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DIFFERENTIABILITY OF THE DISTANCE FUNCTION 
AND POINTS OF MULTI-VALUEDNESS OF THE METRIC 

PROJECTION IN BANACH SPACE 

LuDEK ZAJICEK, Praha 

(Received March 1, 1982) 

Introduction. In the whole article suppose that X is a real Banach space with the norm 
q(x) = \\x\\ and that î  is a closed subset of X. For x eX denote by dp(x) the distance 
from the point x to the set F. The metric projection is defined as the (possibly) 
multivalued operator Рр{х) = {у EF; \\X — y\ = dp{x)]. Of course, there are con
nections between the singlevaluedness of Pp and the differentiability of dp at a point 
хфР. In Euclidean spaces we have the Mises theorem [ l6] (see also [6], [10]), 
which can be stated in the following form. 

Mises theorem. If X = R" and x ф F then all one-sided directional derivatives 
Dt, dp(x) exist and D„ dp{x) = inf {(i;, \\x — y\\~^ (x — y)); y e Pp{x)}. 

In the present article we investigate the set R(F) of points x for which Pp{x) con
tains at least two points and the set N{F) of points x ф F at which dp is not Gateaux 
differentiable. 

If X = R" then the Mises theorem implies R{F) = iV(F). The results of Section 4 
imply that R{F) = N(F) for any F if and only if Ĵ  is a finite-dimensional strictly 
convex smooth space. 

Large classes of spaces in which any R{F) is a first category set are known, while 
the problem if the largest class of these spaces coincides with the class of strictly 
convex spaces remains open (see [13]). From Aronszajn's theorem [3] on dif
ferentiability of Lipschitz functions it follows that in separable spaces, N(F) is small 
in a measure sense. In some smooth spaces N(F) is of the first category (see ([9], 
Corollary 3.7) and Section 3 of the present article). 

Our main effort is to determine the strictest sense in which all R{F) (or N(F)) are 
sm.all in special separable spaces. We obtain some partial results in this direction. 

In Section 1 we discuss some classes of small sets in separable spaces, some of 
which are used in the subsequent sections. 

Singlevaluedness of the metric projection in Euclidean spaces was investigated 
by Erdös [8]. He proved that R{F) is of a c-finite (n — l)-dimensional measure. 
Konjagin [12] proved the Erdös theorem in finite-dimensional strictly convex 
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Spaces using an easy new lemma concerning differentiability of Lipschitz functions. 
In [25] the Erdös theorem is in a certain sense generalized to the case of a separable 
strictly convex X {R{F) can be covered by countably many Lipschitz hypersurfaces). 

In Section 2 we give simplified proofs of results from [25] based on Konjagin's 
method. The main idea of the new proofs is the same as that of the old ones. However, 
the method of the differentiation of the distance function is not explicitly used in [25]. 
This method together with Lemma 2 which is essentially Konjagin's lemma mentioned 
above considerably clarifies the proofs. 

Section 3 includes some simple remarks concerning differentiability of dp (also at 
X e F) in general Banach spaces. 

In Section 4 we characterize the Banach spaces, in which any distance function df 
has at each point x ф F all one-sided directional derivatives, as spaces which have 
a uniformly Gateaux differentiable norm. An analogue of the Mises theorem in these 
spaces is proved. In separable spaces which have a uniformly Gateaux differentiable 
norm we prove with help of Lemma 2 that N(F) can be covered by countably many 
Lipschitz hypersurfaces (in fact we establish a slightly sharper result). 

In Section 5 we prove that in Hilbert spaces and in finite-dimensional spaces the 
norm of which has a derivative which is Lipschitz on the unit sphere, the distance 
function df is locally ^-convex on X — F. (The function is said to be ^-convex if it 
is the difference of two continuous functions.) Consequently, dp is as smooth on 
X — F as a continuous convex function, in particular, A^(JF) is very small (it can be 
covered by countably many (5-convex hypersurfaces). The main results of Section 5 
are stated in [27]. The main method of Section 5 which generalizes an Asplund's 
argument from [4] was independently used by Abatzoglou in [ l ] . 

In Section 6 we obtain analogous results on R{F) as easy consequences of the 
results of Section 5. Some additional propositions concerning the sharpness of these 
results in Hilbert spaces are given. 

1. CLASSES OF EXCEPTIONAL SETS IN SEPARABLE SPACES 

Let X be a separable real Banach space. We shall discuss six classes of exceptional 
sets. 

(a) The class of Gaussian null sets. (See [17].) A Borel subset of X is called 
a Gaussian null set if fiB = 0 for every nondegenerate Gaussian measure JA on X. 

(b) Aronszajn's system J / . (See [3].) Let {a„) be a sequence of nonzero elements 
complete in X (i.e., {a„) has dense hnear span in X). Define ^{a„) to be the family 

00 

of all Borel sets of the form |J A„, where each A„ is a Borel set with the property 

that for each x eX the set (У4„ + X) n Ra„ has Lebesgue measure zero in the line Ra^^ 
Finally, let j / be the intersection of the families sé{a^^ over all such sequences (a„) 
possible. 
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(c) Aronszajn's system ^ / ° . (See [3].) This system is defined similarly as J:/. The 
only difference is that the condition '\An + x) n Ra„ has Lebesgue measure zero" is 
replaced by the condition "[A„ + x) n Ra^^ is countable". 

