [u,, 0] is a bifurcation point of (E) (with the same solutions ,, v,).
We can say that it is an interior bifurcation point of (E) and of (I), (II). These bifur-
cations are not interesting from the point of view of variational inequalities.

Remark 1.6. Now, let us consider that

there are solutions p,, v, of (I), (1) with v, € 0K, ||v,]| = 0, p, = po,
(bby) <there is no solution u, v of (I), (II) with [u — “OI <9, |v| <8, veK®
(for some & > 0).

In this case we can say that [u,, 0] is a boundary bifurcation point of (I), (II).
It can be simultaneously a boundary bifurcation point of (E) (i.e. there exist solutions
tas U, satisfying simultaneously (E) and (bby)) or an external bifurcation point
of (E) (i.e. a bifurcation point of (E) with solutions lying outside of K only near
[#0, 0]). Of course, [0, 0] need not be a bifurcation point of (E). In the case of an
interior or boundary bifurcation point of (E) we obtain py e r, ; U r,, (see Remark
1.2). Hence, if we know that yg ¢ 4 ; U 4, then [, 0] is either an external bifurca-
tion point of (E) or it is not a bifurcation point of (E); in both cases, there is no
solution of (E) near [1,, 0] which is simultaneously a solution of (I), (II). This situa-
tion will be our main point of interest.

Remark 1.7. We shall say that u € r, is simple if its algebraic multiplicity is one.
(The algebraic multiplicity is the dimension of ) Ker (I — pud)*, where Ker B
k=1

denotes the null-space of B.) If € r, is simple, then dim E (u) = dim E 4.(u) = 1
(A* denotes the operator adjoint to 4) and (u, u*) + 0 for u € E(u), u* € E 1.(1),
Jul + 0+ [u*] (see [11]).

2. BOUNDARY BIFURCATION POINTS OF VARIATIONAL
INEQUALITIES AND BRANCHES OF SOLUTIONS
OF THE EQUATION WITH PENALTY

In the following, we shall assume that the closed convex cone K is such that there
exists a nonlinear completely continuous operator f: H — H with the following
properties:

(P) pu =0 if and only if ueK; {Pu, u) > 0 for all u¢ K (i.e. B is the penalty
operator corresponding to K);

(H) B(tu) = tpufor all t > 0, u € H (i.e. B is positive homogeneous);

(M) {pu — Bv,u — v) = 0 for all u, ve H (i.e. B is monotone);

(B, K) if u e K° v¢ K, then (fv,u)y < 0.

Remark 2.1. The assumptions (P), (H), (M) were used also in [4], (B, K) is a slight
modification of (B, K°) from [4]. In [4], still further assumptions (CC), (SC') were
considered, but it is explained in [5] that they were useless. Examples of penalty
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operators satisfying our assumptions were given in [4], [5] and will be discussed
in Section 5.

Remark2.2.If g€ 4 ; O 74, ; is simple, then there exist unique u € E (1) n (—K),
u* € E (1) 0 (—K) with |u| = |[u*| = 1 and we have (u, u*) + 0 (see Remark
1.7). In the sequel, we shall consider couples of simple characteristic values pO Ve
€ r4; N T'4s; such that

(U, U*) sign {u(®, upy = sign (u'®, uld
for uVeE(u")n(—-K), ujeE(u?)n(=K) (j=01).

Of course, in the case of a symmetric operator 4 we have u’” = 4} and (U, U*)
is automatically fulfilled for each couple u®, uMer, ;N ry ;.

Theorem 2.1. Let p©, y® e ry ;0 ry; be simple and let (U, U*) be fulfilled.
Suppose that (N) is fulfilled and there exists a completely continuous operator B
satisfying (P), (H), (M), (B, K). Then there exists a bifurcation point [, 0] of
(1), (1) with p,, € (), p®).

Remark 2.3. If there is a bifurcation point [, 0] of (E) with 4 e (1, x) and
with the corresponding solutions p,, v, of (E), v,€K, [[v,] = 0, u, = po, then the
assertion of Theorem 2.1 is trivial (see Remark 1.4). If there is no such a bifurcation
point of (E), then

(2.1) for each fie (u®, uV) N r there exists § > 0 such that there is no solution y, v
of (E) with |p — | < 48,0 < |v] < 4.

