Bohdan Zelinka
On k-domatic numbers of graphs

Persistent URL: http://dml.cz/dmlcz/101879

Terms of use:

© Institute of Mathematics AS CR, 1983

Institute of Mathematics of the Czech Academy of Sciences provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these Terms of use.
ON k-DOMATIC NUMBERS OF GRAPHS

BOHDAN ZELINKA, Liberec

(Received March 4, 1982)

In [1] M. Borowiecki and M. Kuzak have generalized the concept of a dominating set in a graph. Let G be an undirected graph without loops and multiple edges, let k be a positive integer. A k-dominating set in the graph G is a subset D of the vertex set $V(G)$ of G with the property that for each vertex $x \in V(G) - D$ there exists a vertex $y \in D$ such that $d(x, y) \leq k$. (The symbol $d(x, y)$ denotes the distance of the vertices x, y in the graph G.) For $k = 1$ the k-dominating sets are dominating sets in the usual sense.

This leads to a generalization of the concept of the domatic number of a graph which was introduced by E. J. Cockayne and S. T. Hedetniemi in [2]. A k-domatic partition of G is a partition of $V(G)$, all of whose classes are k-dominating sets in G. The maximum number of classes of a k-domatic partition of G is called the k-domatic number of G and denoted by $d_k(G)$.

For $k = 1$ we have $d_k(G) = d(G)$, where $d(G)$ is the domatic number of G.

Proposition 1. Let k, l be positive integers, $k < l$. Let G be an undirected graph. Then $d_k(G) \leq d_l(G)$.

Proof. From the definition of a k-dominating set it is clear that each k-dominating set in G is also l-dominating in G and hence each k-domatic partition of G is an l-domatic partition of G. This implies the assertion. □

Proposition 2. Let G be an undirected graph with n vertices, let $D(G)$ be its diameter. Then $d_k(G) = n$ for each $k \geq D(G)$.

Proof. Let $k \geq D(G)$, let $x \in V(G)$. For each $y \in V(G)$ we have $d(x, y) \leq D(G) \leq k$, therefore $\{x\}$ is a k-dominating set in G. The partition of $V(G)$ into one-element sets is a k-domatic partition of G; it has n classes and no partition of $V(G)$ can have more than n classes. This implies $d_k(G) = n$. □

Proposition 3. Let G be an undirected graph, let G' be its spanning subgraph. Then $d_k(G) \geq d_k(G')$.

Proof. The assertion follows from the fact that $V(G') = V(G)$ and the distance of arbitrary two vertices in G' is greater than or equal to that in G. □
Proposition 4. Let G be an undirected graph, let k be a positive integer. Then $d_k(G)$ is equal to the minimum of k-domatic numbers of all connected components of G.

The proof is left to the reader.

Theorem 1. Let G be a connected undirected graph with n vertices, let k be a positive integer. Then

$$d_k(G) \geq \min(n, k + 1).$$

Proof. If $n \leq k + 1$, then the diameter of G is at most k, therefore $d_k(G) = n$. Suppose that $n > k + 1$. Choose a spanning tree T of G. If the diameter of T is less than or equal to k, then so is the diameter of G and $d_k(G) = n$. If the diameter of T is greater than k, let c be a centre of T. Let P be a diametral path in T; the vertex c lies on P. Let P_1, P_2 be two subpaths of P whose union is the whole P and which have exactly one vertex in common, namely c. If T has two centres, then we suppose (without loss of generality) that the centre different from c lies on P_1. Let B_1 be the subtree of T whose vertex set consists of all vertices x with the property that c does not lie between x and any vertex of P_1. We shall colour the vertices of T by the colours $0, 1, \ldots, k$ in the following way. The vertex c is coloured by 0. Any vertex of B_1 is coloured by the colour i such that $i \in \{0, 1, \ldots, k\}$ and $i \equiv -d(c, x) \pmod{(k + 1)}$. Any vertex x of T not lying in B_1 is coloured by the colour i such that $i \in \{0, 1, \ldots, k\}$ and $i \equiv d(c, x) \pmod{(k + 1)}$. In both these cases $d(c, x)$ denotes the distance of c and x in T. As the diameter of T is greater than k, the path P_1 has a length at least $\lceil k/2 \rceil$ and contains the vertices of all the colours $\lceil k/2 \rceil + 1, \ldots, k$; the path P_2 has a length at least $\lceil k/2 \rceil$ and contains the vertices of all the colours $1, \ldots, \lceil k/2 \rceil$. (Here and in the sequel for an arbitrary real number a the symbol $\lceil a \rceil$ denotes the greatest integer which is less than or equal to a and the symbol $\lfloor a \rfloor$ denotes the least integer which is greater than or equal to a.) Let D_i be the set of all vertices of T which are coloured by the colour i (for $i = 0, 1, \ldots, k$). Let i be an arbitrary one from the numbers $0, 1, \ldots, k$; we shall prove that D_i is a k-dominating set in T. Let $x \in V(T) - D_i$; then $x \in D_j$ for some j distinct from i. Suppose $i < j$. If x does not lie in B_1, then on the path connecting x with c there is a vertex y such that $d(c, y) = d(c, x) - j + i$; we have $y \in D_i$ and $d(x, y) = j - i \leq k$. If x lies in B_1 and $d(c, x) \geq k + 1$, then there exists a vertex y in B_1 such that $d(c, y) = d(c, x) - k - 1 - j + i$; we have $y \in D_i$ and $d(x, y) = k + 1 + i - j \leq k$. If x lies in B_1 and $d(c, x) \leq k$, then $d(c, x) = k + 1 - j$ and there exists a vertex y on P_2 such that $d(c, y) = i$; we have $y \in D_i$ and $d(x, y) = k + 1 - j + i \leq k$. Now suppose $i > j$. If x lies in B_1, then on the path connecting x with c there is a vertex y such that $d(c, y) = d(c, x) - i + j$; we have $y \in D_j$ and $d(x, y) = i - j \leq k$. If x does not lie in B_1 and $d(c, x) \leq k + 1$, then on the path connecting x and c there exists a vertex y such that $d(c, y) = d(c, x) - k - 1 + i - j$; we have $y \in D_i$ and $d(x, y) = d(c, x) = k + 1 - i + j \leq k$. If x does not lie in B_1 and $d(c, x) \leq k$, then $d(c, x) = j$.
and on P_1 there exists a vertex y such that $d(c, y) = k + 1 - i$; then $y \in D_i$ and $d(x, y) = k + 1 - i + j \leq k$. We have proved that D_i is a k-dominating set in T. As i was chosen arbitrarily, $\{D_0, D_1, \ldots, D_k\}$ is a k-domatic partition of T with $k + 1$ classes and $d_i(T) \geq k + 1$. According to Proposition 3 we have $d_k(G) \geq d_i(T) \geq k + 1$. \square

