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DOUBLE COVERS AND LOGICS OF GRAPHS

BOHDAN ZELINKA, Liberec

(Received May 5, 1980)

In this paper we shall study logics of graphs [2] with help of double covers of graphs
[3]. We consider finite undirected graphs without loops and multiple edges.

First we shall prove auxiliary results on double covers of graphs. For our purposes
we shall use the definition given in [1].

Given a map f : E(G) —» Z,, the graph D = dc(G, f) is a double cover of G when
V(D) = V(G) x Z, and [(u, x), (v, y)] € E(D) if and only if [u,v]e E(G) and
f([u, v]) = xy.

Here Z, denotes a group of the order 2.

The elements of Z, will be denoted by e and a so that e = a®> = e, ea = ae = a.
For the mapping f mentioned in the definition there are two extreme cases. If f is
a constant mapping which maps each element of E(G) onto e, the double cover of G
consists of two disjoint copies of G. If f maps each element of E(G) onto a, the double
cover of G is a bipartite graph.

We shall (according to [3]) denote [v, e] as v and [v, a] as v’ for each v e V(G).
We describe the double cover dc(G, f) of G corresponding to the mapping f which
maps each edge of G onto a. Denote V = V(G), V' = {v' | ve V(G)}. The vertex set
of de(G, f)is Vu V' . IfueV,veV, u % v, then u is adjacent to v' and v is adjacent
to u’ in de(G, f) if and only if u is adjacent to v in G. There are no pairs of adjacent
vertices in dc(G, f) except those just described.

This graph dc(G, f) is evidently a bipartite graph on the sets ¥, V'. We shall denote
it by B(G) and call it a bipartite double cover of G. Note that a double cover dc(G, f)
may be a bipartite graph even if f is not the described mapping. But in this paper
a bipartite double cover of G will always mean the above described graph.

Now we describe some notation from [2].

If G is a graph and A a non-empty subset of the vertex set ¥(G) of G, then by A*
we denote the set of all vertices of G which are adjacent to all vertices of A. If A = 0,
we put A* = V(G). Further A** = (4*)*. For a one-element subset {x} of V(G)
we write x* and x** instead of {x}* and {x}**.

We shall consider the following properties of a graph G.

Property P 1. For each vertex x of a graph G and for each subset Y of the vertex
set of G the equality x* = Y+ implies x € Y.
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Property P 2. For any two vertices x, y of a graph G there is x* = y* if and only
if x=y.
Evidently P 1 = P 2, but not conversely.

Proposition 1. Let G be a graph with the property P 2. Let the vertex set V(G)
of G and the family of all subsets of V(G) which are equal to x* for some x € V(G)
be given. Then the bipartite double cover B(G) of G is uniquely determined.

Proof. Let {4y, ..., 4,} be the mentioned family of subsets of V(G). Take the set
V(G) and a set {ay, ..., a,} disjoint with V(G). For each i = 1,..., n join a; by
edges with all vertices of A;; denote the resulting graph by H. We shall prove that
H =~ B(G). Each 4, is equal to u* for some u € V(G); the property P 2 implies that
this u is unique for each A;. Thus we may put a; = u’. If u and v are two adjacent
vertices in G, let ut = A4;, v* = A;for some i and j. We have u € A}, v € 4;, therefore
a; = u’ is adjacent to v and a; = v’ is adjacent to u in H. If u and v are not adjacent
in G, then obviously u is not adjacent to v’ and v is not adjacent to u’. Not wo vertices
of ¥(G) and no two vertices of {ay, ..., a,} are adjacent in H. Hence H =~ B(G).

Proposition 2. There exist non-isomorphic graphs G, G, such that B(G,) = B(G,).

Proof. Let G, be a circuit of the length 6, let G, be a graph with two connected
components, each of which is a circuit of the length 3. Then both B(G,) and B(G,)
are graphs with two connected components, each of which is a circuit of the length 6.

A characterization of graphs which are isomorphic to double covers of graphs
was given in [5]. Here we shall prove some results which concern bipartite double
covers.

Proposition 3. Let G be a finite bipartite graph on vertex sets U, V. Then the
following two assertions are equivalent:

(i) There exists a graph G, such that G = B(G,).

(ii) There exists an automorphism o of G such that «(V) =V, a(V) = U,
a(a(x)) = x for each vertex x of G and x is adjacent to a(x) for no vertex x of G.

This proposition follows immediately from Theorem 1 in [5].

Theorem 1. Let G be a finite bipartite graph on vertex sets U, V satisfying the
conditions of Proposition 3. Then the following two assertions are equivalent:

(i) If Gy, G, are two graphs such that G = B(G,) = B(G,), then G, ~ G,.

