COMMON CONSEQUENTS IN DIRECTED GRAPHS

Štefan Schwarz, Bratislava

(Received June 1, 1983)

Let \(V = \{a_1, a_2, \ldots, a_n\} \) be a finite set with \(n \geq 2 \) different elements. By a binary relation on \(V \) we mean a subset \(\mathcal{Q} \) of \(V \times V \). Let \(B_n(V) \) be the set of all binary relations on \(V \) (including the empty relation). Then under the usual multiplication of binary relations \(B_n(V) \) becomes a semigroup.

Let \(M_n \) denote the set of all \(n \times n \) matrices over the Boolean algebra \(\{0, 1\} \). Then \(M_n \) is a semigroup under the Boolean matrix multiplication. The map

\[
\mathcal{Q} \mapsto M(\mathcal{Q}) = (m_{ij}),
\]

where \(m_{ij} = 1 \) if \((a_i, a_j) \in \mathcal{Q} \) and \(m_{ij} = 0 \) otherwise, is an isomorphism of \(B_n(V) \) onto \(M_n \). In particular,

\[
\mathcal{Q} \cdot \sigma \mapsto M(\mathcal{Q}) \cdot M(\sigma) = M(\mathcal{Q} \cdot \sigma).
\]

\(B_n(V) \) is closed under the set-theoretical union \(\mathcal{Q} \cup \sigma \) and \(M_n \) admits an addition \(M' + M'' \) (the sum of Boolean matrices). The map (1) preserves these operations, i.e.

\[
\mathcal{Q} \cup \sigma \mapsto M(\mathcal{Q}) + M(\sigma) = M(\mathcal{Q} \cup \sigma).
\]

Let \(G_n(V) \) be the set of all directed graphs with \(n \) vertices \(\{a_1, a_2, \ldots, a_n\} \) with allowable loops and simple directed edges. Each matrix in \(M_n \) can be considered as the adjacency matrix of a directed graph \(H \) in \(G_n(V) \) and determines \(H \) uniquely up to an isomorphism. Conversely, each graph in \(G_n(V) \) with labelled vertices determines a unique Boolean matrix in \(M_n \) as its adjacency matrix.

We have a one-to-one correspondence between \(B_n(V), M_n \) and \(G_n(V) \):

\[
\mathcal{Q} \leftrightarrow M(\mathcal{Q}) \leftrightarrow G(\mathcal{Q}).
\]

Here \(G(\mathcal{Q}) \) is the graph corresponding to the matrix \(M(\mathcal{Q}) \).

In the following we shall freely use these obvious correspondences.

If \(\mathcal{Q} \) is given and \(a_i \in V \), we define \(a_i\mathcal{Q} = \{x \in V : (a_i, x) \in \mathcal{Q}\} \). If \(K \) is a non-empty subset of \(V \), we put \(K\mathcal{Q} = \bigcup_{a \in K} a_i\mathcal{Q} \).

The next notions concern the (finite directed) graph \(G(\mathcal{Q}) \). A sequence of vertices \(\langle a_{i_0}, a_{i_1}, \ldots, a_{i_k} \rangle \) is a path of length \(k \) in \(G(\mathcal{Q}) \) if every pair of adjacent vertices in this sequence is in \(\mathcal{Q} \). An edge is a path of length 1.
A vertex a_j is a consequent of length k of a vertex a_i if there is a (directed) path of length k beginning with a_i and ending with a_j. This is equivalent to the statement $a_j \in a_i^k$.

A path of the form $<a_{i_0}, a_{i_1}, \ldots, a_{i_k}>$ is called a cycle. If all its elements with the exception of the last one are pairwise different, the cycle is called a circuit of length k. A circuit $<a_i, a_i>$ is a loop.

Suppose there is a circuit going through a fixed chosen vertex $a_i \in V$, i.e. $a_i \in a_i^{g^h}$ for some integer $h > 0$. Denote by h_i the least integer such that $a_i \in a_i^{g^h}$ (i.e. $a_i \notin a_i^{g^h}$ for $h < h_i$). Then any circuit of length h_i going through a_i will be called an elementary circuit belonging to the vertex a_i (or an elementary circuit going through a_j).

Definition. Let ϱ be given. We shall say that a pair of vertices (a_i, a_j), $a_i \neq a_j$, has a common consequent (c.c.) if there is an integer $l > 0$ such that

\[a_i^{q^l} \cap a_j^{q^l} \neq \emptyset. \]

In terms of Boolean matrices this means: The rows corresponding to a_i and a_j in $M(\varrho^l)$ have a 1 in the same column.

Example 0,1. Let $V = \{a_1, a_2, a_3\}$ and let ϱ_1 be defined by

\[
M(\varrho_1) = \begin{pmatrix}
0 & 0 & 1 \\
1 & 0 & 0 \\
1 & 1 & 0
\end{pmatrix}.
\]

We have

\[
M(\varrho_1^2) = \begin{pmatrix}
1 & 1 & 0 \\
0 & 0 & 1 \\
1 & 0 & 1
\end{pmatrix}, \quad M(\varrho_1^3) = \begin{pmatrix}
1 & 0 & 1 \\
1 & 1 & 0 \\
1 & 1 & 1
\end{pmatrix}.
\]

The pair (a_1, a_2) has a common consequent of length 3 since

\[a_1 \varrho_1 \cap a_2 \varrho_1 = \emptyset, \quad a_1 \varrho_1^2 \cap a_2 \varrho_1^2 = \emptyset, \quad a_1 \varrho_1^3 \cap a_2 \varrho_1^3 = \{a_1\} \neq \emptyset. \]

We shall often use diagrams of the form

\[a_1 \Rightarrow a_3 \Rightarrow a_2 \Rightarrow a_1, \]
\[a_2 \Rightarrow a_1 \Rightarrow a_3 \Rightarrow a_1, \]

to specify the paths by which the c.c. can be reached.