In this case the assertion of Theorem 2.1 follows from Theorems 2.2, 2.3 formulated
below. Moreover, Theorems 2.2, 2.3, describe more precisely the character of the
bifurcation point under the consideration and explain how it can be obtained from the
branch of the solutions of the equation with the penalty. Particularly, it is given the
existence of a boundary bifurcation point of (I), (II) (in the sense of Remark 1.6)
which is neither a boundary nor an interior bifurcation point of (E) (Remark 1.5),
because only external bifurcation points of (E) can lie in (u‘”, u™) under the as-
sumption (2.1). Let us remark that (2.1) is ensured for example if u(‘”, u*’) A
NIy STy,

Definition 2.1. For each 6 > 0 fixed we shall denote by C, the closure (in B x H x
x R) of the set of all triplets [u, v,e] € R x H x R satisfying the conditions & % 0
and

@ x Jol? =

(b) v — pAv + N(u,v) + efv = 0.
Remark 2.4. The condition (a) cannot be fulfilled with ee(—1,0). It is clear

oe
1+¢
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from here that if C; , is an arbitrary connected subset of C; containing a point of the
type [, 0, 0], then & = 0 for all [p, v, €] € C; 0.

Theorem 2.2. Let the assumptions of Theorem 2.1 and (2.1) from Remark 2.3 be
fulfilled with <u®, u}) > 0 in the assumption (U, U*). Then for each &€ (0, 5,)
(with some 8, > 0O fixed) there exists an unbounded closed connected subset Cj
of Cs containing [u'?, 0, 0] such that the following implications are true for all
(&, v, €] e Cyo:

(c) if [u,v, €] + [4,0,0] for all fier,, then v¢K;

(d) if [w, v, €] *+ [42,0,0], then pe (u®, u™).

If {f Ums &} < Cios &= +00, p, = u(d), v, = v(6),*) then v, > v(5), u(d)e
e (@, u®), [[v(8)|* = 6, v(5) € 8K, u(8), v(8) satisfy (1), (1) and do not satisfy (E).
The limit points of u(8) for 6 — 0 lie in (1@, p@) A 1y 4.

Theorem 2.3. Let the assumptions of Theorem 2.1 and (2.1) from Remark 2.3
be fulfilled with {u%, u}y < 0 in the assumption (U, U*). Then for each 5 € (0, 5o
(with some &, > 0 fixed) there exists a subset C;,O of Cs with the same properties
as in Theorem 2.2 but with (d) replaced by

(dy) if [wov, €]+ [u®,0,0], then pe(u®,pu®),
and containing [p™, 0, 0] instead of [p®, 0, 0].

Proof of Theorems 2.2, 2.3 will be given in Section 4 on the basis of a global
bifurcation result. But first, an investigation of some properties of sets of solutions
of (b) is necessary and this is the subject of Section 3.

The mainideas of the proof of Theorem 2.2 are the following (for the precise
proof see Section 4). It follows from a Dancer’s global bifurcation result (Theorem
4.1) that for each 6 > 0 there exist closed connected subsets C;, and C;, of C;

“starting from [4(%, 0, 0] in the direction u(® ¢ K and —u‘® € K° n E,(u(?), respec-
tively, and these sets either meet each other at a point different from [u(®, 0, 0] or
they are both unbounded. Our aim will be to show that the first case cannot occur
for & sufficiently small. This will be done by proving that all the points from C;
fulfil the implications (c), (d) and that ve K° for all [u, v, ¢] € C;, with pe
e u @, M, [u®,0,0] + [u, v, ¢] + [1™,0,0]. The proof of (c), (d) is based
on the following principles:

(i) for an arbitrary 6 > 0, the values pu are locally increasing along C;'o near y =
=u® g =0and u = uV, ¢ = 0; this is the sense of Lemma 3.2;

(ii) for 6 > 0 sufficiently small, C;, cannot intersect the boundary of K with ¢ > 0
as long as pe (u®, u™y (this is a consequence of the assumption (2.1)) and

*) The existence of such a sequence follows from the fact that Cj ¢ is unbounded, from
(c), (d) and Remark 2.4.
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simultaneously C; , cannot intersect the lines p = p(®, b = py® aslongas v ¢ K
(this will follow from Lemma 3.1).

When the existence of an unbounded set C;, satisfying (¢), (d) is proved, then it
suffices to show that by the limiting proces ¢ — + oo along C; o, solutions of (I), (II)
with the announced properties can be obtained. This will follow from Lemma 3.3,
which is a modification of the usual penalty method. The solutions obtained will lie
on JK and this together with the assumption that u®, u* € r,, ; are simple and the
implication (d) will ensure that u(8) e (1'©, ) for & sufficiently small and that the
limit points of u(3) (6 — 0) are in (1@, u™).