(i) Any two automorphisms a, B of G satisfying the conditions of Proposition 3
are conjugated in the group of all automorphisms of G.

Proof. (i) = (ii). Let (i) hold. Let «, 8 be two automorphisms of G satisfying the
conditions of Proposition 3. Let x, y be two vertices of U. If x is adjacent to o(y),
then y = ofx(y)) is adjacent to o(x) and conversely. Hence if we identify x with a(x)
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for each x € U, we obtain a graph G, such that G = B(G,). Analogously if we identify
x with B(x) for each x € U, then we obtain a graph G, such that G = B(G,). Ac-
cording to (i), we have G; = G,. Let ¢ be an isomorphic mapping of G, onto G,.
Let ¢, be a mapping defined so that for each x € U the vertex ¢o(x) is the vertex y
such that the vertex obtained by identifying y with ﬂ(y) is the image in ¢ of the vertex
obtained by identifying x with «(x) and the vertex ¢, «(x) is the vertex f(¥). If xy, x,
are two vertices of G such that x, is adjacent to «(x,), then also x, is adjacent to a(x;)
and in G, the vertex obtained by identifying x, with a(x,) is adjacent to the vertex
obtained by identifying x, with a(x,). Let y; = @o(x1), ¥, = @o(x2). As ¢ is an
isomorphism, in G, the vertex obtained by identifying y; with B(y,) and the vertex
obtained by identifying y, with B(y,) are adjacent. This means that @o(x;) = y, is
adjacent to @, a(x,) = B(y,) and @o(x,) = y, is adjacent to @, #(x;) = B(¥,) in G.
If x,, x, are not adjacent in G, then evidently neither y,, B(y,), nor y,, f(y,) are
adjacent. Hence ¢, is an autonorphism of G. If y = ¢(x), then ¢q a(x) = B(y) =
= B ¢o(x) for each x € U. Each z & V equals to a(x) for some x € U. If again y =
= @o(x), we have o «(z) = @o(x) = y = B B(¥) = B @o(x) = B ¢o(z). Therefore
@00 = P, and f = @oap, ' and B is conjugated with « in the group of all auto-
morphisms of G. As «, f were chosen arbitrarily, any two such automorphisms are
conjugated.

(ii) = (i). Let (i) hold. Let G;, G, be two graphs with the property B(G,) =
~ B(G,) = G. If x e U, then let x’ (or x") be the corresponding vertex of Vin B(G,)
(or B(G,) respectively). Define o, § so that a(x) = x’, a(x") = x, f(x) = x", B(x") = x,
for each x € U. The mappings «, § are automorphisms of G satisfying the conditions
of Proposition 3. According to (ii) there exists an automorphism ¥, of G such that
B = Yoy . If x, y are two vertices of U such that x is adjacent to )’, then x’ is
adajcent to y, Yo(x) is adjacent to Yo(y") = Yo a(y) = B ¥o(y) and Yo(y) is adjacent
to Yo(x') = Yo a(x) = B o(x). If we identify each vertex x € U with «(x) (or B(x)),
we obtain a graph isomorphic to G, (or G,); wemay considerittobe G, (or G, respec-
tively) itself. Let y be the mapping which maps the vertex of G, obtained by iden-
tifying x with a(x) onto the vertex of G, obtained by identifying Yo(x) with B Y/o(x)
for each x € U. This ¥ is an isomorphism of G, onto G, and G, = G,.

In [4] theisotopy of directed graphs was defined. Let G7, G5 betwo directed graphs,
let V(GT), V(G7) be their vertex sets respectively. An isotopy of G onto G is an
ordered pair {¢;, ¢, of bijections of V(G7) onto V(G3') with the property that for
any two vertices x, y of G{ a directed edge goes from ¢,(x) into @,(y) in G if and
only if a directed edge from x into y goes in G;. Two graphs Gy, G, are called
isotopic, if there exists an isotopy of G] onto G; . If two graphs are isomorphic, they
are also isotopic, but not conversely.

Theorem 2. Let G,, G, be two undirected graphs, let G, G, be the directed
graphs obtained from G, G, respectively by substituting each undirected edge
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by a pair of oppositely directed edges joining the same pair of vertices. Then the
following two assertions are equivalent:

(i) GY and G5 are isotopic.
(i) The bipartite double covers of G, and G, are isomorphic.