Let again $V = \{a_1, a_2, a_3\}$ and let ϱ_2 be defined by

\[
M(\varrho_2) = \begin{pmatrix}
0 & 0 & 1 \\
1 & 0 & 0 \\
0 & 1 & 0
\end{pmatrix}.
\]

It is easy to see that none of the pairs $(a_1, a_2), (a_2, a_3), (a_1, a_3)$, have a common consequent.
Example 0.2. This example shows that some care is necessary. Let \(V = \{a_1, a_2, a_3\} \) and let \(q \) be defined by

\[
M(q) = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 1 & 0 & 0 \end{pmatrix}.
\]

Then

\[
M(q^2) = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 1 & 0 & 0 \end{pmatrix}, \quad M(q^3) = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}.
\]

Hence \(a_2q \cap a_3q = \{a_1\} \neq \emptyset \), while \(a_2q^2 \cap a_3q^2 = \emptyset \).

We show that this situation cannot occur if \(M(q) \) has no zero row.

By the first projection \(\Pi(q) \) of \(q \) we mean the subset of \(V \) consisting of all \(a_i \in V \) for which \(a_iq \neq \emptyset \).

If \(\Pi(q) = V \) and \(a_iq = \{a_k, a_i, \ldots\} \), then \(a_iq^2 = a_iq \cdot q = \{a_k, a_i, \ldots\} \neq \emptyset \) and, repeating this argument, we obtain \(\Pi(q^l) = V \) for any \(l > 0 \).

If \(\Pi(q) = V \), then \(a_iq^l \cap a_jq^l \neq \emptyset \) implies the existence of an \(a_k \in V \) such that \(a_k \in a_iq^l \), \(a_k \in a_jq^l \), hence \(a_kq^l \subset a_iq^{l+t} \), \(a_kq^l \subset a_jq^{l+t} \), whence \(a_iq^{l+t} \cap a_jq^{l+t} \neq \emptyset \) for any integer \(t > 0 \). We state this fact explicitly:

Lemma 0.1. If \(\Pi(q) = V \), then \(a_iq^l \cap a_jq^l \neq \emptyset \), \(\{a_i, a_j\} \in V \), implies \(a_iq^{l+t} \cap a_jq^{l+t} \neq \emptyset \) for any integer \(t > 0 \).

Definition. Let \(q \in B_n(V) \), \(V = \{a_1, \ldots, a_n\} \). If \(a_i, a_j \) have a common consequent, then the least integer \(l \geq 1 \) for which \(a_iq^l \cap a_jq^l \neq \emptyset \) will be denoted by \(L(a_i, a_j) \).

To shorten the terminology, if \(a_i, a_j \) have a common consequent, we shall say that \(L(a_i, a_j) \) exists.

If there is at least one couple \((a_i, a_j) \) for which \(L(a_i, a_j) \) exists, we define \(L(q) = \max L(a_i, a_j) \), where \((a_i, a_j) \) runs through all couples for which \(L(a_i, a_j) \) exists.

If \(M = M(q) \) is the Boolean matrix corresponding to \(q \) in the correspondence (1), we shall write \(L(M) = L(q) \). If, finally, there is no couple \((a_i, a_j) \) for which \(L(a_i, a_j) \) exists, we define \(L(q) = L(M) = 0 \). [Note that in contradistinction to this definition \(L(a_i, a_j) \) is either \(\geq 1 \) or does not exist.]

The cardinality of a set \(Q \) will be denoted by \(|Q| \).

The following lemma is known. (See A. Paz [1], p. 89.)

Lemma 0.2. Let \(q \in B_n(V) \), \(V = \{a_1, \ldots, a_n\} \), \(\{a_i, a_j\} \in V \). If \(L(a_i, a_j) \) exists, then \(L(a_i, a_j) \leq \frac{1}{2}n(n - 1) \).

Proof. Essentially repeats that given in [1]. We include it not only for the sake of completeness, but rather since the modifications of the method used here will be used several times in the sequel.

Denote \(t = L(a_i, a_j) \) and consider the paths

\[
a_i = a_i^{(0)} \rightarrow a_i^{(1)} \rightarrow \ldots a_i^{(t-1)} \rightarrow a_i^{(t)} = a, \\
a_j = a_j^{(0)} \rightarrow a_j^{(1)} \rightarrow \ldots a_j^{(t-1)} \rightarrow a_j^{(t)} = a.
\]

Here \(a \in a_iq^t \cap a_jq^t \), while for all \(l < t \) we have \(a_iq^l \cap a_jq^l = \emptyset \).
The sequence of pairs

\[(3) \quad \left(\frac{a_i^{(0)}}{a_j^{(0)}}, \frac{a_i^{(1)}}{a_j^{(1)}}, \ldots, \frac{a_i^{(t-1)}}{a_j^{(t-1)}}, \frac{a}{a} \right) \]

cannot contain two equal pairs, since if

\[\left(\frac{a_i^{(k)}}{a_j^{(k)}} \right) = \left(\frac{a_i^{(k+u)}}{a_j^{(k+u)}} \right)\]

with \(u \geq 1 \), we may omit in (3) the segment

\[\left(\frac{a_i^{(k+1)}}{a_j^{(k+1)}}, \ldots, \frac{a_i^{(k+u)}}{a_j^{(k+u)}} \right)\]

which yields \(a_i^{q^{t-u}} \cap a_j^{q^{t-u}} = \emptyset \), a contradiction with the definition of \(t \).