(d) The system of sparse sets. Let о Ф v e X. We shall say that Л cz X is a Lipschitz 
hypersurface associated with v if there exists a topological complement Z of Rv and 
a Lipschitz function f : Z ~> R such that A = {z + f{z) v, z e Z]. A subset of X 
will be called sparse if it can be covered by countably many Lipschitz hyper surf aces. 
Sparse sets were defined in a different but equivalent way in the case X = R^hy W. H. 
Young [21] under the name "ensemble ridée". Sparse sets were frequently used in the 
real analysis (see e.g. H. Blumberg [5], where the name "sparse" is used). For 
infinite-dimensional applications see [24] and [25]. The equivalence of Young's 
definition and ours in the case X = R^^ immediately follows from [22], Proposition 1. 

(e) The system of strongly sparse sets. A set M cz X will be called strongly sparse 
if for any sequence of nonzero elements (a„) complete in X we can write M cz 

00 

c: и L„^, where each L„ „, is a Lipschitz hypersurface associated with x„. 
n,m= 1 

(f) The system of d.c.-sparse sets. A set M e X will be called a ô-convex hyper
surface (or d.c.-hyper surf ace) associated with D Ф 0 if there exists a topological 
complement Z of Rv and convex Lipschitz functions / i , / 2 on Z such that M = 
= {z + (/i(^) —fii^))^^ ZGZ]. Note that d.c.-hypersurfaces are called (c -- c)-
hypersurfaces in [26]. A subset of X will be called d.c.-sparse if it can be covered 
by countably many d.c.-hypersurfaces. 

From results of [26] the following useful proposition easily follows. 

Proposition 1. Let (a„) be a sequence of nonzero elements of X complete in X. 
00 

Let M cz X be d.c.-sparse. Then M cz [J Я„^ , where H„ „, is a d.c.-hy per surf ace 
n,m= 1 

associated with a„. 

Proof. By ([26], Proposition 3) there exists a continuous convex function/ on X 
such that / is not Gateuax differentiable at any point xeM. Consequently for any 
xe M there exists n such that the two-sided directional derivative of / at x in the 
direction д„ does not exist. Using ([26], Lem.ma 2) we easily obtain the conclusion 
of our proposition. 

For references concerning ^-convex functions in Euclidean spaces see [19]. 
Now we shall briefly discuss the relationships between the classes defined above. 
Any set belonging to J</ is a Gaussian null set and it is not known whether there 

exists a Gaussian null set which does not belong to s^ [17]. 
The inclusion s^^ cz se is obvious. For a measure proof of the inequality sé^ ф j / 

see [3]. We can also use a category argument which works in any X. In fact, using 
the Kuratowski-Ulam category analogue of the Fubini theorem, we obtain that any 
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set from sé^ is a first category set. On the other hand, in any X there exists a residual 
set M e seЛХ. is sufficient to choose a residual set Г c: i? of Lebesgue measure zero 
and to put M =• \x\ x*(x) e 7̂ } for a nonzero x* G X. 

Any sparse set obviously is of the first category. Therefore there exists a set M e ^з/ 
which is not sparse. 

From the theory of Gaussian measures it easily follows that any Borel sparse set 
is a Gaussian null set ([25], p. 521). 

Now we shall prove the (possibly stronger) proposition that any Borel sparse 
set M belongs to se. Let yl be a Lipschitz hypersurface, and let v, Z, / be as in the 
definition of a Lipschitz hypersurface. For x = z + ;7f, p E R, z e Z, put g(x) = 
= max [p — f(v), O). It is easy to prove that g is Lipschitz on X and Gateaux dif-
ferentiable at no point x e A. Therefore A e se by Aronszajn's theorem. Now it is 
easy to complete the proof. 

We are not able to prove any relationship between the class s^^ and the class of all 
Borel sparse sets. 

Any strongly sparse set is clearly sparse and any Borel strongly sparse set belongs 
to J3/^ 

We have no example of a set from s^^ which would not be strongly sparse. 
Now we shall prove that there exist sparse sets which are not strongly sparse. 

L e t / \ R -^ RhQ г, 1-Lipschitz function (see e.g. [15]) for which there exists a dense 
set D cz /̂  such that Dini's dérivâtes o f / at any point xe D satisfy the following 
relations: 

(1) /"W = / 'W = 1. AW = /-W = 0. 

Let M c:. R^ be the graph o f / Put a^ = (2Д)? (^i — (~2, l ) and suppose that 
00 00 

M CI (J ^1 „ u и A2^n, where Л^ „(^2^„) are Lipschitz hypersurfacts associated with a^ 

(^2, respectively). Using the Baire theorem we obtain that there exists a set Л,-„, 
/ = 1,2, containing a nonempty relatively open subset of M. But this is a contradic
tion with (l). The argument can be easily generalized to the case of an arbitrary 
space X. 

