JOINT ESSENTIAL SPECTRA

A. B. Patel*, Vallabh Vidyanagar

(Received January 3, 1983)

Introduction. The essential spectrum of a bounded linear operator A on a Hilbert space is the spectrum of the canonical image of A in the Calkin algebra. This has been discussed by Fillmore, Stampfli and Williams [3]. Dash [1] has discussed the joint essential spectrum of an n-tuple of bounded operators and has extended some of the results of [3]. A bounded operator A on a Hilbert space is said to be Fredholm if the null spaces of A and A^* are finite dimensional and the range of A is closed. By Atkinson’s theorem [4, problem 142], a bounded operator A is Fredholm if and only if zero does not belong to the essential spectrum of A. In this note we study the generalization of the notion of a Fredholm operator to an n-tuple of closed operators with the same domain which is dense in a Hilbert space. The result analogous to Atkinson’s theorem will be proved and some other characterizations for an n-tuple of operators in a Hilbert space to be joint Fredholm will be discussed. Also Weyl’s theorem for an n-tuple of commuting normal operators will be proved.

In what follows, H denotes a complex separable infinite dimensional Hilbert space, $\mathcal{B}(H)$ denotes the algebra of all bounded linear operators on H. Let \mathcal{K} be the ideal of compact operators on H, \mathcal{Q} the quotient (or Calkin) algebra $\mathcal{B}(H)/\mathcal{K}$ and π the canonical quotient map of $\mathcal{B}(H)$ onto \mathcal{Q}. Let $H^{(n)} = \bigoplus_{i=1}^n H_i$, $(H_i = H)$ and let $T = (T_1, \ldots, T_n)$ be an n-tuple of closed linear operators T_1, \ldots, T_n with the same domain $\mathcal{D}(T)$, dense in H. We define an operator $T^{(n)} : \mathcal{D}(T) \rightarrow H^{(n)}$ by $T^{(n)} x = (T_1 x, \ldots, T_n x), (x \in \mathcal{D}(T))$. Further, if T_1^*, \ldots, T_n^* have the same domain, then we shall denote (T_1^*, \ldots, T_n^*) by T^*. Let $T^{(n)*}$ be the usual Hilbert space adjoint of $T^{(n)}$. Then $T^{(n)*} T^{(n)}$ is a positive self-adjoint operator. If $G = (T^{(n)*} T^{(n)})^{1/2}$, then $\mathcal{D}(G) = \mathcal{D}(T)$ and $\sum_{i=1}^n (T_ix, T_iy) = (T^{(n)}x, T^{(n)}y) = (Gx, Gy); x, y \in \mathcal{D}(G) = \mathcal{D}(T)$ [5, p. 334]. The null space, the range and the closure of an operator A from H to a Hilbert space K will be denoted by $N(A), R(A)$ and \bar{A}, respectively.

Definition 1. Let T_1, \ldots, T_n be closed linear operators in H defined on the same dense domain \mathcal{D}. Suppose that T_1^*, \ldots, T_n^* also have the same domain \mathcal{D}^*.

*) Research supported by U.G.C. (India) Jr. Research Fellowship.

598
(1) The joint left spectrum $\text{Sp}_l(T)$ of $T = (T_1, \ldots, T_n)$ is the set of $(z_1, \ldots, z_n) \in \mathbb{C}^n$
(n-fold Cartesian product of the complex plane \mathbb{C}) such that for no n-tuple
(B_1, \ldots, B_n) of operators in $\mathcal{B}(H)$, $\sum_{i=1}^n B_i(T_i - z_i I) \subset I$ holds.

(2) The joint right spectrum $\text{Sp}_r(T)$ of $T = (T_1, \ldots, T_n)$ is the set $(\text{Sp}_l(T^*))^*$, where
$T^* = (T_1^*, \ldots, T_n^*)$ and for $K \subset \mathbb{C}^n$, $K^* = \{(\bar{z}_1, \ldots, \bar{z}_n) : (z_1, \ldots, z_n) \in K\}$.

(3) The joint spectrum $\text{Sp}(T)$ is the set $\text{Sp}_l(T) \cup \text{Sp}_r(T)$ \cite[Definition 1.1]{6}.