We next show that only one of the pairs of the form

\[\left(\frac{a'}{a''} \right) \quad \text{and} \quad \left(\frac{a''}{a'} \right) \quad \left[a' \in V, \ a'' \in V, \ a' \neq a'' \right] \]

can appear in (3).

Indeed, suppose that

\[\left(\frac{a_i^{(1)}}{a_j^{(1)}} \right) = \left(\frac{a'}{a''} \right) \quad \text{and} \quad \left(\frac{a_i^{(1+u)}}{a_j^{(1+u)}} \right) = \left(\frac{a''}{a'} \right)\]

for some \(u > 0 \). The first equality implies that \(v = t - l \) is the least integer for which \(a'^{q^w} \cap a''^{q^w} = \emptyset \). The second one says that \(a^{q^w} \cap a'^{q^w} = \emptyset \) for \(w = t - (l + u) \).

Since \(w < v \), we have a contradiction.

Now the number of all unordered pairs \(\left(\frac{a'}{a''} \right) \) with \(a' \neq a'' \left[a', a'' \in V \right] \) is equal to \(\frac{1}{2}n(n - 1) \). Hence in (3) we have \(t \leq \frac{1}{2}n(n - 1) \). This proves Lemma 0.2.

A. Paz [1] remarks that it is not known whether the bound \(\frac{1}{2}n(n - 1) \) is sharp. He also remarks that the difference between the above bound and any sharper bound is of order of magnitude \(\frac{1}{2}n \).

The purpose of this paper is to prove that the above bound is not sharp. We prove that for any binary relation \(q \in B_n(V) \) and \(a_i, a_j \in V \), if \(L(a_i, a_j) \) exists, then

\[(4) \quad L(a_i, a_j) \leq \frac{1}{2}n^2 - n + e_n, \]

where

\[e_n = \begin{cases} 1 & \text{if } n \text{ is even,} \\ \frac{1}{2} & \text{if } n \text{ is odd.} \end{cases}\]

Moreover, this result is the best possible.

The formulation of this result in terms of directed graphs or in terms of Boolean matrices is obvious.

Though we shall often use graph-theoretical methods, the use of binary relations seems to have many advantages. For instance, \(a_i^{q^l} \) describes all vertices accessible
from the vertex \(a_i \) by a path of length \(l \). Note also that we shall have to deal with "high" values of \(l \) (i.e. values of order \(\frac{1}{2} n^2 \)).

We prove our statement in several steps. We first prove it for primitive relations. This is the essential part. For irreducible but not primitive relations we find estimates which are better than (4). Finally we treat the case of a "general" relation.

The function \(N(n) = \frac{1}{2} n^2 - n + e_n \) defined for all integers \(n \geq 2 \) plays an essential role in the following. Here we give the first eight values of \(N(n) \):

\[
\begin{align*}
N(2) &= 1, & N(6) &= 13, \\
N(3) &= 3, & N(7) &= 19, \\
N(4) &= 5, & N(8) &= 25, \\
N(5) &= 9, & N(9) &= 33.
\end{align*}
\]

We now prove our statement in two rather trivial cases.

Suppose that \(M(\varrho) \) contains a zero row, say the row corresponding to \(a^* \in V \), i.e. \(a^* \varrho = 0 \). We may suppose \(n \geq 3 \). Clearly \(L(a^*, a_j), a_j \neq a^* \), does not exist. Let therefore \(a_j + a^*, a_i + a^*, a_i = a_j \). The sequence arising from the paths joining \(a_i, a_j \) with a common consequent \(a^{(t)} \),

\[
\begin{pmatrix} a_i \\ a_j \end{pmatrix} = \begin{pmatrix} a^{(0)}_i \\ a^{(0)}_j \end{pmatrix}, \begin{pmatrix} a^{(1)}_i \\ a^{(1)}_j \end{pmatrix}, \ldots, \begin{pmatrix} a^{(t)}_i \\ a^{(t)}_j \end{pmatrix},
\]

cannot contain a couple of the form

\[
\begin{pmatrix} a^* \\ a' \end{pmatrix} \text{ or } \begin{pmatrix} a' \\ a^* \end{pmatrix} \text{ with } a' \neq a^* .
\]

Suppose that (5) is the shortest possible sequence. We use the same argument as in Lemma 0.2. The number of all unordered pairs

\[
\begin{pmatrix} a^{(v)}_i \\ a^{(v)}_j \end{pmatrix} \text{ with } a^{(v)}_i \neq a^{(v)}_j
\]
in (5) is at most \(\frac{1}{2} (n - 1) (n - 2) = \frac{1}{2} n^2 - \frac{3}{2} n + 1 \), so that

\[
L(a_i, a_j) \leq \frac{1}{2} n^2 - \frac{3}{2} n + 1 = N(n) - \left(\frac{1}{2} n + e_n - 1 \right).
\]

We have proved:

Lemma 0.3. Let \(\varrho \in B_n(V), n \geq 3 \), and suppose that \(M(\varrho) \) contains a zero row. If \(L(a_i, a_j) \) exists, we have

\[
L(a_i, a_j) \leq \begin{cases} N(n) - \frac{1}{2} n & \text{if } n \text{ is even}, \\ N(n) - \frac{n + 1}{2} & \text{if } n \text{ is odd}. \end{cases}
\]

Remark. Here it may happen that the c.c. is the vertex \(a^* \). As a simple example
consider the relation \(\mathcal{Q} \) with
\[
M(\mathcal{Q}) = \begin{pmatrix}
0 & 1 & 1 \\
0 & 0 & 0 \\
1 & 1 & 0
\end{pmatrix}.
\]

Here \(L(a_1, a_3) = 1 \) and the c.c. of \(a_1, a_3 \) is \(a_2 = a^* \).