Proof. (i) = (ii). Let (i) hold. Then there exists an isotopy ¢, ¢, of G onto G5 .
Consider bipartite double covers B(G,), B(G,). To each vertex x of G, the vertices
x, x' of B(G,) correspond and analogously for G, and B(G,). Define the mapping ¥
of V(B(G,)) onto V(B(G,)) so that if x € V(G;), then Y(x) = ¢,(x) and y(x') =
= (¢,(x)). Let x, y be two vertices of G,. If x, y" are adjacent in B(G, ), then also x’, y
are adjacent in B(G,) and x, y are adjacent in G,. Further there are edges (xy)”,
(yx)~ in G7 and edges (¢;(x) @2())”, (@1(¥) 2(x))” in G3. In G, then there exist
the edge ¢;(x) ¢,(y) and in B(G,) the edge ¢,(x) (p,(y)) and this edge is equal
to y(x) Y(»'). If x and y’ are not adjacent in B(G,), evidently neither y(x), y(y’) are
adjacent in B(G,). Hence y is an isomorphism of B(G,) onto B(G,) and B(G,) =
=~ B(G,).

(ii) = (i). Let ¢ be an isomorphism of B(G,) onto B(G,); without loss of generality
suppose that the dashed elements of B(G,) are mapped by i onto the dashed elements
of B(G,). For each x from G, let ¢,(x) = /(x) and let ¢,(x) be the vertex y of G, such
that y(x") = y’. By the considerations inverse to those of the first part of the proof
we prove that {¢,, ¢, is an isotopy of G{ onto G5 .

Now we turn our attention to the logics of graphs.

For each subset A of the vertex set V(G) of a graph G we have defined the sets A*
and A**. In [2] some properties of these sets are described. For each 4 we have
A n A* = 0; this follows from the fact that G has no loops. Further 4 < A%,
(AH)*t = A*, (4H)* = A*. Therefore the set A** is the closure of 4 in a certain
sense. The sets A for which A = A** holds will be called L L-closed subsets of V(G)
or shortly L 1-closed sets. These sets form a lattice with respect to the set inclusion.
The meet in this lattice is the set intersection, because the intersection of two L 1-
closed sets is a L 1-closed set. The union of two L 1-closed sets need not be L .L-
closed; the join of two L 1-closed sets is the closure of their union.

The mapping 4 — A is a unary operation on the set of all L L-closed sets in G.
The mentioned lattice with this operation (which is an operation of complementation
on it) is called the logic of G and denoted by £(G).

We shall investigate what information about G can be obtained from Z(G).

An element a of a lattice Lis called join-irreducible, if it is not the least element
of L and for any two elements b, ¢ of L the equality b v ¢ = a implies b = a or
c=a.

Theorem 3. Let G be a finite graph with the property P 1, let £(G) be its logic.

Let A€ Z(G). The set A = u** for some u e V(G) if and only if A is a join-irre-
ducible element of Z(G).
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Proof. Let A = u** for some u € V(G), let B, C be elements of Z(G) such that
Bv C=A. Evidently Bv C=(BuC)**. This implies A" = (B O = u.
The property P 1 then implies that u € B U C. If u € B, then, as B+ = B, we have
A = u** < B, therefore A = B. If ue C, then A = C. We have proved that 4 is
a join-irreducible element of #(G).

Now let D be a join-irreducible element of #(G). As Z(G) is a finite lattice, there
exists exactly one element E of ,5,”(0) which is covered by D, i.e. a 1 L-closed set E
which is a proper subset of D and contains each proper subset of D as its subset.
Let xe D — E. As D is L L-closed, we have x** < D. If x** is a proper subset of D,
then x** < E and x e E, which is a contradiction. Therefore x** = D and the
assertion is proved.

Theorem 4. Let G be a finite graph with the property P 1. Then an element A of
Z(G) is meet-irreducible if and only if A = ut for some vertex u of G.

Proof. Let A = u* for some u € V(G). Let B, C be elements of #(G) such that
A=BAC.Thend=BnC.AsA< B,A=C,we have Bt < At = u*t, Ct < At =utt.
By Theorem 3 the element u™* is join-irreducible, therefore there exists an element D
of Z(G) such that D is a proper subset of 't and each proper L l-closed subset
of u™ is a subset of D. If B* = u**, C* % u't, then B* = D, C* = D. Hence
Dt B*nC*=BnC=A and D = D' 2 4* = u**, which is a contradic-
tion with the assumption that D is a proper subset of u**. Therefore either B* = u*+
and B = B** = u* = A, or C = A and A is meet-irreducible.

Now let E be a meet-irreducible element of £(G). As Z(G) is finite, there exists
exactly one element F of #(G) which covers E, i.e. a L.1-closed set F such that E is
a proper subset of F and each L 1-closed set which contains E as a proper subset
contains F as a subset. Then F* is a proper subset H of E*. For each proper subset
H of E* the set H* contains E as a proper subset, hence it contains F as a subset
and H < F*. The element E* covers exactly one element F* of #(G) and there-
fore E* is join-irreducible. By Theorem 3 we have E* = v+ for some vertex v of
G and E = E* = v".