Definition 2. The joint left (right) spectrum $\text{Sp}_{l(\mathcal{A})}(a)$ ($\text{Sp}_{r(\mathcal{A})}(a)$) of an n-tuple $a =
(a_1, \ldots, a_n)$ of elements a_1, \ldots, a_n of a unital Banach algebra \mathcal{A} is the set of all
$z = (z_1, \ldots, z_n) \in \mathbb{C}^n$ such that the left (right) ideal generated by
$\{a_1 - z_1 e, \ldots, a_n - z_n e\}$ is proper in \mathcal{A}. The joint spectrum $\text{Sp}_{l(\mathcal{A})}(a)$ of a is the set $\text{Sp}_{l(\mathcal{A})}(a) \cup \text{Sp}_{r(\mathcal{A})}(a)$.

It is obvious that if \mathcal{A} is a Banach*-algebra, then $\text{Sp}_{l(\mathcal{A})}(a) = \{(\bar{z}_1, \ldots, \bar{z}) :
(z_1, \ldots, z_n) \in \text{Sp}_{l(\mathcal{A})}(a_1^*, \ldots, a_n^*)\}$.

Definition 3. An n-tuple $T = (T_1, \ldots, T_n)$ of closed operators with the same domain
which is dense in H, whose adjoints also have the same domain in H, is called joint
upper Fredholm (in short j.u.F.) if $N(T^{(n)})$ is finite dimensional and $R(T^{(n)})$ is a closed
subspace of $H^{(n)}$. T is called joint lower Fredholm (in short j.l.F.) if $T^* \in j.u.F..$ T is called
joint Fredholm if T is both j.u.F. and j.l.F..

Definition 4. The joint left (right) essential spectrum $\text{Sp}_{le}(T)$ ($\text{Sp}_{re}(T)$) of T is the
set of all $z = (z_1, \ldots, z_n) \in \mathbb{C}^n$ such that $(T_1 - z_1 I, \ldots, T_n - z_n I)$ is not j.u.F. (j.l.F.).
The essential spectrum $\text{Sp}_e(T)$ is the set $\text{Sp}_{le}(T) \cup \text{Sp}_{re}(T)$.

Characterizations of an n-tuple to be j.u.F. The following theorem is a result analogous
to Atkinson's theorem.

Theorem 5. Let $T = (T_1, \ldots, T_n)$ be an n-tuple of closed operators with the same
domain $\mathbb{D}(T)$ dense in H. Then zero does not belong to $\text{Sp}_{le}(T)$ if and only if there
exist B_1, \ldots, B_n in $\mathcal{B}(H)$ such that $\sum_{i=1}^n B_i T_i - I$ is a compact operator.

Proof. Suppose zero does not belong to $\text{Sp}_{le}(T)$. Then T is j.u.F. So $\mathbb{R}(T^{(n)})$ is closed
and $N(T^{(n)})$ is of finite dimension. Also $T^{(n)}$ maps $N(T^{(n)})$ onto $\mathbb{D}(T)$ and $\mathbb{R}(T^{(n)})$. It is not difficult to see that $T^{(n)}$ is a closed operator. Hence there exists
a bounded operator B: $H^{(n)} \to H$ such that $BT^{(n)} \subset I_{N(T^{(n)})}$. Define $B_ix = B(0, \ldots, 0,
\chi, 0, \ldots, 0)$ (where x is at the ith place on the right hand side and $\chi \in H$). Then $B_i \in
\mathbb{B}(H)$ and $\sum_{i=1}^n B_i T_i \subset I_{N(T^{(n)})}$. So $I - \sum_{i=1}^n B_i T_i$ is a projection on $N(T^{(n)})$ and since
$N(T^{(n)})$ is finite dimensional, $I - \sum_{i=1}^n B_i T_i$ is a compact operator.
Conversely, suppose that there exist bounded operators B_1, \ldots, B_n in $\mathcal{B}(H)$ such that $I - \sum_{i=1}^{n} B_i T_i (= C)$ is a compact operator. Define $B: H^{(n)} \to H$ by $B(x_1, \ldots, x_n) = \sum_{i=1}^{n} B_i x_i$ \((x_1, \ldots, x_n) \in H^{(n)}\). Then B is bounded and $\overline{BT^{(n)}} = I - C$. Hence $N(\overline{BT^{(n)}}) (= N(BT^{(n)})$ is of finite dimension. Since C is a compact operator, $BT^{(n)}$ is bounded below on $N(BT^{(n)})$ [4, Solution 140]. As $\|BT^{(n)}x\| \leq \|B\| \|T^{(n)}x\|$ for $x \in \mathcal{D}(T) \cap N(BT^{(n)})$, $T^{(n)}$ is bounded below on $\mathcal{D}(T) \cap N(BT^{(n)})$. Therefore $T^{(n)}(N(BT^{(n)}) \cap \mathcal{D}(T))$ is closed. Since $N(BT^{(n)})$ is of finite dimension and $T^{(n)}(N(BT^{(n)}) \cap \mathcal{D}(T)) \in T^{(n)}(\mathcal{D}(T))$, $\mathcal{H}(T^{(n)})$ is closed. Thus T is j.u.F.\