Suppose next that \(M(\mathcal{Q}) \) contains a zero column, say the column corresponding to \(a^{**} \in V \). If \(n = 2 \) and \(L(a_i, a_j) \) exists, then \(L(a_i, a_j) = 1 \). Suppose therefore in the following \(n \geq 3 \).

If \(a_i \neq a^{**}, a_j \neq a^{**}, a_i \neq a_j \), then the sequence (5) cannot contain a couple of the form
\[
\begin{pmatrix} a^{**} \\ a' \end{pmatrix} \text{ or } \begin{pmatrix} a' \\ a^{**} \end{pmatrix}
\]
[since \(a^{**} \) is inaccessible from any \(a_i \in V \)]. The number of pairs in (5) is again at most \(\binom{n-1}{2} \).

If \(a = a^{**} \), i.e. in (5) we begin with \(\begin{pmatrix} a^{**} \\ a_j \end{pmatrix} \) [which is possible], we obtain a sequence containing at most \(\binom{n-1}{2} + 1 \) different terms so that
\[
L(a_i, a_j) \leq \frac{n^2}{2} - \frac{3}{2} n + 2 = N(n) - \left(\frac{n}{2} + \epsilon_n - 2 \right).
\]

We have proved:

Lemma 0.4. Let \(\mathcal{Q} \in B_n(V) \), \(n \geq 3 \), and suppose that \(M(\mathcal{Q}) \) contains a zero column. If \(L(a_i, a_j) \) exists, then
\[
L(a_i, a_j) \leq \begin{cases} N(n) - \left(\frac{n}{2} - 1 \right) & \text{if } n \text{ is even}, \\ N(n) - \frac{1}{2}(n + 1) & \text{if } n \text{ is odd}. \end{cases}
\]

Lemmas 0.3 and 0.4 [which show that (4) holds in the special cases just considered] will be used in Section 5.

Example 0.3. We close this section by giving a method how to find a c.c. (if it exists). Consider the relation \(\mathcal{Q} \) with
\[
M(\mathcal{Q}) = \begin{pmatrix}
0 & 1 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 \\
1 & 1 & 0 & 0 & 0 \\
1 & 0 & 0 & 0 & 0
\end{pmatrix}.
\]
To find $L(a_2, a_5)$ we write down (in an obvious notation) the sequence of “rows”

$$
\begin{pmatrix}
a_2 q^k \\
a_5 q^k
\end{pmatrix}, \ k = 1, 2, 3, \ldots
$$

$$
\begin{pmatrix}
a_2 \\
a_3 \\
a_1 \\
a_2 \\
a_3 \\
a_4 \\
a_2, a_3 \\
a_3, a_4 \\
a_4, a_1, a_2 \\
a_2, a_3
\end{pmatrix}
$$

Hence $a_2 q^6 \cap a_5 q^6 = \{a_2\}$, while $a_2 q^l \cap a_5 q^l = \emptyset$ for $l \leq 5$. Here we have $L(a_2, a_5) = 6 = N(5) - 3$, which shows that the bound from Lemma 0.4 is achieved.

The scheme “contains” any of the shortest paths joining a_2 and a_5 with the common consequent $\{a_2\}$. Of course some of the transitions (e.g. $a_2 \rightarrow a_2$ or $a_1 \rightarrow a_3$) are forbidden. In our example we have a unique possibility:

$$
a_2 \rightarrow a_3 \rightarrow a_4 \rightarrow a_2 \rightarrow a_3 \rightarrow a_4 \rightarrow a_2,
$$

$$
a_5 \rightarrow a_1 \rightarrow a_2 \rightarrow a_3 \rightarrow a_4 \rightarrow a_1 \rightarrow a_2.
$$

1. PRELIMINARIES

Motivated by the terminology in the study of non-negative matrices we define:

A Boolean square matrix A is called reducible if there is a permutation matrix P such that PAP^{-1} is of the form

$$
\begin{pmatrix}
B & O \\
C & D
\end{pmatrix},
$$

where B, D are square matrices. Otherwise it is called irreducible.

A relation $q \in B_n(V)$ is called reducible (irreducible) if $M(q)$ is reducible (irreducible).

It follows that 1×1 matrices are irreducible.

In general, any Boolean square matrix is permutation congruent to a matrix of the form

$$
\begin{pmatrix}
A_1 & 0 & \ldots & 0 \\
A_{21} & A_2 & \ldots & 0 \\
& \vdots & \ddots & \vdots \\
A_{k1} & A_{k2} & \ldots & A_k
\end{pmatrix},
$$

where A_i are irreducible.

We now recall some results concerning irreducible relations. (See, e.g., [2].)

Lemma 1.1. Let $q \in B_n(V)$, $n \geq 2$. The following statements are equivalent:

a) q is irreducible;

b) $q \cup q^2 \cup \ldots \cup q^n = V \times V$;

c) $a_i q \cup a_i q^2 \cup \ldots \cup a_i q^n = V$ for any $a_i \in V$;

d) $G(q)$ is strongly connected.