Now we shall prove that in any X there exists a strongly sparse set M which is not 
d.c.-sparse. Le t / \ R -^ Rht г, differentiable function whose derivative has unbounded 
variation on each interval. Let x, у be linearly independent elements of X and let С 
be a topological complement of Span {x, y]. Define M = {/(t) y + tx Л- c\ t e R, 
с E C}. It is not difficult to prove that M is strongly sparse. We can use e.g. ([25], 
Lemma 1) and the easy fact that contg (M, x) is a subspace of X of codimension 1 
for any X E M. Suppose that M is d.c.-sparse. Let (v„) be a sequence comiplete in X 
such that Vi = x, V2 = y. By Proposition 1 and the Baire theorem we obtain that 
a nonempty relatively open subset of M is contained in a d.c.-hypersurface associated 
with a v„. Now it is easy to obtain a contradiction, using the property of/. 
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2. POINTS OF MULTIVALUEDNESS OF THE METRIC PROJECTION 
IN A SEPARABLE STRICTLY CONVEX BANACH SPACE 

I f / i s a function in a Banach space X we define the one-sided directional derivative 
of / at xeX in the direction v e X SLS DJ{X) = lim (/(x + hv) — f{x))h~^. We 

_ й-*о + 
also define "directional Dini derivatives" DJ{x) = lim sup (/(x + hv) — f{x)) /z~4 

/i->-0 + 

DJ{x) = l iminf( /(x + hv) —f{x))h~^. The usual two-sided directional deriva-

tive will be denote by dj{x). Clearly dj{x) exists if and only if DJ{x) = —D^J{x). 
The following proposition is due to S. V. Konjagin [12]. 

Proposition 2. Let X be a strictly convex space and x G R{F). Then there exists 
V E X such that 

(2) О,ар{х) + D_^dp{x) < 0 

and consequently, д^,dp(x) does not exist. 

Proof. Let j i e Pp{x), у2 ePp(x), yi =t= j2- Put v = У2 — Ух- Since X is strictly 
convex we have 

(3) D,q{x - У2) + D_,q{x - y,) < 0 . 

Since {dp{x + hv) - dp(x)) h~^ S (^(^ + hv - y2) - q{x - ^2)) h~^ for /i > 0, 
we obtain D^dp{x) й L>^^q{x — ^2)- Similarly D_^dp{x) ^ D_^q(x - y^) and there
fore (3) yields (2). 

We shall use also the following version of Proposition 2. 

Proposition 3. Let X be a separable strictly convex smooth space and let (a„) be 
a complete sequence in X. Let x e R{F). Then there exists v e {a^, ^2, ...} such (2) 
holds. 

Proof. Let j i ePp{x), у2 ePp(x), y^ Ф 3̂ 2- Suppose that the conclusion of our 
proposition does not hold. Then the proof of Proposition 2 easily yields that 
J^v^i^ — У2) + F>-^q{x — j i ) ^ 0 for any v e {a^, a2, . . • } . Since X is smooth we 
have --D^^q{x - У2) = L>v(l{^ - У1) and therefore 0^{х - у2) è D^q(x - y^). 
Since the role of yi, y2 is symmetric we obtain D^^q{x — y2) = D^q{x — y^) for any 
vE{ai, «2, . . . } . Consequently, Dy^_y^q{x - y2) = Dy^^y^q{x - y^) and this is 
a contradiction with the strict convexity of X. 

Lemma 1. Let f be a l-Lipschitz function on X, xeX. Then the function g(v) =• 
= DJ(x) is l-Lipschitz on X. 

Proof. The function gt(v) = {f{x + tv) ~ f{x)) t~^ is l-Lipschitz for any t > 0 
(see e.g. [З], Chap. II, Proposition 6). Therefore g(v) = lim sup {gt{v); 0 < t < h] 

is l-Lipschitz. 
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The following lemma is essentially due to S. V.Konjagin [12]. 

Lemma 2. Letf be a Lipschitz function on X,Q Ф v eX. Let Dj{x) 4- D_J{x) < 
< 0 for any X e M cz X. Then M can be covered by countably many Lipschitz 
hypersurfaces associated with v. 

Proof. For xeM there exist rational numbers p < q such that DJ{x) < p < 
< q < — D_y/(x) and we can find a natural number n such that 

(4) (/(x + tv) - f{x)) t-' <p<q< {fix) - f{x - tv)) r' 

whenever 0 < t ^ n~^. 
If we denote by M(p, q, n) the set of all xe M for which (4) holds, obviously 

M = [jM{p, q, n). Choose a triple p, q, n, a topological complement W of V: = 
: = Span [v] and a countable covering (Bj^) of X by sets of diameters less than 
ЦуЦ/т̂ Цтг̂ Ц, where Пу is the projector on F parallel to W. To complete the proof it is 
sufficient to show that for any к the set M(p, q, n) n Bj^ is a, subset of a Lipschitz 
hypersurface associated with v. For this purpose fix к and choose points a ф Ь 
from М{р, q, n) n Bj^. Let a = ay + ÜW^ b = by + Ьцг, where ay, byeV and 
ajY, ЬцгЕ W. We can suppose that by — ay = tv, Г > 0. By the definition of ß^ we 
have \\ay — by\\ й Цтг̂Ц \\b — a\\ S \\^\\l^ ̂ ^^ consequently, 

(5) 0 < ^ ^ 1/n . 

Put 
D, = / (b) - / ( V + ay), D, = / (b ) - f{a^ + by) , 

D2 = fibw + ay) - f{a) , D^ = f{a^ + by) - f{a). 

Obviously 

(6) D, + D2 = D, + D^=f{b)^f{a) 

and 

(7) \I^2\ й K\\b^ - a^ , |2)з| ^ i ^ | | b ^ - ^ ^ | | , 

where X is a Lipschitz constant of/. By the definition of Mpq^„ and (5) we have 

(8) Di = f{b) - fib - tv) > qt and D^ = f{a + tv) - f{a) < pt. 