\textbf{Remark 6.} Dash [1] has defined the joint left (right) essential spectrum of an n-tuple $T = (T_1, \ldots, T_n)$ of bounded operators on H as

$$
\sigma_{le}(T) = \text{Sp}_{\delta}(\pi(T_1), \ldots, \pi(T_n)) \quad \sigma_{re}(T) = \text{Sp}_{\delta}(\pi(T_1), \ldots, \pi(T_n))
$$

(see Definition 2) and the joint essential spectrum as $\sigma_{le}(T) \cup \sigma_{re}(T)$. The last theorem shows that for an n-tuple T of operators in $\mathcal{B}(H)$, $\sigma_{le}(T) = \text{Sp}_{le}(T)$ and $\sigma_{re}(T) = \text{Sp}_{re}(T)$; hence $\sigma_{le}(T) = \text{Sp}_{le}(T)$.

Next we give other characterizations for an n-tuple to be j.u.F.

\textbf{Theorem 7.} Let $T = (T_1, \ldots, T_n)$ be an n-tuple of closed operators with the same domain $\mathcal{D}(T)$ which is dense in H. Then the following assertions are equivalent.

(a) T is not j.u.F..

(b) There exists a sequence $\{x_k\}$ of unit vectors in $\mathcal{D}(T)$ such that $x_k \to 0$ (weakly) and $T_i x_k \to 0$ (strongly) as $k \to \infty$ for $i = 1, \ldots, n$.

(c) There exists an orthonormal sequence $\{e_k\}$ in $\mathcal{D}(T)$ such that $T_i e_k \to 0$ (strongly), as $k \to \infty$ for $i = 1, \ldots, n$.

(d) There exists an infinite dimensional projection P such that $PH \subset \mathcal{D}(T)$ and $T_i P$ is compact for each $i = 1, \ldots, n$.

(e) For every $\delta > 0$, there exists a closed infinite dimensional subspace $M_\delta \subset \mathcal{D}(T)$ such that

$$
\sum_i \|T_i x\|^2 \leq \delta \|x\|^2 \quad \text{for} \quad x \in M_\delta.
$$

(f) $(T^{(n)} - T^{(n)})^{1/2}$ is a Fredholm operator in H.

\textbf{Proof.} Proof of (d) \Rightarrow (e). Suppose that (d) holds. Let $\{e_k\}$ be an orthonormal basis for PH. Since $T_i P$ is compact and $e_k \to 0$ (weakly), $T_i e_k = T_i P e_k \to 0$ (strongly) [2] for $i = 1, \ldots, n$.

(e) \Rightarrow (b) is clear.