Note explicitly: If q is irreducible, then $M(q^t)$ cannot have a zero row or a zero column (for any integer $t > 0$).
The statement с) implies:

Lemma 1,2. Let \(q \) be irreducible, \(q \in B_n(V) \). Then for any \(a_i \in V \) there is a least integer \(h_i \), \(1 \leq h_i \leq n \), such that \(a_i \in a_iq^{h_i} \).

Given \(q \) we have defined a function \(h: V \to \{1, 2, \ldots, n\} \) such that \(h(a_i) = h_i \). This notation will be used throughout the paper.

Definition. Let \(q \) be irreducible, \(q \in B_n(V) \). The greatest common divisor \(d = (h_1, h_2, \ldots, h_n) \) is called the index of imprimitivity of \(q \). Clearly \(d = d(q) \leq n \).

Another characterization of \(d(q) \) is obtained by considering the matrix representation \(M(q) \).

Lemma 1,3. If \(q \) is irreducible and \(d = d(q) > 1 \), then the set \(V = \Pi(q) \) admits a decomposition into \(d \) disjoint non-empty subsets \(V = V_1 \cup V_2 \cup \ldots \cup V_d \) such that

\[
q \subset (V_1 \times V_2) \cup (V_2 \times V_3) \cup \ldots \cup (V_d \times V_1)
\]

Hence \(M(q) \) is permutation congruent to a matrix of the form

\[
\begin{pmatrix}
0 & A_1 & \ldots & 0 & 0 \\
0 & 0 & \ldots & 0 & 0 \\
\vdots & & & & \\
0 & 0 & \ldots & 0 & A_{d-1} \\
A_d & 0 & \ldots & 0 & 0
\end{pmatrix}
\]

If \(|V_i| = v_i \) and \(v_{d+1} = v_1 \), the zero matrices in the main diagonal are \(v_i \times v_i \) square matrices, while \(A_i \) is a \(v_i \times v_{i+1} \) Boolean rectangular matrix.

Definition. The sets \(V_1, V_2, \ldots, V_d \) are called the sets of imprimitivity of \(q \).

It follows from (7) that

\[
q^d \subset (V_1 \times V_1) \cup (V_2 \times V_2) \cup \ldots \cup (V_d \times V_d)
\]

and it is well known that there is an integer \(k_0 \geq 0 \) such that for all \(k \geq k_0 \),

\[
q^{dk} = (V_1 \times V_1) \cup (V_2 \times V_2) \cup \ldots \cup (V_d \times V_d).
\]

This implies:

Lemma 1,4. Let \(q \) be irreducible, \(d \geq 1 \) and let \(V' \) be one of the sets of imprimitivity of \(q \). If \(a_i \in V' \), then there is an integer \(k_0 \geq 0 \) such that for any \(k \geq k_0 \) we have \(a_iq^{kd} = V' \).

To find explicitly the sets \(V_1, V_2, \ldots, V_d \) we may use the following

Lemma 1,5. Let \(q \) be irreducible, \(d(q) > 1 \) and \(a_i \in V = \Pi(q) \).

a) The sets

\[
a_iq^l, a_iq^{l+1}, \ldots, a_iq^{l+d-1}
\]

are disjoint subsets of \(V \) for any \(l \geq 1 \).
b) There is an integer \(l_0 > 0 \) such that for any \(l \geq l_0 \) (and any \(a_i \in V \)) the sets (8) constitute exactly all the sets \(V_1, V_2, \ldots, V_d \).

c) If \(V' \) is one of the sets of imprimitivity of \(\varrho \), then \(V', V' \varrho, \ldots, V' \varrho^{d-1} \) are all the sets of imprimitivity of \(\varrho \).

Remark. Bounds for \(k_0 \) and \(l_0 \) depending on \(n \) and \(d \) have been given in [3]. We shall not need them in this paper.

Example 1.1. Consider the relation \(\varrho \) defined on \(V = \{a_1, a_2, a_3, a_4\} \) with

\[
M(\varrho) = \begin{pmatrix}
0 & 1 & 0 & 1 \\
0 & 0 & 1 & 0 \\
1 & 0 & 0 & 0 \\
0 & 0 & 1 & 0
\end{pmatrix}.
\]

\(\varrho \) is irreducible since \(G(\varrho) \) is strongly connected. We have, for instance,

\[a_2 \varrho = \{a_3\}, \quad a_2 \varrho^2 = \{a_1\}, \quad a_2 \varrho^3 = \{a_2, a_4\}, \quad a_2 \varrho^4 = \{a_3\}, \ldots \]

Here \(l_0 = 1 \) and \(V_1 = \{a_3\}, V_2 = \{a_1\}, V_3 = \{a_2, a_4\} \). Hence \(d = 3 \). Also \(h(a_i) = 3 \) for \(i = 1, 2, 3, 4 \). Further

\[\varrho = (V_1 \times V_2) \cup (V_2 \times V_3) \cup (V_3 \times V_1), \]

and \(M(\varrho) \) is permutation congruent with the matrix

\[
\begin{pmatrix}
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 1 \\
1 & 0 & 0 & 0 \\
1 & 0 & 0 & 0
\end{pmatrix}.
\]

Definition. A relation \(\varrho \) is called primitive if there is an integer \(t > 0 \) such that \(\varrho^t = V \times V \).

A relation is primitive iff it is irreducible and \(d(\varrho) = 1 \).

Note also: If \(\varrho \) is primitive, there is an integer \(t_0 > 0 \) such that for \(t \geq t_0 \) we have \(a_i \varrho^t = \{a_1, a_2, \ldots, a_n\} = V \) for any \(a_i \in V \).