On account of (6), (7) and (8) we obtain 

(^ - P) \\y\\~' \\bv - ay\\ ={q - p)t< D,-- D^ = D^- D2U 

Since for every Lipschitz function defined on a subset of a metric space there exists 
a Lipschitz extension on the the whole space (see e.g. [14]), there exists a Lipschitz 
function g on W such that M(jp, q, n) n B^ cz {g{w) v + w; w e W} and therefore 
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М{р, q, п) n Bf^ is a subset of a Lipschitz hypersurface associated with v. The proof 
is complete. 

Theorem 1. Let X be a separable strictly convex space. Then R{F) is a sparse set. 

Proof. Let С be a countable dense subset of X and x e R{F). By Proposition 2 
and Lemma 1 there exists v e С such that (2) holds. Using Lemma 2 we obtain that 
R{F) is a sparse set. 

Theorem 2. Let X be a separable strictly convex smooth space. Then R{F) is 
strongly sparse. 

Proof. It is sufficient to use Proposition 3 and Lemma 2. 

3. SOME NOTES ON DIFFERENTIABILITY OF THE DISTANCE FUNCTION 
IN GENERAL BANACH SPACES 

Any distance function is a 1-Lipschitz function. Consequently, by the well-known 
Rademacher's theorem N(F) is a set of Lebesgue measure zero if d imX < oo. 
Aronszajn's theorem on the differentiation of Lipschitz function yields N(F) e se 
ïïX is separable [3]. If X = Я" then by the Mises theorem and Theorem 2 we obtain 
that A (̂î ) is strongly sparse (and, consequently, a first category set). This result will 
be improved in Section 5. In Section 4 it will be proved in the case of a separable X 
which has a uniformly Gateaux differentiable norm. S. Fitzpatrick ([9], Corollary 
3.7) has proved that in reflexive locally uniformly convex smooth (or Frechet smooth) 
spaces dp is Gateaux (Frechet, respectively) differentiable at all x^F except a set of 
the first category. Note that by ([9], Theorem 3.1) and ([13], Corollary 5) in strongly 
convex (for the definition see [13]) smooth (or Frechet smooth) spaces the same theo
rem holds. It is an interesting problem to characterize the spaces which have this 
property. We sketch the proof of the following simple proposition concerning the 
problem mentioned above. 

Proposition 4. If X is not smooth then there exists a closed set F cz X for which 
N(F) is a residual set. 

Proof. Choose з,п a eX, \\a\\ = 1, at which the norm q is not Gateaux differen
tiable. It is easy to prove that there exists a support hyperplane H of the closed unit 
ball at the point a and veH, \\v\\ = 1, for which D^q(a) > 0 and D^^,q{a) > 0. 
Let Г be a topological complement to Span {v} in H. Let Ö' be a 1-Lipschitz function 
on R which is not differentiable on a residual set M e R (see e.g. [15]). For any 
с > 0 define the Lipschitz hypersurface H^ = {cf{p)a + pv + t; p e R, te T}. 
It is easy to prove the following geometrically obvious fact: For all sufficiently small с 
the distance from a point of the form xa + pv -\- t to H^ equals a — cf{p)' Con
sequently, dvdnXy) exists for no point у from the residual set {xa + pv + t; p E M, 
teT, XER}. 
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We can also investigate the set N'^{F) (or Nf(F)) of the points x e F at which dp is 
not Gateaux (Frechet, respectively) differentiable. The following notes generalize 
an Erdös [8] observation. 

Obviously Ng{F) cz N^F) с Bd F. If x e Bd F then it is easy to see that x ф N*{F) 
if and only if D^,dp(x) = 0 for any v eX. It is not difficult to characterize the magni
tude of sets iV*(F), iV*(F). 

Definition. We shall say that Л cz X is directionally porous [or porous) if for any 
a E Ä there exist 0 Ф veX ({v„), \\v„\\ = 1, respectively), p > 0, t„ \ 0 and r„ \ 0 
such that B{a + t„v, pr„) с B{a, r„) - A (resp. B{a + t^v^, pr„) с B{a, r„) — A). 
{B{S, r) denotes the open ball with a centre 5 and a radius r.) 

It is easy to see that if dim X < oo then the both notions coincide. The notion of 
a porous (and d-porous) set was introduced by E. P. Dolzenko [7] (see also [23]). 

Proposition 5, A cz X is a subset of some Ng(F) if and only if A is directionally 
porous. 

Proof. If X G Ng{F) then DJp(x) > 0 for a i; e X. This implies thatiV*(F) is direc
tionally porous. If A is directionally porous then obviously A с Д^*(Я). 

Similarly we obtain the following easy proposition. 

Proposition 6. A ci X is a subset of some NJ(F) if and only if A is porous. 

4. DIFFERENTIABILITY OF THE DISTANCE FUNCTION IN SPACES 
WITH A UNIFORMLY GATEAUX DIFFERENTIABLE NORM 

X is said to have uniformly Gateuax (UG) differentiable norm in the direction v 
if the Hmit lim(||x + tv\\ — ||x||)^~^ = ^^^(x) is uniform on {x; ||x|| = 1} . X is 

said to have (UG) differentiable norm if it is (UG) differentiable in any v eX. 
The following simple facts are essentially known but we have not been able to 

reach a reference for them. 

Proposition 7. The following conditions are equivalent: 
(i) q is (UG) differentiable in the direction v. 

(ii) lim(||x + ^Î;|| — ||x||) t~^ = D^qix) is uniform on {x; ||x|| = 1}. 

(iii) The function g{v) = D^^q{x) is uniformly continuous on {x; ||x|| = 1}. 

(iv) For any r > 0, g is uniformly continuous on (x; ||x|| > r]. 