Proof of (b) \Rightarrow (a). Let $\{x_k\}$ be a sequence of unit vectors in $\mathcal{D}(T)$ such that $x_k \to 0$ (weakly) and $T_i x_k \to 0$ (strongly) as $k \to \infty$, for $i = 1, \ldots, n$. If there exists B_1, \ldots, B_n in $\mathcal{B}(H)$ such that $I - \sum_{i=1}^{n} B_i T_i (= C)$ is a compact operator. Define $B: H^{(n)} \to H$ by $B(x_1, \ldots, x_n) = \sum_{i=1}^{n} B_i x_i (x_1, \ldots, x_n) \in H^{(n)}$. Then B is bounded and $\overline{BT^{(n)}} = I - C$. Hence $N(\overline{BT^{(n)}}) (= N(BT^{(n)})$ is of finite dimension. Since C is a compact operator, $BT^{(n)}$ is bounded below on $N(BT^{(n)})$ [4, Solution 140]. As $\|BT^{(n)}x\| \leq \|B\| \|T^{(n)}x\|$ for $x \in \mathcal{D}(T) \cap N(BT^{(n)})$, $T^{(n)}$ is bounded below on $\mathcal{D}(T) \cap N(BT^{(n)})$. Therefore $T^{(n)}(N(BT^{(n)}) \cap \mathcal{D}(T))$ is closed. Since $N(BT^{(n)})$ is of finite dimension and $T^{(n)}(N(BT^{(n)}) \cap \mathcal{D}(T)) \in T^{(n)}(\mathcal{D}(T))$, $\mathcal{H}(T^{(n)})$ is closed. Thus T is j.u.F...
in $\mathcal{B}(H)$ such that $I - \sum_{i=1}^{n} B_i T_i$ is a compact operator, then

$$1 = \|x_k\| = \|\sum_{i=1}^{n} B_i T_i x_k + x_k - \sum_{i=1}^{n} B_i T_i x_k\| \leq \|(I - \sum_{i=1}^{n} B_i T_i)x_k\| + \sum_{i=1}^{n} \|B_i\| \|T_i x_k\| \to 0 \text{ as } k \to \infty,$$

which is absurd. Hence there exist no $B_1, \ldots, B_n \in \mathcal{B}(H)$ such that $I - \sum_{i=1}^{n} B_i T_i$ is a compact operator. Thus by Theorem 5, T is not j.u.F..

Proof of (a) \Rightarrow (f). Since $N(T^{(a)}) = N((T^{(a)^\#} T^{(a)})^{1/2})$, it is sufficient to show that if $\mathcal{R}(T^{(a)})$ is not closed, then $\mathcal{R}((T^{(a)^\#} T^{(a)})^{1/2})$ is not closed. If $\mathcal{R}((T^{(a)^\#} T^{(a)})^{1/2})$ is closed, then let $\{T^{(a)} x_k\}$ be a Cauchy sequence in $\mathcal{R}(T^{(a)})$. Then, since $\|T^{(a)} x_k\| = \|(T^{(a)^\#} T^{(a)})^{1/2} x_k\|$, $\{(T^{(a)^\#} T^{(a)})^{1/2} x_k\}$ is a Cauchy sequence in $\mathcal{R}((T^{(a)^\#} T^{(a)})^{1/2})$.

But $\mathcal{R}((T^{(a)^\#} T^{(a)})^{1/2})$ is closed, so $(T^{(a)^\#} T^{(a)})^{1/2} x_k \to (T^{(a)^\#} T^{(a)})^{1/2} x$ for some $x \in \mathcal{D}((T^{(a)^\#} T^{(a)})^{1/2}) = \mathcal{D}(T)$. Hence

$$\|T^{(a)}(x_k - x)\| = \|(T^{(a)^\#} T^{(a)})^{1/2} (x_k - x)\| \to 0$$

as $k \to \infty$. Therefore $\mathcal{R}(T^{(a)})$ is closed which is a contradiction.

Proof of (f) \Rightarrow (d). Since $((T^{(a)^\#} T^{(a)})^{1/2})$ is not Fredholm by [3, Theorem 1.1], there exists an infinite dimensional projection P such that $PH \subset \mathcal{D}((T^{(a)^\#} T^{(a)})^{1/2}) = \mathcal{D}(T)$ and $(T^{(a)^\#} T^{(a)})^{1/2} P$ is a compact operator. Let $\{x_k\}$ be a bounded sequence weakly converging to zero. Then $(T^{(a)^\#} T^{(a)})^{1/2} PX_k \to 0$ (strongly) as $k \to \infty$. Therefore,

$$\|T_i P x_k\|^2 \leq \sum_{j=1}^{n} \|T_j P x_k\|^2 = \sum_{j=1}^{n} (T_j P x_k, T_j P x_k) = (T^{(a)^\#} P x_k, T^{(a)^\#} P x_k) = \|(T^{(a)^\#} T^{(a)})^{1/2} P x_k\|^2 \to 0$$

as $k \to \infty$, for $i = 1, \ldots, n$. Thus $T_i P$ is compact for $i = 1, \ldots, n$.