The main ideas of the proof of Theorem 2.3 are the same as that of Theorem 2.2,
but u are locally decreasing along C; near u = u®, e = 0 and p = u™®, ¢ = 0 and
this is the reason for the use of a branch C;, starting from [u*, 0, 0] instead of
[0, 0,0].

Remark 2.5. The basic principle of the proof of Theorems 2.2, 2.3 is similar to
that of Theorem 2.3 in [4]. However, in [4] the case N = 0 was considered and the
operators in the penalty in the equation (b) were homogeneous. This made it possible
to work with a more agreeable norm condition (a). The nonlinear term N forces us to
consider the branches of solutions of (b) containing small v only, because the bran-
ches containing great v need not have properties necessary for our pourpose (implica-
tions (c), (d)). Moreover, it was sufficient to have a unique branch of solutions of
(b) in [4] for obtaining an eigenvalue and eigenvector of (1), (1I.), while in the present
situation we need to obtain a continuum C, 4 (6 € (0, §,)) of suitable branches for
obtaining a system of bifurcating solutions. Of course, Theorems 2.1--2.3 from
[4] can be obtained from the present Theorems 2.1—2.3 by choosing N = 0 and by
a suitable transformation between the branches S and C. In this case, § > 0 can
be chosen arbitrarily; we obtain p, = g, v(8) = /0 . u,.

Remark 2.6. In some cases it is possible to show that there exist infinitely many
of couples u@, ") satisfying the assumptions of Theorem 2.2 (see Section 5). Then
we obtain the existence of infinitely many boundary bifurcation points of (I), (II)
which are neither interior nor boundary bifurcation points of (E) (cf. Remark 2.3).

3. PROPERTIES OF THE EQUATION WITH PENALTY

In this section the equation (b) (Definition 2.1) with a penalty operator of the type
described in Section 2 will be studied.

Remark 3.1. If ¢, > 0, v,e H (n =1,2,...) and ¢,pv, — f, then (P), (B, K)
imply immediately

(3.1) {fou) = lime,Bo,,ud <0 forall uek.
If f 4 0, then even
(3-2) {fyuy <0 forall uekK®.
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Indeed, if the last assertion is not true, then there exist u, € H, u, € K° such that
{fou> >0, {f,u,y = 0. Hence, {f, u, + tu;» > 0 for all + > 0, but this contra-
dicts (3.1) because u, + tu; € K for t sufficiently small.

Remark 3.2. If ¢, >0, u,eH, ueK (n=1,2,...), u, = u, gpu, — f, then
(P), (B, K) imply &,{Bu,, u,y = 0, {f,u) = lim g,{Bu,, up < 0. Particularly,

(3.3) {f,u) £ liminf ¢,{Bu,, u,> .

Remark 3.3. It is well-known that if u, — u, fu, — 0 and (M), (P) are fulfilled,
then u € K. Indeed, for an arbitrary v e H we have

{Po,v —ud = lim {Po — Pu, v — u,> =0
by (M). Setting v = u + tw, we obtain
B(u + tw),wy >0 forall weH, t>0.
Passing to the limit for t — 0+, we obtain the last inequality for ¢ = 0 and for all
w e H. This is equivalent to fu = 0, i.e. u e K by (P).
Lemma 3.1. Let po €74+; and let the assumptions (P), (B, K) be fulfilled. If
& > 0,v,€H, gpv,— fwith f £0, then
(3.4) U — poAu + f+ 0 forall ueH.
Proof. If (3.4) is not true, then we have
u— podu + =0,
u* — poA*u* =0

with some u € H and u* € K° n E .(1,). Using the relation {Au, u*y = {(A*u*, u),
we obtain from here {f, u*) = Q. This contradicts (3.2) from Remark 3.1.

Lemma 3.2. Suppose that (H), (N) are fulfilled. Let [, v,,¢,]€ R x H x R,
g >0,

(b~) Uy — M"Al)n + N(#"’ U,,) + 8"BU” =0
(n = 1,200, [t 0w 0] = [110, 0,01 i B x H x R, pio # 0, 0[] = u, ~ uo.