(v) For any r > 0, lim (||x + tv\\ — ||x||) t~^ =^ ^иЯ{^) ^^ uniform on {x; ||x|| > r}. 

Proof. The implications (i) => (ii), (v) => (i) are obvious. Since the functions 
д^(х) = (||x + tv\\ — ||x||)^~^, / > 0, are uniformly continuous on X, we obtain 
that the implications (ii) => (iii) and (v) => (iv) are valid. The implication (iii) => (iv) 
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follows from the fact that D^,q{x) = D^q{xl\\x\\) and the mapping G{x) = хЦхЦ 
is 2jr — Lipschitz on {x; ||x|| > r}. Now we shall prove the implication (iv) => (v). 
Let r > 0 and г > 0 be fixed. By (iv) we can choose S > 0 such that Dj{x) — г S 
S DJ{x + vt) g DJ(x) + e whenever ЦхЦ > 2r and -d < t < д. From the clas
sical Dini's theorem (see e.g. [20], p. 204) easily follows that 

Dj{x) - e ^ (/(x + vt) - f{x)) r' й Dj{x) + e 

whenever | |x| > 2r and ~ô < t < ô. Therefore (v) holds. The proof is complete. 
Let X Ф F and i; E Z be given. Denote by #" the filter with the basis {{j; |]ĵ  — x|| < 

< dp(x) + a}; s > 0] and put L(F, x, v) = lim inf D^,q(x — y). 
y,SP 

The following lemma is obvious. 

Lemma 3. L{F, x, v) = lim (inf \T>^q{x — y); J e F, \y — x\ < dp(x) + e}) = 

= min {lim inf D,^(-^ ~ Ĵ «); (Уг.) c= i^, ||j„ - x|| -> ^Дх)} = min {lim D,q(x - y„); 

(Уп) ^ F. \\Уп - 4 -^ ^F(X)}. 
The following lemma is an easy consequence of Lemma 3 and Lemma L 

Lemma 4. | L ( F , X, î )j ^ L The function L(v) := L(JP, X, î ) is l-Lipschitz. If X is 
smooth, then L{v) is a concave function. 

Theorem 3. Let veX. Then the following conditions are equivalent: 
(i) X has a (UG) differentiable norm in the direction v. 
(ii) For any closed 0 Ф F c: Z and x ф F, D„Jp(x) exists. 
If these conditions hold, then D^dp{x) = L{F, x, v). 

Proof, a) Suppose that (i) holds and F, x ф F are fixed. It is sufficient to prove 

(9) DJj.{x) ^ L{F, X, v) 

and 

(10) DJp{x) S L{F, X, v). 

Choose t„ \ 0 such that lim {dp{x + t„v) - dp{x)) t~ ^ == D^dp{x). Choose further 

(};„) c: F such that 

(11) lim (||x + t,v - y„\\ - dp{x)) t;' = ^^dfix) . 
n-^oo 

Since dp{x) S \\^ — Уп\\ we obtain 

liminf (||x + t^v - Уп\\ - ||x - y„\\) t;^ < fiA(^) 
n-^oo 

and using the convexity of the norm we infer 

(12) lim inf Ds{^ - л ) ^ ü,dp{x) . 
и->оо 
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The inequahty \\x — y„\\ ^ \\x — Уп + t„v\\ + ||r„i;|| together with (11) easily yields 
11-̂  - Уп\\ -^ ар{х). This fact and (12) yield (9). 

By Lemma 3 we can choose (уп) c= F such that Цл; — j„|| -^ ар{х) and Um D^,(x — 
И->оо 

— };„) = L(F,X,V). We can clearly suppose that \\x — y„|| > r for some r > 0 
and any n. By Proposition 7, (v), for any e > 0 there exists ÎQ > 0 such that 

| ^ . Ф - Уп) - (11̂  - Уп + Ц - \\^ - Уп1) t~^\ < е 

for any О < / < 0̂ ^nd any index п. Let t E (О, ô) be fixed and let n be an arbitrary 
index. Then {djp(x + tv) — ар(хУ) t~^ ^ (||% — j ; ^ + tv\\ — ||x — y„\\) t~^ -{-
+ (11̂  ~ Уп\\ ~ Mx)) r ^ ^ D^q{x - y„) + e + (||x - з;„|| - dp{x)) Г ^ and con
sequently, {dp{x + Гг;) — dp(x)) t"^ S L(F, X, V) + s. From this inequality (10) 
easily follows. 

b) Suppose that (i) does not hold. Then by Proposition 7, (ii), we can choose 
£ > 0, (x„) с X, {t„) с R such that \\x„\\ = 1, 0 < t„ < 1/n and (||x„ + t„v\\ -
— 1) C^ — D^q{Xj) > 3e. Using the convexity of the norm we obtain 

(13) (||x„ + tv\ - 1) r ^ - D^q{x^) > Зг for Ijn ^ t. 