Since $\mathcal{D}((T^{(a)^\#} T^{(a)})^{1/2}) = \mathcal{D}(T)$ and $\|(T^{(a)^\#} T^{(a)})^{1/2} x\|^2 = \|T^{(a)} x\|^2 = \sum_{i=1}^{n} \|T_i x\|^2$ for $x \in \mathcal{D}(T)$, the equivalence of (e) and (f) follows from [3, Theorem 1.1].

Corollary 8. If $T = (T_1, \ldots, T_n)$ is an n-tuple of normal operators with the same domain \mathcal{D} in H, then $\text{Sp}_c(T) = \text{Sp}_e(T)$.

Proof. Since $T_i - z_i I$ is normal, $\|(T_i - z_i I) x\| = \|(T_i - z_i I)^* x\|$ for $x \in \mathcal{D}(T) = \mathcal{D}(T^*)$ for $i = 1, \ldots, n$. The equivalence of (a) and (b) in the last theorem, yields $\text{Sp}_c(T) = \text{Sp}_e(T)$. Hence $\text{Sp}_c(T) = \text{Sp}_e(T)$.

Weyl's theorem. In this section we prove a Weyl-type theorem. To this end we shall need some lemmas. Let $T = (T_1, \ldots, T_n)$ be an n-tuple of closed operators with the same dense domain $\mathcal{D}(T)$ in H. We say that $z = (z_1, \ldots, z_n) \in \mathbb{C}^n$ is a joint eigenvalue of T if there exists a nonzero vector x in $\mathcal{D}(T)$ such that $(T_i - z_i I)x = 0$ for $i = 1, \ldots, n$. The multiplicity of z is the dimension of $\bigcap_{i=1}^{n} N(T_i - z_i I)$. 601
Lemma 9. Let \(T = (T_1, \ldots, T_n) \) be an \(n \)-tuple of pairwise commuting normal operators with the same domain \(\mathcal{D}(T) \) in \(H \). Let \(z = (z_1, \ldots, z_n) \) be an isolated point of the joint spectrum \(\text{Sp}(T) \) of \(T \) (see Definition 1). Then \(z \) is a joint eigenvalue of \(T \).

Proof. Since \(z \) is an isolated point, \(\chi_z \), the characteristic function of \(\{ z \} \), is a non-zero element in \(m(\text{Sp}(T)) \), the algebra of all equivalence classes (with respect to the equality almost everywhere) of Borel functions on \(\text{Sp}(T) \). By the joint spectral theorem [6, Theorem 2.2], \(\chi_z(T) = P_z \) is a non-zero projection \(H \) and \(T_i P_z - z_i P_z = 0 \) for each \(i = 1, \ldots, n \). Hence \(z \) is a joint eigenvalue of \(T \).

Lemma 10. Let \(S = (S_1, \ldots, S_n) \) be an \(n \)-tuple of closed operators with the same dense domain \(\mathcal{D}(S) \) in a Hilbert space \(H_1 \) and let \(T = (T_1, \ldots, T_n) \) be an \(n \)-tuple of closed operators with the same dense domain \(\mathcal{D}(T) \) in a Hilbert space \(H_2 \). Then \(\text{Sp}(S \oplus T) = \text{Sp}(S) \cup \text{Sp}(T) \), where \(S \oplus T = (S_1 \oplus T_1, \ldots, S_n \oplus T_n) \).