Then u, — Ug, Jig € T4, Uo € EA(:“O) and

(3.6) <uq, u*> lim Bn = Ho _ pol Puo, u*y  for each u* € E up,), u*+0.
£

Particularly, if ([3, K) is fulfilled, po > 0, uo ¢ K, {uo, u*) > 0 for some u*e
€ E (o) 0 (=K°), then
— Ko

(3.7) lim & >0;
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if o > 0, ug ¢ K, Cug, u*y < 0 for some u* € E 4u(4o) 0 (—K°), then

3.7) | lim 2 "o o,
€

Proof. Denote u, = v,/||v,||. Then (b™) can be written as
Ny 0)

lea]

This together with the assumption (N) and the complete continuity of A4, f implies
that u, — g, fto € T4, g € E (o). Further, if u* € E ;.(1,), then

(3.8) ' u* — pod*u* = 0.

(bﬂ) u, — ,u,,Au,, + + snﬁun =0.

Setting A, = 1/u,, 4o = 1/p,, we obtain from (b~) and (3.8)

(An - A‘O) <um u*> = —}'n <Ii(lﬁvl), u*> - )'nan(ﬁum u*> .

Replacing 4,, 4, by i, 1o again and using (N), we obtain (3.6).

Lemma 3.3. (cf. [4, Lemma 2.4]). Let u®, u© e r, ; N 74 ; be simple, 0 < @ <
< ™ and let the assumptions (P), (M), (B, K) be fulfilled. Suppose that [, v,, &,] €
eR x H x R satisfy (b™) from Lemma 3.2 and the following conditions (with
8 > 0 fixed):

~ 2 de,
n = = 1’ 27 IERY B n > + 5
@) ol = 12 = 1,200, 6ot
() o, ¢K° (n=1,2,..);
(@) e (@, u®) (n=1,2,..).

If = p(8), v, = v(8) for some p(6)e R, v(3)e H, then v, - v(5), [[v(5)|* = o,
(3), v(8) satisfy (1), (II) and v(8) € 0K, [[v(3)|*> = 6.1 § < 8¢ (8, sufficiently small),
then p(3) e (1, u®).

Proof. It follows from (a~), (b™) that {¢,Bv,} is bounded and therefore fv, — 0.
Hence, v(6) € 2K by Remark 3.3 and (¢™). Multiplying (b™) by v, and v(5), we obtain

(3.9) (s V) = AV, 0,) + Nty 0), 0> + 6,0y 1, =0,
(3.10) <0, 0(6)) — AV, v(8)> + (N(tys ), v(0)) + £,{Bv,, (8)) = 0.

Suppose that N(,, v,) = h, &,Bv, — f. (This is true for a subsequence at least because
N is completely continuous and {e,pv,} is bounded.) We obtain from (3.9), (3.10)
and (a™) that

lim &,{Bv,, v,y = =% + pu(8) <A v(8), v(8)y — <h, v(d)),
(o> = — O + u(3) <A u(3), (5> — < o5
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Using (3.3) from Remark 3.2, we obtain from here
O — lim [ = O — 5 — lim 6B 8 = o0 2 0.
Hence v, — v(3), [|v(5)] = lim v(8)|* = 4. (More pre-
cisely, this is proved for a subsequence; but if this were not true for the whole sequence
{v,}, then by the same procedure we could obtain another subsequence converging
to #(8) =+ v, which is not possible becuse v, — v(8).) Using this fact and (b~), (P), (M),
we obtain for an arbitrary w e K
(0(0) — u(3) 4 (3) + N(u(o), o(3)). w — o(6)> =
= lim <l7,| - ﬂ,,AU,, + N(ﬂns U,,), w = Un> =
= lim 3n<ﬂw - ﬂvm w— vn> =0,

i.e. u(), o(6) satisfy (II). It is sufficient to show that neither u(5) = u® nor u(s) =
= u™® can occur for § sufficiently small. If pu(5,) = u®, 6, — 0, then we can sup-
pose v(8,)/][v(5,)]| — u € E(u”) by Remark 1.2. Lemma 1.1 implies u € E ,(u®).
But v(8,) € 0K, ie. ue 0K and this contradicts the assumption that p© e r, ; is
simple. Analogously for ™.

Remark 3.4. In the sequel, the following modification of the situation from
Lemma 3.3 will occur. We shall have [y, v,, &,] € R x H x R satisfying (b™) from
Lemma 3.2, |v,]| > 0,6 >0(n=1,2,..), |v,] = 0, p, > p. We shall show that
if u, = v,/|v,| = u, &pu, — f, then u, > u, &,pu, — f and

(3.11) u—pdu + f=0.

