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EDGE-DOMATIC NUMBER OF A GRAPH 

BoHDAN ZELINKA, ЫЬСГСС 
(Received July 23, 1981) 

With help of the concept of a dominating set, E. J. Cockayne and S. T. Hedetniemi 
[ l ] have defined the domatic number of a graph. Here we shall introduce the edge 
analogue of this concept and prove some assertions concerning it. 

Let G be an undirected graph v^ithout loops and multiple edges. Two edges e^, 62 
of G are called adjacent, if they have an end vertex in common. The degree of an 
edge ^ in G is the number of edges of G which are adjacent to e. 

An independent set of edges of a graph G is a subset of the edge set of G with the 
property that no two edges of this set are adjacent. A set A of edges of a graph G is 
said to cover a set В of vertices of G, if each vertex of В is an end vertex of at least 
one edge of A. 

An edge-dominating set [3] in G is a subset D of the edge set E(G) of G with the 
property that for each edge e e E(G) — D there exists at least one e d g e / e D adjacent 
to e. An edge-domatic partition of G is a partition of E{G), all of whose classes are 
edge-dominating sets in G. The maximum number of classes of an edge-domatic 
partition of G is called the edge-domatic number of G and denoted by ed[G). 

Note that the edge-domatic number of G is equal to the domatic number [ l ] of 
the line-graph of G. 

First we shall determine edge-domatic numbers of complete graphs and complete 
bipartite graphs. 

Proposition 1. Let K^ be the complete graph with n vertices, n "^ 2. If n is even, 
then ed[K„) = n — 1; if n is odd, then ed[K„) = n. 

P r o o f Let n be even. Then it is well-known that K„ can be decomposed into n ~ 1 
pairwise edge-disjoint linear factors. The edge set of each of these factors is evidently 
an edge-dominating set in K„. Hence ed(K„) ^ n — 1. Suppose that ed{Kn) è п. 
Consider an edge-domatic partition of K„ with n classes. As the number of edges 
of K„ is in(n — 1), the mean value of the cardinalities of these classes is ^{n — 1). 
This implies that at least one of the classes has at most \^(n — 1)] = ^n — 1 edges. 
But then this set С of edges covers at most n = 2 vertices. There are two vertices 
which are incident to no edgQ of С and the edge joining these vertices is adjacent to 
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no edge of C, which is a contradiction with the assumption that С is an edge-domi­
nating set. We have proved that ed(K„) = n — 1 for n even. 

Now let n be odd. Denote the vertices of iC„ by u^, ..., w„. In the sequel all sub­
scripts will be taken modulo n. For each i = 1, ..., n let £,• be the set of all edges 
Ui+jUi^j+i, where j = 1, ..., i{n — 1). The reader may verify himself that the sets 
JEJ, . . . ,£„ form a partition of the edge set of i^„. Each set Ei covers all vertices of K„ 
except one. Each edge of K„ not belonging to £,• is incident with at least one vertex 
covered by E^ and thus adjacent to at least one edge of E^; the sets E^, . . . ,£„ form 
a domatic partition of K„ and ed{K„) ^ n. Suppose that ed(K„) ^ n + 1. Then 
we analogously prove that there exists an edge-domatic partition of G, one of whose 
classes has at most ^(n — 3) edges; this set covers at most n — 3 veitices and it is 
not an edge-dominating set, which is a contradiction. Therefore ed(K„) = n for n odd. 

Proposition 2. LetK^„ be a complete bipartite graph. Then ed(K^„) = max (m, n). 

Proof. Without loss of generality let m ^ n, i.e. max (m, n) = m. Let K^„ be 
the bipartite graph on the vertex sets A, В such that |У4| = m, \в\ = п. Then for each 
и E A the set E{u) of edges which are incident with и is an edge-dominating set in 
K^ „; it covers all vertices of Б and each edge ofKj„„ has one end vertex in B. There­
fore the sets E(u) for all w e Л form an edge-domatic partition of iC^ „ with m classes. 
We have proved that ed{K^J) ^ m. Now suppose that ed(K^„) ^ wi + 1 and 
consider an edge-domatic partition of iC„, „ with m + 1 classes. As iC^ „ has mn 
edges, there exists at least one class С of this partition which contains less than n 
edges. Then this set С covers neither A nor B. There exists a vertex of A and a vertex 
of В which are incident with no edge of С and the edge joining them is adjacent to 
no edge of С The set С is not edge-dominating, which is a contradiction. Hence 
ed(Kj„„) = m = max (m, n). 

Proposition 3. Let C„ be a circuit of the length n. If n is divisible by 3, then 
ed{C„) = 3, otherwise ed(C„) = 2. 