We can suppose that lim D^q{x„) := a exists and |Dy^(x„) — Ö| < e for any n. 
n-*oo 

Put n^ = 1 and choose 0 < J^ < 1 such that {q{x„^ + d^v) — 1) d^^ < a + s. 
Further, choose 0 < Я̂  < 1 for which 

(14) {q{x„^ + d^v) - 1 + Xi)d^^ < a + 8, 

and 0 < Ui < dj^ such that (g((l + Я )̂ л:„̂  + wt;) — 1) w~^ > a + 28 for any 0 < 
< M ^ w-̂ . Let ^2 be an index such that 1/̂ 2 < u^jl and choose 0<d2<Ux, d2< 1/2, 
0 < Я2 < 1/2 for which {q{x„^ + ^2^) — 1 + Я2) <ij^ < fl + г. Proceeding in this 
way we obtain sequences (n^), (Я )̂, (J^), (w )̂ such that d^ > u^ > d2 > -^ > 0, 
Ji -> 0, Я̂  -> 0, 1 > Af > 0, 

(15) l/n,^i < i / , / 2 , 

(16) {q{x„. + div) ~ 1 + Xi)d^^ < a + s 

and 

(17) {q{{i + Я,) x„. + ŵ .t;) - l) wf̂  > « + 28 for i uj • 

Put j ; ^ = —(1 + Я̂ ) x„. and F = {y^, у2» •••}• Obviously Jp(0) = 1. On account 
of (15), {dp{d,v) - 1) J r ' ^ {q{diV ~ yt) - 1) dr' = {q{d,v + x„^ + Я,х„ j - 1) . 
. d^^ ^ (^( :̂„i + îî̂ ) — 1 + Я̂ ) rff ^ < a + 8 and consequently, D^dp{0) ^ a + s. 
On the other hand, for / > j we have by (15) the inequality l/n^ < Ujj(l + Я̂ ) and 
therefore by (13), 

(1 + Я̂ ) uj\q{x„^ + (1 + Я,)-^ W .̂Î;) - 1) > a + 28 . 
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Consequently, 
{q{{l + Я,)х„^ + ujv) - l)uj' = 

= ((1 + Я,) {q{x„^ + (1 + X,)-' Ujv) - 1) + AO UJ' >a + 28. 

By (17) the same inequaUty also holds for i ^ j and consequently, ((i^w^i^) — 1)^7^ à 
^ Ö + 2e for any j . Therefore D^,dp(0) '^ a + Is and Dyd/r(0) does not exist. 

Corollary. If X is finite dimensional and dj,q{x) exists for any x ф 0 then D^dp(x) 
exists for any x ф F and D^dp(x) = inf {D^q(x — y)\ y e Pp{x)]. 

From Theorem 3 and Lemma 4 we immediately obtain the following theorem. 

Theorems*. The following conditions are equivalent'. 
(i) X has a (UG) differentiable norm. 

(ii) For any closed 0 ф F с Z and for any x ф F, v eX, D^dp{x) exists. 

If these conditions hold, then D^dp{x) = L(F, X, V) and the function g{v) = D^dp{x) 
is a l-Lipschitz concave function. 

Corollary.// X is a smooth finite dimensional space, then D^dp{x) = 
= inf {D^q(x — y); \\x — y\\ = dp(x)} for any x ф F, veX. The function g(v) = 
= D^dp{x) is l-Lipschitz and concave. 

The special case of Corollary is the Mises theorem. 

Theorem 4. Let X be a separable space with a (UG) differentiable norm. Then 
N(F) is strongly sparse. 

Proof. Let {a„) be a sequence complete in X and denote by A„ the set of all xe F 
for which d^jdpix) does not exist. By Theorem 3 and Lemma 2, A„ can be covered 
by countably many Lipschitz hypersurfaces associated with a„. If d^ßp{x) exists for 
any n, then dp is Gateaux differentiable at x, since by Theorem 3, g{v) is a con
tinuous concave function and Dßp{x) = Dj^g(0) = g(v) for any v e X. Therefore 

00 

N(F) d [j A„ and the proof is complete. 

Corollary. Let X be a smooth n-dimensional space. Then N(F) has a a-finite 
{n — lydimensional (^Hausdorff) measure. 

It is easy to see that Theorem 4 can be slightly generalized in the following way. 
The notion of strongly sparse subset of an affine manifold is defined in the obvious 
way. 

Theorem 4*. Let X be a Banach space and S cz X a separable subspace such 
that the norm of X is (UG) differentiable in any direction v e S. Let A be an affine 
manifold of the form A = a + S. Then the set of points x E A — F at which the 
restriction dpjA is not Gateaux differentiable is a strongly sparse subset of A. 
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5. SMOOTHNESS OF THE DISTANCE FUNCTION IN HILBERT AND SOME 
FINITE DIMENSIONAL SPACES 

The main results of the present section are stated without proofs in [27]. The main 
method which generahzes an Asplund's argument [4] was independently used 
in [1]. 

Lemma 5. Let H be a real Hilbert space and G a H an open convex set. Let g 
he a Frechet differentiable function on G and let the function x ~> g'{x) be K-
Lipschitz on G. Then the function f(x) := iC||xp/2 — g{x) is convex on G. 

Proof. Let aeG and ||i;|| = 1. Put h{t) = f{a + tv). Let Г2 > t^ and a + t^v, 
a + t2VE G. Then h'{t2) ~ h'{ti) = K(a + t2V, v) - K(a + t^v, v) - {g'{a + t2v), 
v) + {g'{a + t^v), v)) ^ K{t2 - t^) - \g'{a + 2̂̂ )̂ - 9'{'^ + ^i^)|| ^ 0- Therefore h 
is convex on the interval [t\ a + tv e G] and consequently/is convex on G. 

A function on a convex open subset of X is said to be ô-convex if it is the difference 
of two continuous convex functions on G. 

Theorem 5. Let {X, ||*||) be a Banach space such that the Frechet derivative of 
the norm || • || /5 C-Lipschitz on [x; \\x\\ = 1}. Suppose that on X there exists an 
equivalent Hilbert norm || • Ц,,. Then d^ is locally ô-convex on X — F. 