First, (b™) can be written as (b~ ) (the proof of Lemma 3.2) again under the assump-
tion (H), and (3.11) follows by using the limiting process and (N). If {g,} is bounded,
then it follows from (b~), (N) and the complete continuity of 4, f that {u,} contains
a strongly convergent subsequence. This together with the assumption u, — u
implies that u, — u. (In the opposite case, we would obtain by an analogous con-
sideration another subsequence converging to u, = u, which is impossible.) Now,
it folows from (b™) that also {,fu,} is strongly convergent. Further, let {¢,} be un-
bounded. Then there is a subsequence {¢, } such that &, — +co. We obtain fu, — 0
because {¢,pu,} is bounded by (b~). Thus, u € K by Remark 3.3. The identity (b~)
implies

<um un> - .un<Aum un> + <1"Y‘(‘”‘I.C'I’Trn)a uu> + 8n<ﬂum un> =0,
Uy

<um u> - ”n(Aum u> + <1_V%.3”U_n)’ u> + e,,(ﬂu,,, u> =0
Uy

which together with Remark 3.2 implies that
Juf}? = tim [lu,|* = lim &,CBu,, u,y — <foud 2 0.
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We have u, — u, ||u| 2 lim |u,|, i.e. u, > u, [u = 1. Now, it follows from (b~)
and (N) that {e,Bu,} is strongly convergent.

4. USING DANCER’S GLOBAL BIFURCATION RESULT

The aim of this section is to prove Theorems 2.2, 2.3. First, we shall explain
a result of E. N. Dancer, which will be the basis of our considerations.

Let X be a real Hilbert space with an inner product (-, ) and with the correspon-
ding norm |||*]|l, L: X — X a linear completely continuous operator in X. Let G
be a nonlinear completely continuous mapping of R x X into X such that

(N) lim W = 0 uniformly on bounded subsets of R .
[Hxlll=0 |||

We shall study the bifurcation problem for the equation
(B) x — pL(x) + G(u,x) =0,

where p is a real parameter. This is precisely the same problem as (E) in Section 1,
but for reasons which will be seen later we consider a new space and new operators.
In the sequel, X, L and G will be determined by H, A, N and § from the previous
sections.

Denote by C the closure in (R x X) of the set of all nontrivial solutions of (B), i.e.

C = {[u x]eR x H; |||x]| + 0, (B) is fulfilled} .

Hence, a point [, 0] is a bifurcation point of (B) if and only if [, 0] € C. Analogously
as in Remark 1.2,
X, .

(4.1) if [t x]€Co = iy x| =0, T
[1%a]l}
then ger,, XeEy(d), ,x"i—uz.
”|an|

Now, let p, € 7, be simple (see Remark 1.7). Then [u,, 0] is a bifurcation point
of (B) and the component C, of C containing [, 0] is non-empty (see [10], [1]).
Moreover, C, “consists of two branches Cq and C, starting from [ 105 0] in the
direction x, and — x,, respectively”’, where x, € E;(1o). This result will be essential
for us and we shall formulate it precisely.

Denote by xi an eigenvector of the adjoint operator L* corresponding to y,
(i-e. x5 € Ezs(no)) and suppose that-it is normed so that (x3, x,) = 1 (see Remark
1.7). Choose n€ (0, 1) and set

K, = {[wx]eR x X; |(x, x5)| > <[]},
K = {[mx]eKy (% x5) > 0}, K; =K, =K\K; .
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There exists R > 0 such that ‘
(GAN {[#01 0]} N BR(”O’ 0) < Kp, s

where Bg(po, 0) = {[1, x]€ R x X; |1 — po| + [||x||| < R} (for the proof see [10,
Lemma 1.24]). For each re (0, R) denote by D, and D, the components of the
sets { [0, 0]} L (C N B,(uo, 0) 1 K,7) and {[po, 0]} L (C n Bg(po, 0) N K,;), respec-
tively, containing [uo, 0]. Denote by CJ,, and C,, the components of Cy\ D/
and C, \ D, respectively, containing [, 0]. Set

c=U Cov» GCo= U G,
0<r=R 0<r=<R
The definition of Cy, Cy is independent of the choice of 1 € (0, 1) (see [10, Lemma
1.24]), Cg, C; are connected and Co = Cg U C; (for the proof see [10], cf. [1]).
Further, it follows from the definition of Cq, C; and [10, Lemma 1.24] that

(4.2) if [ x,] € C5 NK, O By(tto,0) for some 7y >0,
Hn-—> Ko » Mxni” -0 s then ____x,, - X5
([l
(4.3) if [ x,] € Cg NK, 0 B,(no, 0) for some 3 >0,