Corollary 1.1. If \(\varrho \in B_n(V) \) is primitive, then any two vertices \(a_i, a_j \in V \) have a common consequent. That is, \(L(a_i, a_j) \) exists for any pair \((a_i, a_j) \) where \(a_i \neq a_j \).

Theorem 1.1. Let \(\varrho \in B_n(V) \). Suppose that \(\varrho \) is irreducible and \(d(\varrho) > 1 \). Then \(L(a_i, a_j) \) exists iff \(a_i \) and \(a_j \) are contained in the same set of imprimitivity of \(\varrho \).

Proof. a) Suppose that \(a_i \in V', a_j \in V' \). Then (by Lemma 1.4) there is an integer \(k_0 \) such that for any \(k \geq k_0 \) we have \(a_i \varrho^k = V' = a_i \varrho^{dk} \). Hence \(L(a_i, a_j) \) exists.

b) Let \(a_i, a_j \in V' \) and \(V' = V'' \). By Lemma 1.4 there is a \(k_0 > 0 \) such that \(a_i \varrho^{dk} = V', a_j \varrho^{dk} = V'' \) for any \(k \geq k_0 \). Suppose (for an indirect proof) that there is an \(l > 0 \) such that \(a_i \varrho^l \cap a_j \varrho^l = \emptyset \). Choose \(k \) such that \(d(k - l) > 0 \). By Lemma 0.1 (multiplying by \(\varrho^{dk-l} \)) we then have \(a_i \varrho^{dk} \cap a_j \varrho^{dk} = \emptyset, V' \cap V'' = \emptyset \), a contradiction with the fact that \(V' \) and \(V'' \) are disjoint. Hence \(L(a_i, a_j) \) does not exist.
The goal of this section is to prove Theorem 2.3. We begin with a series of lemmas.

Lemma 2.1. Let \(q \) be irreducible, \(q \in B_n(V) \), \(n \geq 2 \) and let \(Q \) be a non-empty proper subset of \(V \). Then \(Q \cdot q \) contains at least one element of \(V \) which is not contained in \(Q \).

Proof. Let \(Q = \{a_2, a_3, \ldots, a_s\} \). Suppose for an indirect proof that

\[
\{a_2, a_3, \ldots, a_s\} \cdot q \subseteq \{a_2, a_3, \ldots, a_s\}.
\]

Let \((a_2, a_3) \in q\). If \(a_3 \in Q \), we necessarily have \(a_3 \in Q \). Hence if \(a_2 \in Q \), \(a_3 \in V - Q = B \), then \((a_2, a_3) \notin q\). Therefore

\[
q \subseteq (Q \times Q) \cup (B \times Q) \cup (B \times B),
\]

i.e. \(q \) is reducible, contrary to the assumption.

Lemma 2.2. Let \(q \) be primitive, \(q \in B_n(V) \), \(n \geq 2 \) and \(a_i \in V \). If \(a_i q^s = a_j q^t \) for some \(1 \leq s < t \), then \(|a_i q^s| = n \).

Proof. The supposition \(a_i q^s = a_j q^{s+t-s} \) implies \(a_i q^s = a_j q^{s+t-s} \) for any integer \(l \geq 1 \). Since for a sufficiently large \(l \) the right hand side is \(V \), we have \(a_i q^s = V \), i.e. \(|a_i q^s| = n \).

Note that if \(q \) is primitive, \(q^t \) is primitive for any \(t > 1 \).

Let \(q \) be primitive, \(q \in B_n(V) \), \(n \geq 2 \) and consider the chain:

\[
a_i \in a_i q^{h_1} \subset a_i q^{2h_1} \subset \ldots \subset a_i q^{\lceil n/2 \rceil h_i}.
\]

Here (and in the following) \(\lceil x \rceil \) is the largest integer \(\leq x \). By Lemma 2.1, \(a_i q^{h_i} \) contains at least two elements, by Lemma 2.1 and Lemma 2.2, \(a_i q^{2h_i} \) contains at least three elements of \(V \), etc. Hence

\[
|a_i q^{\lceil n/2 \rceil h_i}| \geq \left\lceil \frac{n}{2} \right\rceil + 1.
\]

If \(a_i = a_j \), we analogously have \(|a_j q^{\lceil n/2 \rceil h_j}| \geq \left\lceil \frac{n}{2} \right\rceil + 1 \).

If \(h_i = h_j \), we have

\[
a_i q^{\lceil n/2 \rceil h_i} \cap a_j q^{\lceil n/2 \rceil h_j} = \emptyset,
\]

hence \(L(a_i, a_j) \leq \left\lceil \frac{n}{2} \right\rceil h_i \). If for instance \(h_i < h_j \), multiply each term in (9) by \(q^{\lceil n/2 \rceil (h_j - h_i)} \). We obtain the following chain of length \(\left\lceil \frac{n}{2} \right\rceil + 1 \):

\[
a_i q^{\lceil n/2 \rceil (h_j - h_i)} \subset a_i q^{\lceil n/2 \rceil (h_j - h_i) + h_i} \subset \ldots \subset a_i q^{\lceil n/2 \rceil h_j},
\]

whence \(|a_i q^{\lceil n/2 \rceil h_j}| \geq \left\lceil \frac{n}{2} \right\rceil + 1 \). Therefore \(a_i q^{\lceil n/2 \rceil h_j} \cap a_j q^{\lceil n/2 \rceil h_j} = \emptyset \), and \(L(a_i, a_j) \leq \left\lceil \frac{n}{2} \right\rceil h_j \). Analogously if \(h_j < h_i \).