A graph consisting of one path will be called a snake.

Theorem 2. Let G be a snake with n vertices, let k be a positive integer. Then

$$d_k(G) = \min (n, k + 1).$$

Proof. According to Theorem 1 the k-domatic number of G is at least $\min (n, k + 1)$. If $n \leq k + 1$, it evidently cannot be greater. Thus suppose that $n > k + 1$. Let u be a terminal vertex of G. There are exactly $k + 1$ vertices of G whose distances from u are at most k. If \mathcal{P} is a partition of $V(G)$ into at least $k + 2$ classes, then at least one class of \mathcal{P} contains none of these vertices. This class is not a k-dominating set in G, thus \mathcal{P} is not a k-domatic partition of G. Hence $d_k(G) = k + 1 = \min (n, k + 1)$. \square

Theorem 3. Let k, n be two positive integers, let $2 \leq k < n$. Then for each integer m such that $k + 1 \leq m \leq n$ there exists a tree T_m with n vertices such that $d_k(T_m) = m$.

Proof. According to Theorem 2 a snake with n vertices may be taken as T_{k+1}. Now let $k + 2 \leq m \leq n$. Let $a = \lceil n/m \rceil$. Take a snake S with $a(k + 1)$ vertices. Let u be a terminal vertex of S. Let v be the vertex of S adjacent to u. To each vertex of S distinct from v whose distance from u is congruent with 1 modulo $k + 1$ (there are exactly $a - 1$ such vertices) we add $m - k - 1$ new vertices and join them with it by edges. To v we add $n - am + m - k - 1$ new vertices and join them with it by edges. We obtain a tree T_m which has evidently n vertices. Now we colour the vertices of T_m by the colours $0, 1, \ldots, m - 1$. If x is a vertex of S, then we colour it by the colour i such that $i \in \{0, 1, \ldots, k\}$ and $i \equiv d(u, x) \pmod{(k + 1)}$. If y is a vertex of S such that $y \neq v$ and $d(u, y) \equiv 1 \pmod{(k + 1)}$, then to y we have added $m - k - 1$ new vertices; we colour them by the colours $k + 1, \ldots, m - 1$. The vertices adjacent to v and not belonging to S will be coloured also by the colours $k + 1, \ldots, m - 1$; some of these colours may be repeated. (We have $n - am + m - k - 1 \geq m - k - 1$, because $a \leq n/m$.) Let D_i be the set of all vertices of T_m coloured by the colour i (for $i = 0, 1, \ldots, m - 1$). We shall prove that each D_i is a k-dominating set in T_m. First suppose $i \leq k$. Let $x \in V(T_m) - D_i$; then $x \in D_j$ for some $j \neq i$. If $j < i$, then x belongs to S. If $d(u, x) \leq k$, then $d(u, x) = j$. There exists a vertex y of S such that $d(u, y) = i$; we have $y \in D_i$ and $d(x, y) = i - j \leq k$. If $d(u, x) \geq k + 1$, then there exists a vertex y of S such that $d(u, y) = d(u, x) - k + i - j - 1$; we have $y \in D_i$ and $d(x, y) = k - i + j + 1 \leq k$. If $i < j \leq k$, then x belongs to S. There exists a vertex y of S such that $d(u, y) = d(u, x) + i - j$;
we have $y \in D_i$ and $d(x, y) = j - i \leq k$. If $j > k$, then x does not belong to S and is adjacent to a vertex $z \in D_i$. If $z = v$, then there exists a vertex y of S such that $d(u, y) = i$; we have $y \in D_i$ and $d(x, y) = i \leq k$. If $z \neq v$, $i \neq 0$, $i \neq 1$, $i \neq 2$, then there exists a vertex y of S such that $d(u, y) = d(u, z) - k + i - 2$; we have $d(x, y) = k - i + 3 \leq k$. If $i = 1$, then we have $z \in D_i$ and $d(x, z) = 1 \leq k$. If $i = 0$ or $i = 2$, then the vertex y of S adjacent to z has the property that $y \in D_i$ and $d(x, y) = 2 \leq k$.