— 0, then Hn —Xg-
=]l
Theorem 4.1 (E. N. Dancer [1, Theorem 2)]. Either both Cg and Cg are unbounded
or Cg N Cy #+ {[1o» 0]}
Remark 4.1. In the sequel, we shall utilize the properties of the bifurcation
branches of the equation (B) in the following special situation. Under the assumptions

of Theorem 2.1, we shall set X = H x R and introduce the operators L: X — X
and G;: R x X — X (for each fixed & > 0) by

(%) L(x) = L(v, &) = [Av,0] forall x = [v¢]leX,

i) = Gl ) = [ (1, 0) + oo, =2 ol |

.“‘n - #o > %Hxn

forall peR, x=[ve]leX.

In this special case the equation (B) (for G, instead of G, § fixed) is equivalent to the
equations (a), (b) from Definition 2.1. Hence, for the case of the operators (*) the
set C introduced above coincides with C; from Definition 2.1. We shall use this origi-
nal notation and write also C; o, Csg, C;0 instead of Co, Cg, Cy in the case under
consideration.

Remark 4.2. It is clear that in the case of the operators (*) from Remark 4.1
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we have p e rp, [u, ¢] € E;(u) if and only if p € r,, & = 0, u € E,(u). The multiplicities
of u viewed as characteristic values of L and 4 are equal to each other. Particularly,
1(® is a simple characteristic value of Lunder the assumptions of Theorem 2.1.

Remark 4.3. If [y, 0] € C in the general situation from the beginning of this
section, then p, e r, (see Remark 1.2). The characteristic values of L are isolated
and therefore there exists r > 0 (r = dist (o, r. N {io})) such that if [u, x]e C,
0 < |u — po| < r, then ||x||| > 0. Particularly, if u,er, in the situation from
Remark 4.1 (i.e. po e r, by Remark 4.2) then there exists » > 0 such that ¢ > 0,
lv] > 0 for all [, v,e]e Coq 0 < |n— 1ol <7, 6>0.

Remark 4.4. The implications (4.2), (4.3) can be written as follows in the situation
of Remark 4.1:

(4.2) if [pn, v, €,] € Cg 5NK; 0 B,(to, 0) for some r > 0, § > 0,

Hn = Lo, ||v,,|| — 0, then 8"\ -0, Un (0).

En_ Dy,
vl [l
(4.3) if [u,, v, &,] € C55NK, 0 B,(1to, 0) for some r > 0, § > 0,

& D,
"] -0, —  —y©®

o] ol

(where u® e E,(u®) n (—=K°) as in (U, U*) — the assumptions of Theorem 2.1 are
considered). Particularly, if [4,, vss &,] € Co 5, s = o, ||0s]| = O with v, ¢ K, then the
case (4.2') must occur because — u(® e K°. For the case of a general point [, 0, 0] €
€ C,, (4.1) together with Remark 4.2 give

(4.1°) 3t [ty 0, &1 € o [t o 0] — [£,0,0], = —~ 4,

Jla]

Hn = lo, ||va] = O, then

then fer,, ieE,q), LIS

el

Remark 4.5. Let us consider the situation from Theorem 2.1. It follows from the
assumptions (2.1), (P) that for each e (u®, u™) N r, there exists a neighborhood
U(4, 0,0) of [1,0,0] in R x H x R such that

if [u,v,¢]e(U(F0,00\{[4,0,0]})nC, with 6>0, then v¢K.

Remark 4.6. Under the assumptions of Theorem 2.2, Lemma 3.2 ensures that
for each § > 0 there exists a neighborhood U(u, 0, 0) of [u,0,0]in R x H x R
such that .
if [p,v,¢e]e U(,u(”, 0,0), p=pu, v¢K, >0, then

[u, v, €] ¢ C;.

Indeed, in the opposite case there exist 8 > 0 and [/ Ua» €] € Cs such that g, < u®,
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£, >0, 0, ¢K (n=1,2,..), [ttu Vs &] = [, 0, 0]. We can sﬁppoSe v/ |oa]) =
— u) ¢ K by Remark 4.4 and we have (g, — p")/e, < 0, which contradicts (3.7)
from Remark 3.2. )

Lemma 4.1 (cf. [4, Lemma 2.3]). Let all the assumptions of Theorem 2.2 be ful-
filled. Then there exists 8, > 0 such that if 5 € (0, 8,) then for all [, v, e]e C;y
the implications (c), (d) from Theorem 2.2 hold.