We have proved:
Lemma 2.3. Suppose that \(q \in B_n(V) \), \(n \geq 2 \), and \(q \) is primitive. Then \(L(a_i, a_j) \leq \lceil \frac{n}{2} \rceil \max (h_i, h_j) \).

Recall that \(h_i \leq n \). If \(n = 3 \), we have \(L(a_i, a_j) \leq 3 \). This bound is achieved since in Example 0,1 we have \(L(a_1, a_2) = 3 \). If \(n = 2 \), there are only three primitive relations, namely those for which the matrix representations are:

\[
\begin{pmatrix}
1 & 1 \\
1 & 0 \\
0 & 1 \\
1 & 1
\end{pmatrix},
\begin{pmatrix}
0 & 1 \\
1 & 0 \\
1 & 1 \\
1 & 1
\end{pmatrix},
\begin{pmatrix}
1 & 1 \\
1 & 1 \\
1 & 1
\end{pmatrix}.
\]

Hence \(L(a_1, a_2) = 1 \).

We note this explicitly, since in the following we shall often suppose \(n \geq 4 \).

Corollary 2.3. Let \(q \) be primitive, \(q \in B_n(V) \). If \(n = 2 \), \(L(a_1, a_2) = 1 \). If \(n = 3 \), \(L(a_i, a_j) \leq 3 \).

Lemma 2.3 immediately implies:

Theorem 2.1. Let \(q \) be primitive, \(q \in B_n(V) \) and \(n \geq 3 \). If \(h(a_i) \leq n - 2 \), \(h(a_j) \leq n - 2 \), then

\[
L(a_i, a_j) \leq \begin{cases}
N(n) - 1 & \text{if } n \text{ is even}, \\
N(n) - \frac{1}{2}(n + 1) & \text{if } n \text{ is odd}.
\end{cases}
\]

Proof. For \(n \) even we have \(L(a_i, a_j) \leq \frac{1}{2}n(n - 2) = N(n) - 1 \). For \(n \) odd we have \(L(a_i, a_j) \leq \frac{1}{2}(n - 1)(n - 2) = N(n) - \frac{1}{2}(n + 1) \).

There is a simple case which can be treated directly.

Lemma 2.4. If \(q \) is primitive, \(q \in B_n(V) \) and \(G(q) \) contains a loop, then \(L(a_i, a_j) \leq n - 1 \) (for any \(a_i, a_j \in V \)).

Proof. Suppose that \(a_i \in a_{q, a}, a_i \neq a_i, a_j \neq a_i, a_i \neq a_j \). Since \(G(q) \) is strongly connected, there is a path of length \(k_1 \), \(1 \leq k_1 \leq n - 1 \), joining \(a_i \) with \(a_i \) and a path of length \(k_2 \), \(1 \leq k_2 \leq n - 1 \), joining \(a_j \) with \(a_i \), i.e., \(a_i \in a_{q, a_{k_1}} \), \(a_i \in a_{q, a_{k_2}} \). Using the loop (several times if necessary) we obtain \(a_i \in a_{q, a_{k_1}}, a_i \in a_{q, a_{k_2}} \), hence \(L(a_i, a_j) \leq n - 1 \). The same argument can be applied also in the case if \(a_i \) or \(a_j \) coincides with \(a_i \).

The next lemma may be considered a generalization of Lemma 2.4.

Note that if \(q \) is primitive, then \(d(q) = 1 = (h_1, h_2, \ldots, h_n) \) implies that not all \(h_i \) can be equal to \(n \). Hence the length of the shortest elementary circuit in \(G(q) \) is \(\leq n - 1 \).

Lemma 2.5. Let \(q \) be primitive, \(q \in B_n(V) \) and \(n \geq 4 \). Let \(h_0 \geq 1 \) be the length of the shortest elementary circuit in \(G(q) \). Denote \(L_1 = (\lceil \frac{n}{2} \rceil - 1) h_0 + n \). Then for any \(a_i \in V \) we have

\[
|a_{q, a_{L_1}}| \geq \left[\frac{n}{2} \right] + 1.
\]

Proof. Denote by \(C = \langle u_1, u_2, \ldots, u_{h_0}, u_i \rangle \) one of the elementary circuits of
length h_0. [Here $h_0 \leq n - 1$ and $u_i \in V$.] For each $u \in C$ we have $u \in u_0^{h_0}$. For any $a_i \in V - \{u_1, u_2, \ldots, u_{h_0}\}$ there is a path of length k_i, $1 \leq k_i \leq n - h_0$, joining a_i with some $u_j \in C$. This means: there is a $u_j \in C$ such that $u_j \in a_i u_0^{k_i}$, where $k_i \leq n - h_0$. Consider the chain

$$u_j \in u_j u_0^{h_0} \subset u_j u_0^{2h_0} \subset \ldots \subset u_j u_0^{\lfloor n/2 \rfloor h_0}$$

and (for any integer $t \geq 1$) the chain

$$u_j u_0^{t} \subset u_j u_0^{h_0+t} \subset u_j u_0^{2h_0+t} \subset \ldots \subset u_j u_0^{\lfloor n/2 \rfloor h_0+t}.$$

For any $t \geq 0$ we have $|u_j u_0^{\lfloor n/2 \rfloor h_0+t}| \geq \lceil n/2 \rceil + 1$.

Now, since $u_j \in a_i u_0^{k_i}$ we have

$$\lfloor n/2 \rfloor + 1 \leq |u_j u_0^{\lfloor n/2 \rfloor h_0+t}| \leq |a_i u_0^{\lfloor n/2 \rfloor h_0+t+k_i}|.$$

Putting $t = n - h_0 - k_i \geq 0$, we have

$$|a_i u_0^{t}| \geq \left\lfloor \frac{n}{2} \right\rfloor + 1,$$

which proves our lemma in the case that a_i is outside of C.