Theorem 5. Let G be a finite graph with the property P 1 and let its logic £(G)
be given as an abstract lattice with a complementation. Then G can be reconstructed
uniquely up to an isomorphism.

Proof. In #(G) we find all join-irreducible elements. According to Theorem 3
there is a one-to-one correspondence between them and the vertices of G such that to
each join-irreducible element A of #(G) the vertex a such that a** = A is assigned.
Thus the vertex set of G is reconstructed. Now let a, b be two vertices of G. Take the
clements A, B of #(G) such that a** = A, b** = B. If a is adjacent to b in G, then
beat = A';as Atis L 1-closed, also B = b** = A* and analogously also 4 < B*.
On the other hand, B = A* implies that b e At = a* and a is adjacent to b in G.
In this way we reconstruct the edges of G.
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Theorem 6. Let G be a finite graph with the property P 1 and let the lattice of all
L L-closed subsets of V(G) be given as an abstract lattice (without the operation of
complementation). Then the bipartite double cover B(G) of the graph G can be
reconstructed uniquely up to an isomorphism.

Proof. Like in the proof of Theorem 5 we can reconstruct the vertex set of G and
thus also the vertex set of B(G). Analogously according to Theorem 4 we may find
all meet-irreducible elements of #(G); they correspond to sets x* for x e V(G). If 4
is a join-irreducible element of #(G) and B a meet-irreducible element of £(G),
then the vertex a such that a** = A is contained in the set B if and only if A < B.
Thus we have reconstructed the vertex set V(G) of G and the family of all subsets
of V(G) which are cqual to x* for some x € ¥(G). According to Proposition 1 we
can reconstruct the bipartite double cover B(G) of G.

Remark. The assertions of Theorems 5 and 6 are to be understood so that we do
the reconstruction knowing a priori that G is a graph with the property P 1.

Theorem 7. Let G be a graph, let B(G) be its bipartite double cover. If B(G) is
given as an abstract graph (without the dash notation of vertices), then the lattice
of all L 1-closed sets of G is determined uniquely.

Proof. Let B(G) be a bipartite graph on the sets ¥, W. We may consider V to be V(G).
If A is a subset of ¥, we may find A** in B(G); this is a subset of V' which is also A**
in G. In this way we find all subsets of V(G) which are L L-closed and thus also the
lattice of all such sets.

Corollary 1. Let Gy, G, be two finite graphs with the property P 1. Then the lattices
of L .1-closed sets in G, and G, respectively are isomorphic if and only if the
bipartite double covers of Gy and G, respectively are isomorphic.

Now consider the graphs in general, without supposing the property P 1.

Theorem 8. Let G be a graph, let X be a L 1-closed subset of V(G). Let G' be the
graph obtained from G by adding a new vertex w and joining it by edges with all
vertices of X. Then £(G") = £(G).

Remark. Note that G’ has not the property P 1.

Proof. The symbols A*, A** will have the usual meaning with respect to G. With
respect to G’ we shall use (A*), (4**). If A = V(G) and is not a subset of X, then
evidently (4*) = A*; if 4 < X, then (4') = 4* U {w}. Further (4 u {w})*)’ -
= (AY) n(w') = A" n X* for each 4 = V(G). Each L L-closed set in G (or in G')
is of the form A" (or (A*)) for some A = V(G) (or A = V(G') respectively). Thus
each L L-closed set of G’ is either of the form A" for A ¢ X, or of the form 4L ,
v {w} for 4 = X; in other words, it is a set B, where Be £(G), B* ¢ X, or a set
B u {w}, where Be Z(G), B* = X. For each B € #(G) define ¢(B) so that ¢(B) = B
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for such B that B* = X and ¢(B) = B U {w} for such B that B* < X. The mapping ¢
is a bijection of #(G) onto #(G’). Let B, C be two elements of #(G). Suppose
B < C. If ¢(B) = B, then ¢(B) = ¢(C), because ¢(C) = C or ¢(C) = C U {w}.
If o(B) = B U {w}, then B* < X. As B < C, we have C* = B* < X, which implies
¢(C) = C U {w} and we have ¢(B) = Bu {w} = C u {w} = ¢(C). We have proved
that B = C implies ¢(B) < ¢(C) and analogously we can prove the inverse implica-
tion. Therefore ¢ preserves the ordering of #(G) and hence the lattice operations. It is
easy to prove that ¢ preserves also the unary operation 4+ A and that it is an
isomorphism of #(G) onto £(G).

Corollary 2. To each graph G there exist infinitely many graphs G' without the
property P 1 such that £(G') = £(G).
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