Proof. A circuit is isomorphic to its own line-graph, therefore its edge-domatic 
number is equal to its domatic number and for it this assertion was proved in [1]. 

Now we shall prove two theorems. 

Theorem 1. For each finite undirected graph G we have 

Ô{G) ^ ed{G) й Se{G) + 1 , 

where ed{G) is the edge-domatic number of G, ô{G) is the minimum degree of 
a vertex of G and <5g(G) is the minimum degree of an edge of G. These bounds 
cannot be improved. 

Proof. The number öjfi) is equal to the minimum degree of a vertex of the 
line-graph of G. According to [1], the domatic number of this line-graph cannot be 
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greater than ô^(G) + 1; this domatic number is equal to the edge-domatic number 
of G. Hence ed(G) S à^G) + 1. 

Now we shall prove that ô(G) ^ ed(G). By induction we shall prove the following 
assertion: If the degree of each vertex of G is greater than or equal to к (where к is 
an arbitrary positive integer), then there exists an edge-domatic partition of G 
with к classes. For к = 1 the assertion is true; the required partition consists of one 
class equal to the whole E[G) which is evidently an edge-dominating set in G. Now 
let /co ^ 2 and suppose that the assertion is true for к = k^ — 1. Consider a graph G 
in which the degree of each vertex is at least k^. Let EQ be a maximal (with respect 
to the set inclusion) independent set of edges of G. This set is edge-dominating; 
otherwise an edge could be added to it without violating the independence, which 
would be a contradiction with the maximality of EQ, Let GQ be the graph obtained 
from G by deleting all edges of EQ. Each vertex of G is incident at most with one edge 
of EQ, therefore each vertex of GQ has the degree at least /CQ — 1. According to the 
induction hypothesis there exists an edge-domatic partition ^ of Go with k^ — 1 
classes. Then ^ u [EQ] is an edge-domatic partition of G with kQ classes, which was 
to be proved. The proved assertion implies ed{G) ^ <5(G). If G is a circuit C„ and n 
is divisible by 3, then ed(G) = àJ^G) + 1. If G is a circuit C„ and n is not divisible 
by 3, then ed{G) = à{G). (See Proposition 3.) 

Theorem 2. Let Tbe a tree, let S^(T) be the minimal degree of an edge ofT. Then 
ed{T) = ôlT) + 1. 

Proof. Let us have the colours 1, ..., àJ^T) + 1; we shall colour the edges of T 
by them. First we choose a terminal edge eQ of T and colour it by the colour L Now 
let us have an edge e or Г with the end vertices u, v; suppose that all edges incident 
with V are already coloured. Moreover, if the number of these edges is less than 
^е(Т) + 1, we suppose that they are coloured by pairwise differed colours; in the 
opposite case we suppose that all colours 1, ..., öe{T) + 1 occur among the colours 
of these edges. Now we shall colour the edges incident with и and distinct from e. 
We colour them in the following way. If there are colours by which no edge incident 
with V is coloured, we use all of them. (This must be always possible according to the 
assumption.) If the number of edges to be coloured is less than ô^(T) + 1, we colour 
them by pairwise distinct colours; in the opposite case we colour them by using all 
the colours 1, ..., S^(T) + 1 (some of them may repeat). The result is a colouring of 
edges of Tby the colours 1, ..., ô^^T) + 1 with the property that each edge is adjacent 
to edges of all colours different from its own one. If C,- for г = 1, ..., ^е(Т) + 1 is 
the set of all edges of Tcoloured by the colour i, then the sets C^,..., C^^^^j^^^-^ form 
an edge-domatic partition of T with S^(T) + 1 classes and ed[T) ^ ^e(T) + 1. 
According to Theorem 1 it cannot be greater, therefore ed(T) = S^{T) + 1. 

Corollary 1. The edge-domatic number of a path is equal to 2. 
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Corollary 2. The edge-domatic number of a star is equal to the number of its 
edges. 

Remark . As we have just seen, any tiee is an example of a graph G for which 
ed(G) = ^e(G) + 1. Another example is the odd graph Oj, for any integer к such 
that ^ ^ 2; it was defined in [2]. It is a graph whose vertex set is the set of all subsets 
of the number set {1, ..., 2/c + 1} having the cardinality к and in which two vertices 
are adjacent if and only if their intersection (as of sets) is empty. In [4] it is proved 
that ed(Oj^) = 2/c + 1, while the degree of any edge of Oj^ is 2/c. Every complete 
graph X„ with n even is an example of a graph G for which ed(Cj) = ô[G) holds. 
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