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Czechoslovak Mathematical Journal, 33 (108) 1983, Praha 

ON /c-DOMATIC NUMBERS OF GRAPHS 

BoHDAN ZELINKA, ЫЬСГСС 

(Received March 4, 1982) 

In [1] M. Borowiecki and M. Kuzak have generahzed the concept of a dominating 
set in a graph. Let G be an undirected graph without loops and multiple edges, let к 
be a positive integer. A /c-dominating set in the graph G is a subset D of the vertex 
set F(G) of G with the property that for each vertex x e V(^G) — D there exists a vertex 
y e D such that d{x, y) ^ k. (The symbol d(x, y) denotes the distance of the vertices 
X, y in the graph G.) For fe = 1 the /c-dominating sets are dominating sets in the usual 
sense. 

This leads to a generalization of the concept of the domatic number of a graph 
which was introduced by E. J. Cockayne and S. T. Hedetniemi in [2]. A /c-domatic 
partition of G is a partition of F(G), all of whose classes are /c-dominating sets in G. 
The maximum number of classes of a /c-domatic partition of G is called the k-
domatic number of G and denoted by dk{G). 

For /c = 1 we have ^^(G) = d(G), where d{G) is the domatic number of G. 

Proposition 1. Let /c, / be positive integers, к < I. Let G be an undirected graph. 
Then dj^G) й di{G). 

Proof. From the definition of a /c-dominating set it is clear that each /c-dominating 
set in G is also /-dominating in G and hence each /c-domatic partition of G is an l-
domatic partition of G. This implies the assertion. П 

Proposition 2. Let G be an undirected graph with n vertices, let D(G) be its dia
meter. Then dj,(G) = n for each к ^ D ( G ) . 

Proof. Let /c ^ D{G), let x G V(G). For each y e V{G) we have d{x, y) ^ D{G) g 
^ k, therefore {x} is a /c-dominating set in G. The partition of V(G) into one-element 
sets is a /c-domatic partition of G; it has n classes and no partition of V{G) can have 
more than n classes. This impHes dj^[G) = n. П 

Proposition 3. Let G be an undirected graph, Jet G' be its spanning subgraph. 
Then dk{G) è 4(<^0-

Proof. The assertion follows from the fact that l^(G') = V{G) and the distance of 
arbitrary two vertices in G' is greater than or equal to that in G. Q 
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Proposition 4. Let G be an undirected graph, let к be a positive integer. Then 
di^[G) is equal to the minimum of k-domatic numbers of all connected components 
ofG, 

The proof is left to the reader. 

Theorem 1. Let G be a connected undirected graph with n vertices, let к be a posi
tive integer. Then 

dj,(G) ^ min (n, /c + 1) . 

Proof. I fn ^ к + 1, then the diameter of G is at most /c, therefore d^(G) = n. 
Suppose that n > к + 1. Choose a spanning tree Tof G. If the diameter of Tis less 
than or equal to /c, then so is the diameter of G and dj,{G) — n. If the diameter of T 
is greater than k, let с be a centre of T. Let P be a diametral path in T; the vertex с 
lies on P. Let Pi , P2 be two subpaths of P whose union is the whole P and which have 
exactly one vertex in common, namely с If T has two centres, then we suppose 
(without loss of generality) that the centre different from с lies on P^. LetP^ be the 
subtree of T whose vertex set consists of all vertices x with the property that с does 
not lie between x and any vertex of P^. We shall colour the vertices of T by the colours 
0, 1, ..., /c in the following way. The vertex с is coloured by 0. Any vertex of B^ is 
coloured by the colour i such that i e {0, 1, ..., k] and i = —d(c, x) (mod (k + 1)). 
Any vertex x of Tnot lying in B^ is coloured by the colour / such that i e {0, 1, ..., k] 
and / = d{c, x) (mod (/c + l)). In both these cases d[c, x) denotes the distance of с 
and X in T. As the diameter of T is greater than /c, the path P^ has a length at least 
]/c/2[ and contains the vertices of all the colours [/c/2] + 1, ..., /c; the path P2 has 
a length at least \kji\ and contains the vertices of all the colours 1, ..., [/c/2]. 
(Here and in the sequel for an arbitrary real number a the symbol [a] denotes the 
greatest integer which is less than or equal to a and the symbol ]a [ denotes the least 
integer which is greater than or equal to a) Let D^ be the set of all vertices of T 
which are coloured by the colour / (for / = 0, 1, ..., /c). Let / be an arbitrary one from 
the numbers 0, 1, ..., /c; we shall prove that D,- is a /c-dominating set in T Let x e 
G V{T) — Di\ then X e Dj for some j distinct from i. Suppose i < j . If x does not lie 
in B^, then on the path connecting x with с there is a vertex у such that J(c, y) = 
= d{c, x) — 7 + /; we have у e D^ and d{x, y) = j — i S к. If x lies in B^ and 
d{c, x) ^ /c + 1, then there exists a vertex у in B^ such that d(c, y) = d{c, x) — 
— /c — 1 — / + 7; we have у e D/ and d{x, 3̂ ) = /c + 1 + i — j ^ /c. If x lies in B^ 
and d(c, x) ^ /c, then d{c, x) = /c + 1 — 7 and there exists a vertex у on P2 such that 
d{c, y) = i; we have у e D^ and d{x, y) = k + l—j + i^k. Now suppose 
i > j . If X lies in P^, then on the path connecting x with с there is a vertex у such 
that d(c, y) = d(c, x) — i + j ; we have у e D, and J(x, y) = i — j ^ k. If x does 
not lie in ВI and d(c, x) ^ /c + 1, then on the path connecting x and с there exists 
a vertex у such that J(c, j;) = d(c, x) — /c — 1 + Ï — 7; we have y e D^ and (i(x, y) = 
= /c + 1 — / + 7 ^ /c. If X does not lie in B^ and d{c, x) ^ k, then rf(c, x) = 7 