Proof. Choose Б > 0 such that ||:x:||,,/ß < \x\ < Щ'х\н for any xeX. Choose 
XQEX — F and put G = {x; ||x — Xo|| < dp{xo)l2}. Since the mapping x -> x/||x|| 
is 4/J^/(xo)-Lipschitz on M := [x; \\x\\ > dp{xQ)l2}, we obtain that || • || : {X, ||-||) -^ 
-> R has a 4C/J^.(xo)~Lipschitz derivative on M and consequently || • || : {X, || • Ц,,) -> Я 
has a 4B^C/(ip(xo)-Lipschitz derivative on M. Therefore each function g у : {X, || • ||,,) -> 
-> jR, gy{x) = \\x — j ^ | | , у E F, has a iC-Lipschitz derivative on G, where К = 
= 4B^C/(ip(xo). By Lemma 5 each function x -> X||x||^/2 - \\x — y\, yEF, is 
convex on G and therefore the function 

V{x) := K\\x\\^,l2 - dp{x) - sup {K\\x\\ll2 - \\x - y\\; y E F} 

is a continuous convex function on G. Thus the function dp{x) = i<^|U||^/2 — F(x) 
is (5-convex on G. 

Since any Hilbert space is an Asplund space we obtain the following proposition 
which is a special case of ([9], Corollary 3.7). 

Corollary 1. Let X be a Hilbert space. Then the set of points x ф F at which dp 
is not Frechet differentiable is a first category set. 

If we define the notion of a d.c.-sparse subset of an affine manifold in the obvious 
way, then from Theorem 5 and ([26], Theorem 2) we obtain the following corollary. 

Corollary 2. Let X be a Hilbert space and let S a X be a separable affine 
manifold. Then the set of points x E S ~- F at which dpjS is not Gateaux differen
tiable is a d.c.'Sparse subset of S. 
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Using the Buseman-Feller-Aleksandrov theorem [2] on twice differentiability of 
convex functions we obtain the following corollary. 

Corollary 3. Let X be a Hubert space and let M cz X be a finite dimensional 
affine manifold. Then dpJM is twice differentiable (in any one of the two most 
natural generalized senses, cf. [9]) almost everywhere on M — F. 

Corollary 4. Let X be a finite dimensional space such that the Frechet derivative 
of the norm ||-|j is Lipschitz on [x; \\x\\ = 1}. Then N{F) is d.c.-sparse and dp is 
twice differentiable almost everywhere on X •— F. 

Slightly modifying in the obvious way the proof of Theorem 5 we can obtain the 
following theorem. 

Theorem 5*. Let X be a Banach space such that the Frechet derivative of the 
norm I'll is Lipschitz on (x; ||x|| = 1}. Let M a X be a finite dimensional affine 
manifold. Then dpJM is locally ô-convex on M — F. 

The following proposition on "differentiability of the distance function on ^-convex 
curves" will be applied in the next section. Note that the same argument can be used 
to obtain an analogous result for "/c~dimensional (5-convex surfaces in jR"". 

Proposition 8. Let X = R". Let f^, -.-.fn be locally ô-convex function on (a, b) 
such that {f\_{x),...,fn{x))^Ffor any xe(a,b). Then dp(f^(x), ...,f^(x)) is dif
ferentiable on (a, b) except for a countable set. 

Proof. Using Theorem 5 and a P. Hartman's theorem ( [ l l ] , II) we obtain that 
dp{fj^(x), ...,f„(x)) is locally (5-convex on (a, b). 

6. POINTS OF MULTIVALUEDNESS OF THE METRIC PROJECTION 
IN SEPARABLE HILBERT SPACES AND SOME FINITE DIMENSIONAL SPACES 

If X is strictly convex then R(F) CZ N[F) (e.g. by Proposition 2). Therefore Corol
lary 2 and Corollary 4 of Theorem 5 immediately yield the following theorems. 

Theorem 6. Let X be a separable Hilbert space. Then R{F^ is a d.c.-sparse set. 

Theorem 7. Let X be a strictly convex finite dimensional space such that the de
rivative of the norm || • || is Lipschitz on {x; \\x\\ = 1}. Then R(F) is a d.c.-sparse set. 

The following two propositions illustrate the sharpness of Theorem 6. 

Proposition 4. Let H be a Hilbert space and С cz H a closed convex set for which 
Int С Ф 0. Then there exists a closed set F cz H such that BdC с R{F), 

Proof. Choose a point a e Int C. For any b e BdC choose a hyperplane Я ,̂ sup
porting С at the point b and denote by Хъ the point symmetric to the point a with 
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respect to the hyperplane Я^,. Put F = а и [j {х ,̂}. Now it is sufficient to prove 
beBdC 

that for any b, с e BdC, Ь Ф c, the inequality ||b — a\\ = \\b — х^Ц ^ ||b — х̂ Ц 
holds. But the inequality ||b — ß|| ^ ||b — х̂ Ц is obvious, since a and x^ are sym
metric with respect to H^ and b, a belong to the same closed half-space determined 
by the hyperplane H^. 

Proposition 10. Let H be a Hilbert space. Let M a H be a subspace of со dimension 
1 and letO Ф a E M-^. Let f \ M -^ R be Frechet differ entiable on M and let f(x) 
be K-Lipschitz on M. Then there exists a closed set F a H such that 

S:= {x + f{x) a; xeM} cz R{F). 