Proof. The set C; o is non-empty by Theorem 4.1 and Remark 4.1. Denote by Gy

the component of the set
{[1 v, e]e Cso5 pe (u®, u®y}

containing [u(®, 0, 0]. It follows from the definition of C;, and Remarks 4.3, 4.4
that there exist [, Un &,] € C5o such that [g,, v,¢,] = [4®,0,0], [v,] >0,
&, > 0, v,/|va]| = 4@ ¢K, ie. also v, ¢ K for n sufficiently large. Lemma 3.2 (the
relation (3.7)) together with {(u”, u}> >0 in the assumption (U, U*) implies
ty > 1 (for n sufficiently large). That means

(44) G5, contains points [u, v, €] with v¢ K (for an arbitrary 5 > 0).
Now, we shall prove that

(C) there exists d, > O such that (c) is valid for all [y, v, €] € C;; with € (0, 3,)
arbitrary.

Suppose the contrary. It follows from (4.4), Remark 4.5 and from the connectedness
of C;; that there exist 6, and [u,, v,, &,] € Cs, 1 such that

(4.5) 8,>0, v,edK, p,elu®@ >, 5, -0,
[ 0w €] * [ 0,0] forall fier, o u®, u®) (n=1,2 )

The inclusion [, 0, 0] € C; can hold only for y € r, and therefore [v,]| > 0 by (4.5).

We have ||v,]| - 0 by (a) and we can suppose p, — jie u®, u®y nr, by (4.1).

The case jie (u®, p®) is not possible by (2.1) and i = p‘®, g = p@ is not possible

with respect to the assumption that u®, u™ e r,, ; are simple and (4.1) holds.
Further, we shall prove that

(D) there exists d, > O such that (d) is valid for all [, v, ¢] € C;, with 8 € (0, &)
arbitrary.

Suppose the contrary. Then there exist &, > 0 and [u,, v,, &,] € C5, (rn=12..)
such that 6, — 0 and either

(@7) | b=k, ] >0 .
(“48) = 1P
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We can suppose that (c) holds on Cj,, ;. Then it follows from Remark 4.6 and from
the connectedness of C;, that [u®, 0,0] ¢ C;. ;. Hence, we have |v,| > 0 also in
the case (4.8). We have |v,]| — 0 by (a). Denoting u, = v,/[v,|, we can suppose
u, = u, &,pu, = f. (The boundedness of {¢,Bu,} follows from (b)). We obtain from
(b) applied to [,, v,, €,] by the considerations described in Remark 3.4 that u, — u,
¢,fu, — f and

(4.9) u—puP4u + =0,

where j = 0 or j = 1. The case f # 0 is not possible by Lemma 3.1. That means
e,pu, — f = 0. For the proof of (D), it is sufficient to show that u € dK, because
in this case (4.9) will contradict the assumption that u e r, ; are simple. Suppose
u ¢ K. The case &, — 0 is impossible because (1, — #9)[e, = 0 and this contradicts
(3.7) from Lemma 3.2. Hence, we can suppose &, = &, > 0. But then fu, — 0 and this
implies u € K by Remark 3.3, i.e. u € dK because u, ¢ K by (c) holding on C; ;.
Thus, (D) is proved.
For the proof of Lemma 4.1, it is sufficient to show that

(4.10) Csy = C;o foreach &> 0 such that (c), (d) hold for all
[n,v,e]eCsy.

Consider that C;; + C;, for such a number 6 > 0. We have Cj; n C;x,\C; | =
= {(1®, 0,0]} by (d). This together with the definition of C;,, C;, implies that
there exist [, v,, &] € Cso\Csy such that p, < u®, & >0 n=12,..
[t Vs €] = [, 0,0], v,/|va] » u@ ¢ K. This contradicts (3.7) from Lemma
3.2 and the proof of Lemma 4.1 is complete.

Lemma 4.2. Let all the assumptions of Theorem 2.2 be fulfilled. Then there
exists 3, > 0 such that if 5€(0,8,) then for all [u,v,€]le Cs, the following
implication holds:

(c7) if [1®,0,0] # [pv,e] + [0?,0,0], pelu® u®), then veK°.

Proof. By the definition, C;, contains the points g, v, & with v € K°. If the asser-
tion of lemma does not hold then it follows from here, the connectedness of C;
and (2.1) that there exist 6, — 0 and p,, v,, &, satisfying (4.5) or one of the conditions
(4.7), (4.8) with v, € K. This leads to the contradiction as in the proof of Lemma 4.1.