310 



and on Pi there exists a vertex y such that d{c, y) = к + 1 — i; then у e D^ 
and d(x, y) = k + l — i-hj^k. We have proved that Dj is a fc-dominating set 
in T. As i was chosen arbitrarily, {DQ, D^, ..., D̂ }̂ is a A;-domatic partition of Twith 
/c + 1 classes and d],(T) ^ к + 1. According to Proposition 3 we have dk{G) ^ 
^ d„{T) ^ /c + 1. D 

A graph consisting of one path will be called a snake. 

Theorem 2. Let G be a snake with n vertices, let к be a positive integer. Then 

dk{G) = min (n, к + i) . 

Proof. According to Theorem 1 the A:-domatic number of G is at least 
min (n, к + 1). If n ^ к + 1, it evidently cannot be greater. Thus suppose that 
n > к + 1. Let w be a terminal vertex of G. There are exactly /c + 1 vertices of G 
whose distances from и are at most k. If ^ is a partition of V(G) into at least к + 2 
classes, then at least one class of ^ contains none of these vertices. This class is not 
a /c-dominating set in G, thus .^ is not a ^-domatic partition of G. Hence d},(G) = 
= к + 1 = min (n, /с + 1). D 

Theorem 3. Let к, n be two positive integers, let 2 ^ к < n. Then for each integer 
m such that к + 1 ^ m ^ n there exists a tree T^ with n vertices such that dyj(Tj^ = 
= m. 

Proof. According to Theorem 2 a snake with n vertices may be taken as T^^^, 
Now let /c + 2 ^ m g Л. Let a = [n/m]. Take a snake S with a{k + 1) vertices. 
Let M be a terminal vertex of S. Let v be the vertex of S adjacent to w. To each vertex 
of S distinct from v whose distance from и is congruent with 1 modulo /c + 1 (there 
are exactly a — 1 such vertices) we add m — к — I new vertices and join them with 
it by edges. To v we add n — am + m — к — 1 new vertices and join them with 
by edges. We obtain a tree T^ which has evidently n vertices. Now we colour the 
vertices of T^ by the colours 0, 1, ..., m — 1. If x is a vertex of S, then we colour it 
by the colour i such that i e {0, 1, ..., k} and i = d{u, x) (mod (k + 1)). If y is 
a vertex of S such that y ^ v and d{u, j^) = 1 (mod [k + 1)), then to y we have 
added m — к — 1 new vertices; we colour them by the colours к + l , . . . , m — 1. 
The vertices adjacent to v and not belonging to S will be coloured also by the colours 
/c + 1, ..., m — 1; some of these colours may be repeated. (We have n — am + 
-\-m — k— l^m — k — 1, because a ^ n/m.) Let Di be the set of all vertices 
of T^ coloured by the colour i (for i = 0, 1, . . . , m — l). We shall prove that each D,-
is a /c-dominating set in T^. First suppose i g к. Let x e V{T^ — D^; then x e Dj 
for some j Ф i. If j < f, then x belongs to S. If d{u, x) ^ k, then d{u, x) = j . There 
exists a vertex у of S such that d{u, y) = i; we have y e Di and d{x, y) = i — j й ^• 
If d(u, x) ^ к + 1, then there exists a vertex >; of iS such that d(u, y) = d{u, x) — 
~ к + i — j — 1; WQ have у e Di and d{x, y) = k— i+j+l^k. If i<j^k, 
then X belongs to 5. There exists a vertex у of S such that d{u, y) = d(u, x) + i — j ; 
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we have y e D,- and d[x, y) = j ~ i S к. If J > /c, then x does not belong to S and 
is adjacent to a vertex z e D^. If z = v, then there exists a vertex y of S such that 
d(u, y) = i; we have y E D^ and d(x, j ) = / ^ /c. If z ф v, i ф 0, i ф 1, / ф 2, then 
there exists a vertex у of S such that (i(i/, 3;) = d{u, z) — /c -b / — 2; we have 
d{x, y) = к ~ i + 3 ^ k. If / = 1, then we have z G D,- and (i(x, z) = 1 g /c. 
If i = 0 or / = 2, then the vertex v of S adjacent to z has the property that y e Di 
and d[x, y) = 2 ^ k. 