Proof. It is sufficient to show that \(\text{Sp}_1(S \oplus T) = \text{Sp}_1(S) \cup \text{Sp}_1(T) \). Let \(z = (z_1, \ldots, z_n) \notin \text{Sp}_1(S) \cup \text{Sp}_1(T) \). Then there exist \(B_1, \ldots, B_n \in \mathcal{B}(H_1) \) and \(C_1, \ldots, C_n \in \mathcal{B}(H_2) \) such that \(\sum_{i=1}^{n} B_i(S_i - z_i I_{H_1}) \subset I_{H_1} \) and \(\sum_{i=1}^{n} C_i(T_i - z_i I_{H_2}) \subset I_{H_2} \). Thus \(\sum_{i=1}^{n} B_i \oplus C_i(S_i \oplus T_i - z_i I) \subset I \). Hence \(z \notin \text{Sp}_1(S \oplus T) \). Conversely, if \(z \in \text{Sp}_1(S) \cup \text{Sp}_1(T) \), then \(z \in \text{Sp}_1(S) \) or \(z \in \text{Sp}_1(T) \). Without loss of generality assume that \(z \in \text{Sp}_1(S) \). Then there exists a sequence \(\{ x_k \} \) of unit vectors in \(\mathcal{D}(S) \) such that \((S_i - z_i I_{H_1}) x_k \to 0 \) for \(i = 1, \ldots, n \). Let \(y_k = x_k \oplus 0 \). Then \(\| y_k \| = 1 \) and \((S_1 \oplus T_1 - z_i I) y_k = (S_i - z_i I_{H_2}) x_k \to 0 \) as \(k \to \infty \) for \(i = 1, \ldots, n \). Hence \(z \in \text{Sp}_1(S \oplus T) \). Thus \(\text{Sp}_1(S \oplus T) = \text{Sp}_1(S) \cup \text{Sp}_1(T) \).

Theorem 11. Let \(T = (T_1, \ldots, T_n) \) be an \(n \)-tuple of pairwise commuting normal operators with the same domain \(\mathcal{D}(T) \) in \(H \). Then \(\text{Sp}_n(T) \) consists precisely of all points in \(\text{Sp}(T) \) except the isolated joint eigenvalues of finite multiplicity.

Proof. Since \(\text{Sp}_n(T) = \text{Sp}(T) \) by Corollary 8, it is sufficient to show that \((0, \ldots, 0) \) is an isolated joint eigenvalue of \(T \) of finite multiplicity if and only if \(T \) is j.u.F. and \((0, \ldots, 0) \in \text{Sp}(T) \).

As \(T_i \)'s are pairwise commuting and normal, \(N(T^{(n)}) = \bigcap_{i=1}^{n} N(T_i) \) is a reducing subspace for each \(T_i \). For each \(i \) define \(S_i : N(T^{(n)})^\perp \cap \mathcal{D}(T) \to N(T^{(n)})^\perp \cap \mathcal{D}(T) \) by \(S_i x = T_i x \) \((x \in N(T^{(n)})^\perp \cap \mathcal{D}(T)) \). Then \(T_i = 0 \oplus S_i \), the null space of \(S^{(n)} \) is \(\{ 0 \} \) and \(S_i \)'s are pairwise commuting normal operators in \(N(T^{(n)})^\perp \). Also by Lemma 10, \(\text{Sp}(T) = \{ 0 \} \cup \text{Sp}(S) \) (where \(S = (S_1, \ldots, S_n) \)).

Now assume that \((0, \ldots, 0) \) is an isolated joint eigenvalue of \(T \) of finite multiplicity. Since \(N(S^{(n)}) = \{ 0 \} \), by Lemma 9, \((0, \ldots, 0) \notin \text{Sp}(S) \). Hence \(\mathcal{R}(T^{(n)}) = \mathcal{R}(S^{(n)}) \) is a closed subspace of \(H^{(n)} \). As \(N(T^{(n)}) \) is of finite dimensions, \(T \) is j.u.F.\:.
Conversely, assume that T is j.u.F. and $(0, \ldots, 0) \in \text{Sp}(T)$. Then $\mathcal{R}(T^{(n)})$ is closed and $N(T^{(n)})$ is finite dimensional. Since $N(S^{(n)}) = \{0\}$ and $\mathcal{R}(S^{(n)}) = \mathcal{R}(T^{(n)})$, which is closed, $S^{(n)}$ is bounded below. So $(0, \ldots, 0) \notin \text{Sp}(S) = \text{Sp}(S)$. Hence $(0, \ldots, 0)$ is an isolated point of $\text{Sp}(T)$. As the dimension of $N(T^{(n)})$ is finite, by Lemma 9, $(0, \ldots, 0)$ is an isolated joint eigenvalue of T of finite multiplicity.

Acknowledgement. The author expresses his sincere thanks to Professor M. H. Vasavada for his guidance and useful suggestions.

References

Author’s address: Department of Mathematics, Sardar Patel University, Vallabh Vidyanagar-388 120, Gujarat, India.