Now suppose $i > k$. Let again $x \in V(T_m) - D_i$, then $x \in D_j$ for some $j \neq i$. If $j \leq k$, then there exists a vertex z of S such that $d(u, z) = d(u, x) - j + 1$; we have $z \in D_i$ and $d(x, z) = j - 1$. There exists a vertex $y \in D_i$ adjacent to z and $d(x, y) = j \leq k$. If $j > k$, then x is adjacent to a vertex $z \in D_i$ and there exists another vertex y adjacent to z such that $y \in D_i$; while $d(x, y) = 2 \leq k$.

Thus we have proved that each D_i is a k-dominating set in T_m and $\{D_0, D_1, \ldots, D_{m-1}\}$ is a k-domatic partition of T_m, which implies $d_k(T_m) \geq m$. Now let w be the terminal vertex of S distinct from u. There are exactly m vertices (including w itself) whose distance from w in T_m is less than or equal to m. By the same consideration as in the proof of Theorem 2 we prove that $d_k(T_m)$ cannot be greater than m and thus $d_k(T_m) = m$. \[\square\]

In Fig. 1 there is a tree T_m for $k = 4, m = 7, n = 23$.

![Fig. 1.](attachment:image.png)

Theorem 4. Let C_n be a circuit with n vertices, let k be a positive integer. Then

$$d_k(C_n) = \left\lceil \frac{n}{2k + 1} \right\rceil.$$

Proof. If $n < 2k + 1$, then $d_k(C_n) = n$ according to Proposition 2 and

$$n = \left\lceil \frac{n}{2k + 1} \right\rceil.$$

If $n \geq 2k + 1$, then to each vertex of C_n there exist exactly $2k + 1$ vertices (including this vertex itself) whose distances from this vertex are at most k. Therefore each k-dominating set in C_n has at least $\lceil n/(2k + 1) \rceil$ vertices and each domatic partition
of C_n has at most

$$\left\lfloor \frac{n}{2k + 1} \right\rfloor$$
classes.

Now denote

$$q = \left\lfloor \frac{n}{2k + 1} \right\rfloor, \quad r = (2k + 1)q - n, \quad s = \left\lceil r/q \right\rceil.$$

The circuit C_n can be divided into q edge-disjoint paths such that $qs - r$ of them have the length $2k + 2 - s$ and the remaining $q + r - qs$ of them have the length $2k + 1 - s$. (The reader may verify that $qs - r < q$ and that the sum of the lengths of the described paths is equal to n.) Let P be the set of the described paths. We colour the vertices of C_n by the colours $0, 1, \ldots, 2k - s$ in the following way. The terminal vertices of the paths of P (each of them common for two of these paths) are coloured by 0. Now we choose a sense of running around C_n. If a path from P has the length $2k + 1 - s$ (or $2k + 2 - s$), we run along it in the chosen sense and colour its inner vertices consecutively by the colours $1, \ldots, 2k - s$ (or $0, 1, \ldots, 2k - s$, respectively). Let D_i be the set of vertices of C_n which are coloured by the colour i for $i = 0, 1, \ldots, 2k - s$. We see that for any fixed i the distance between two vertices of D_i is at most $2k + 2 - s$ for $s \geq 1$ and at most $2k + 1 - s$ for $s = 0$; thus in both the cases at most $2k + 1$. This implies that any vertex not belonging to D_i has the distance at most k from some vertex of D_i. Hence D_i is a k-dominating set in C_n, $\{D_0, D_1, \ldots, D_{2k-s}\}$ is a k-domatic partition of C_n and $d_k(C_n) \geq 2k - s + 1$. We shall compute $2k - s + 1$. We have

$$2k - s + 1 = 2k - \left\lceil r/q \right\rceil + 1 = 2k - \left\lceil (2k + 1)q - n)/q \right\rceil + 1 =$$

$$= 2k - (2k + 1) + [n/q] + 1 = [n/q] = \left\lfloor \frac{n}{2k + 1} \right\rfloor.$$

Therefore $d_k(C_n)$ is greater than or equal to this number; as the converse inequality was proved above, it is equal to it. □

References

Author's address: 460 01 Liberec 1, Felberova 2 (katedra matematiky VŠST).