Now suppose i > k. Let again x e F(T^) — D ;̂ then x e Dj for some j Ф /. If 
j ^ k, then there exists a vertex z of S such that d{u, z) = d(u, x) — 7 + 1; we have 
z e Di and t/(x, z) = j -~ 1. There exists a vertex y e Di adjacent to z and (i(x, j^) = 
= j ^ k. If 7 > /c, then X is adjacent to a vertex z e D^ and there exists another 
vertex j ; adjacent to z such that y e D^, while J(x, y) = 2 ^ k. 

Thus we have proved that each D,- is a /c-dominating set in T^ and {Do, D^, ... 
..., i);„-i} is a /c-domatic partition of T^, which implies djj"^ ^ m. Now let w be 
the terminal vertex of S distinct from u. There are exactly m vertices (including w 
itself) whose distance from w in T^ is less than or equal to w. By the same considera
tion as in the proof of Theorem 2 we prove that djj^^ cannot be greater than m and 
thus ^/c(T^) = m. П 

In Fig. 1 there is a tree Т„, for к = 4, m = 1, n = 23. 

Fig. 1. 

Theorem 4. Let C„ be a circuit with n vertices, let к be a positive integer. Then 

n 

4(c.) ' ^ 
J2/C + iL_ 

Proof. If n < 2k + 1, then df,{C„) = n according to Proposition 2 and 

n = 
г П 1 

M2/C + i L j 

If n ^ 2/c + 1, then to each vertex of C„ there exist exactly 2/c + 1 vertices (including 
this vertex itself) whose distances from this vertex are at most /c. Therefore each /c-
dominating set in C„ has at least ]n/(2/c + l)[ vertices and each domatic partition 
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of C„ has at most 

classes. 

Now denote 

ilk + iL 

J^^ + iL 
r = {2k + l)q - n, s = ]rjq[ . 

The circuit C„ can be divided into q edge-disjoint paths such that ^5 — r of them 
have the length 2^ + 2 — 5 and the remaining ^ + r — ̂ 5 of them have the length 
2k -\- 1 — s. (The reader may verify that qs — r < q and that the sum of the lengths 
of the described paths is equal to n.) Let P be the set of the described paths. We 
colour the vertices of C„ by the colours 0, 1, ..., 2/c — s in the following way. The 
terminal vertices of the paths of P (each of them common for two of these paths) are 
coloured by 0. Now we choose a sense of running around €„. If a path from P has 
the length 2/c + 1 — 5 (or 2/c + 2 — 5), we run along it in the chosen sense and 
colour its inner vertices consecutively by the colours 1, ..., 2/c —5 (or 0, 1, ...,2k — s, 
respectively). Let D^ be the set of vertices of C„ which are coloured by the colour i 
for i = 0, 1, ...,2k — s. We see that for any fixed / the distance between two vertices 
of Di is at most 2/c + 2 — 5 for 5 ^ 1 and at most 2/c + 1 — 5 for s = 0; thus in 
both the cases at most 2/c + L This implies that any vertex not belonging to D^ has 
the distance at most к from some vertex of Di. Hence Z)̂  is a /c-dominating set in C„, 
{DQ,D^, ..., I>2fe-s} is a /c-domatic partition of C„ and dj,{C„) ^ 2/c — 5 + L We 
shall compute 2/c — s + 1. We have 

2k - s + 1 = 2k - ]rlq[ + 1 = 2/c - ]((2/c -}- 1) q - n)lq[ + 1 = 

- 2/c - {2k + 1) + [nlq] + 1 = {nlq] - \2k + 1 

Therefore dj,{C„) is greater than or equal to this number; as the converse inequality 
was proved above, it is equal to it. П 
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