Proof. For xeM denote by T^ the tangent hyperplane to S at the point x + 
+ f{x) a. Denote by n^ the unit vector orthogonal to T^ for which (a, n^) > 0. 
Put F = [j{x +f{x)a ±K~^n^; XEM}. Let g{x) be the "lower" function in M 
implicitly defined by the sphere with the centre x + f{x) + K~^n^ and the radius K~^. 
Analogously as in Lemma 5 we can easily prove that g{x) — f{x) is convex on the 
domain Dg of g and hence g{x) ^ f{x) for x e Dg. Consequently, we obtain that 
ds{x + f{x) a + K~^n^) = K~^forxeM. Similarly we obtain that ds{x + f{x) a — 
- K'^^) = K~4or xeM. Consequently, S с R{F). 

We have not been able to solve the following problem. 

Problem 1. Let A c: R^ be a ô-convex hyper surf ace. Is A Qocally) a subset of an 

R(F)1 

The following proposition (which can be in an obvious way generalized to the case 
of Ä", n ^ 3) can be of interest in connection with the preceding problem. 

Proposition 11. Let С a R^ be a ô-convex hy persurf ace and let F a R^' be a closed 
set. Then for all x e С n R(F) except for a countable set we have РДх) = {Pi(x), 
P2{x)}, where the points Pi(x), Pzi^) cire symmetric with respect to the tangent 
to С at X. 

Proof. For all points x e С n R{F) except for a countable set the tangent to С 
exists. Let v^ be the direction of this tangent. It is not difficult to prove that Proposi
tion 8 yields that d.^ßp{x) exists for any xe С n R(F) except for a countable set. 
Consequently, the Mises theorem implies the conclusion of our proposition. 

00 

The following example shows that there exist closed sets F„ such that (J R{F„) 
n=l 

is a subset of no R{F). 

Example 1. Put Л = ( - 1 , 1) x {0, + 1 , +1/2, +1/3, . . . } . Clearly A с [J R{F„) 
n = l 

for some F„. Suppose that A a R(F) for some F and choose b e РДО). Clearly no 
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point from the segment s = b,0 belongs to R{F) — (0). But 5 n Л is infinite and this 
is a contradiction. 

Example!. Put 5„ = ( - 1 , 1) x {l/n}, n = 1, 2, ..., and So = ( - 1 , 1) x {0]. 
Let A„ c= 5„ be a set such that any relatively open subset of S„ contains uncountably 

00 

many points from A^. Then A := [) A„ is a, subset of no R{F). Suppose on the 
n = 0 

contrary A с R{F). By Proposition 11 we can choose a = [t, 0), \t\ < 1, such that 
Pf{a) = {(x, y), (x, —y)],0 < X < 1, >̂  > 0. Choose n for which there exists a point 
с e 5„ in the relative interior of the segment a, (x, y). By Proposition 11 there exists 
a sequence (q) с 5„, Cj, -> c, such that Pp = {Pi(cfc), P2{ck)}, where Pi(cjt), Р 2 Ы 
are symmetric with respect to S„. Since Рр{с) = ((x, y)] and Pp is upper semiconti-
nuous we obtain a contradiction. 

The examples indicate that the problem of characterization of the magnitude of 
sets R{F) (i.e. the problem of characterization of the class [A; A ^ R{F) for some F]) 
is very difficult. 

We pose the following easier problem. 

Problem 2. Let H be a separable Hilbert space. What is the smallest o-ideal I 
which contains all sets R(^F)1 

Theorem 6 and Propositions 9, 10 suggest the following natural conjecture. 

(i) / is the class of all d.c.-sparse sets. 
(ii) / is the class of all sets which can be covered by countably many Resetnjak's 

hypersurfaces. We say that Л с Я is a Resetnjak's hypersurface (cf. [l^]) if A is 
a Lipschitz hypersurface and the function/ : Z -^ R from the definition of a Lipschitz 
hypersurface is of the form/(%) = ^||:x:P — c(x), where К > 0 and c(x) is a conti
nuous convex function on Z. 

In [12] Konjagin clasified the points from R(F) in the following way. Let к be 
a positive integer. Then we denote by Rk{F) {R^{F)) the set of points x for which the 
dimension (the codimension) of the closed affine manifold spanned by Pf{x) is at 
least к (at most k, respectively). 

Define further R%{F) as the set of points x for which the convex closure of Рр{х) 
contains a ball in an affine manifold of codimension k. Clearly R^^{F) a R^(^F). 

If Я is a Hilbert space then there exists [4] a continuous convex function/(namely, 
f{x) = l /2( | |xp - dl{x)) such that Pp{x) с df{x). Using Proposition 2 from [26] 
we easily obtain the following theorem. 

Theorem 8. / / X is a separable Hilbert space then Rk{F) can be covered by 
countably many d.c.surfaces of codimension k. 

By a d.c.-surface of codimension к we mean an (00 — /c)-dimensional (c — c)-surfa-
ce from [26]. 

In the case X = R", Theorem 8 improves result by Erdös (cf. Introduction). 
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Since the subdifferential x -> df{x) of a continuous convex function is a monotone 
operator and df{x) с Z* is a closed convex set for any x, we obtain by Theorem 3 
from [24] the following theorem. 

Theorem 9. If X is a separable Hilbert space then R%{F) can he covered by 
countably many Lipschitz surfaces of dimension k. 

For the definition of a Lipschitz surface of dimension к see ([24], p. 181). We 
have no analogous result concerning R^{F). 
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