Proof of Theorem 2.2. Let 6, > 0 be such that (c), (d) and (c~) hold for all
[, v, €] from C;, and from C;,, respectively, for an arbitrary & e (0, 5,) (see
Lemmas 4.1, 4.2). Then Cy, n C;o = {[u®,0,0]} for all §€(0,5,> because
(¢), (d), (c™) are fulfilled simultaneously only for this point. Hence, C; ¢ is unbounded
by Theorem 4.1 and Remark 4.1 for all 5 € (0, 5,). Lemma 3.3, Remark 2.4 and (21)
ensure the properties of sequences from C;, announced in Theorem 2.2. The limit

- points of p(9) lie in (1@, u¥) N 1y, by (d), Lemma 1.1 and Remark 1.2.

Proof of Theorem 2.3 is essentially the same as that of Theorem 2.2, but the
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roles of [4®,0,0] and [u®, 0, 0] are commuted. We consider the branches C;,,
Cs,o starting from [n), 0, 0] and replace (d) by (d,) in Lemmas 4.1, 4.2. In the
proof of a modified Lemma 4.1 we use (3.7') instead fo (3.7) (Lemma 3.2), i.e. C;
is locally decreasing instead of increasing in neighborhoods of [, 0, 0], [¢®, 0, 0].
All the other considerations are the same as in the proof of Theorem 2.2.

5. APPLICATION

Let us denote H = {ue W7(<0,1)); u(0) = u(1) = 0}. This is a Hilbert space
with the inner product

1
{u, v) = I u"(x) v"(x) dx .
0
Define operators 4 : H - H, N : R x H —» H by

1
{Au, v) = J w'(x)v'(x)dx forall u,veH,
1]

1
(N(p, u), v) = J’ g(u vw'(x))v'(x)dx forall peR, u,veH,
]
where g is a real continuous function on R? satisfying the assumption

lim ﬁ_*g(ﬂ, )

t—0 t

= 0 uniformly on bounded u-intervals .

Then A is linear, completely continuous and symmetric, N is completely continuous
and satisfies (N). Let us consider the bifurcation problem for the variational inequality
(I), (IT) with these operators and with the closed convex cone

K={ueH;u(x)20i=1,2..n},

where x;€(0,1) (i = 1,..., n, n positive integer) are given numbers. By a special
choice of g, we obtain a variational inequality describing the behaviour of a beam
which is simply fixed on its ends, compressed by a force proportional to i and sup-
ported by fixed obstacles from below at the points x; (see [9]) We can use the penalty
operator f defined by

{Bu, vy = — Zn:u‘(x,-) v(x;) forall u,veH,
i=1

where u~ denotes the negative part of u. This operator satisfies the assumptions of
Theorem 2.1. The operator A has only simple characteristic values pu, = k?n® with
the corresponding eigenvectors u,(x) = sin knx (k = 1,2,...). The assumption
(U, U*) is automatically fulfilled because 4 is symmetric. Hence, Theorem 2.2 asserts
that if k, [ are positive integers (k < I) such that
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sign sin knx, =

|
I

sign sin knx, #+ 0,

signsin Inx; = ... = signsin Inx, =% 0
(i.e. m,u er,;) and if

for each positive integer m e (k, I) there exist i, j such that
sign sin mmx; = — sign sin mnx; + 0

(ie. (o)) 014 < r4.), then there exists a bifurcation point [g ;, 0] of (I), (II)
with p, ; € (k*n?, I’n?). The bifurcating solutions [u, v] obtained near [z, ,, 0] will
be such that v(x;) 2 0 for i = 1, ..., n and v(x;) = O for at least one j and will not
satisfy (E).

For example, if n = 2, x; = ﬁ, X, = %, then we obtain the existence of an infinite

sequence [ i, 0] of bifurcation points of (), (II) with , = pas—3,4—1 € (4k — 3)* 7%,
(4k — 1)* n?) (cf. [4, Section 4]).

Analogously, we could consider the cone
K ={ueH; u(x) 20 forall xe{x;yp, i=1,...,nf,

where x;, y; are given numbers, 0 < x; < y; < ... < X, < y, < 1, and the penalty
operator f defined by

n 1
Bu,vy = =Y | u(x)v(x)dx forall u,veH.
i=1J0

In this case the method gives a finite number of bifurcation points of (I), (II). The
situation is analogous as in [4, Section 4], wehre it is described and illustrated
in more detail. (The only difference is that here we obtain bifurcation points of (I),
(IT) while in [4], the eigenvalues of (I), (II.) are studied.)
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