If u belongs to C, the chains

$$u \in u_0^{h_0} \subset u_0^{2h_0} \subset \ldots \subset u_0^{\lfloor n/2 \rfloor h_0},$$

$$u u_0^{t} \subset u_0^{h_0+t} \subset u_0^{2h_0+t} \subset \ldots \subset u_0^{\lfloor n/2 \rfloor h_0+t},$$

show that for any $t \geq 0$,

$$|u_0^{\lfloor n/2 \rfloor h_0+t}| \geq \left\lfloor \frac{n}{2} \right\rfloor + 1.$$

In particular, with $t = n - h_0$ we obtain $|u_0^{t}| \geq \lceil n/2 \rceil + 1$.

This proves Lemma 2.5.

Fig. 1.

Remark 1. Some care is necessary when dealing with inequalities containing expressions as $|a_i u_0^{t}|$ and $|a_i u_0^{t+1}|$. It may happen that $|a_i u_0^{t+1}| < |a_i u_0^{t}|$. [This cannot occur if ϱ is primitive and i is sufficiently "large".] Consider for instance the primitive relation ϱ for which the graph $G(\varrho)$ is given by Figure 1.
Here \(a_1q = \{a_1, a_2, a_3\} \), \(a_1q^2 = \{a_1, a_4\} \), hence \(|a_1q^2| < |a_1q| \).

Remark 2. The exponent \(L_1 = ([n/2] - 1) h_0 + n \) in Lemma 2.5 cannot be replaced by \(L_1 - 1 \). Consider for instance the primitive relation for which the graph \(G(q) \) is given by Figure 2.

![Figure 2](image)

Here \(a_2q = \{a_3\} \), \(a_2q^2 = \{a_4\} \), \(a_2q^3 = \{a_3\} \), \(a_2q^4 = \{a_1\} \), \(a_2q^5 = \{a_1, a_2\} \). Further \(L_1 = 6 \), and \(|a_2q^5| = 2 < [n/2] + 1 = 3 \).

Lemma 2.6. Let \(q \) be primitive, \(q \in B_n(V) \) and \(n \geq 4 \). Suppose that the length \(h_0 \) of the shortest elementary circuit in \(G(q) \) satisfies \(h_0 \leq n - 3 \). Then

\[
L'(a_i, a_j) \leq \begin{cases}
N(n) - \frac{1}{2}(n - 4) & \text{if } n \text{ is even,} \\
N(n) - (n - 3) & \text{if } n \text{ is odd.}
\end{cases}
\]

Proof. Denote \(L_1 = \lceil n/2 \rceil h_0 + n - h_0 \). Since \(|a_iq^{L_1}| \geq \lceil n/2 \rceil + 1 \) and \(|a_jq^{L_1}| \geq \lceil n/2 \rceil + 1 \), we have \(a_iq^{L_1} \cap a_jq^{L_1} = \emptyset \) and \(L'(a_i, a_j) \leq L_1 \). Now

\[
L_1 \leq \left(\frac{n}{2} \right) (n - 3) + n = \begin{cases}
\frac{1}{4}n^2 - \frac{3}{4}n + 3 & \text{if } n \text{ is even,} \\
\frac{1}{4}n^2 - 2n + \frac{9}{2} & \text{if } n \text{ is odd.}
\end{cases}
\]

Remark. For \(n = 4 \), \(h_0 = 1 \) and (by Lemma 2.4) \(L'(a_i, a_j) \leq n - 1 = 3 \). Hence for all \(n \geq 4 \) we have \(L'(a_i, a_j) \leq N(n) - 1 \).

Lemma 2.6 shows that in order to prove (4) we have to deal only with those primitive relations for which \(G(q) \) contains only elementary circuits of length \(n \) or \((n - 1) \) or \((n - 2) \).

We now divide our considerations into two parts. We first treat the case that \(G(q) \) has no elementary circuit of length \(n \). Next we shall suppose that \(G(q) \) has at least one elementary circuit of length \(n \).

We slightly improve Lemma 2.5 (of course, by imposing additional conditions).

Lemma 2.7. Let \(q \) be primitive, \(q \in B_n(V) \), \(n \geq 4 \), and suppose that \(G(q) \) has no loop and \(G(q) \) has no elementary circuit of length \(n \). Let \(h_0 > 1 \) be the length of the shortest elementary circuit in \(G(q) \). Denote \(L_1 = ([n/2] - 1) h_0 + n - 1 \).
Then for any a_i for which $h(a_i) = n - 1$ and any integer $t \geq 0$ we have

$$|a_q^{s_i + t}| \leq \left\lfloor \frac{n}{2} \right\rfloor + 1.$$

Proof. Let C be an elementary circuit of length $n - 1$ passing through the vertex a_i. This circuit contains all but one of the vertices. Denote this vertex by a^*. We assert that C contains a vertex, say w, such that $h(w) = h^*$. If $h(a^*) > h_0$, there is nothing to prove. If $h(a^*) = h_0 \geq 2$, denote an elementary circuit which passes through a^* by C^*. Then $C \cap C^* \neq \emptyset$. If $u \in C \cap C^*$, we have $h(u) = h_0$, which proves our assertion. Note that since q is primitive we have $h_0 \neq n - 1$, hence $h_0 < n - 1$ so that $a_i \neq u$.

[Remark. Our assertion need not be true if $G(q)$ contains a loop. Consider for example the primitive relation q with $G(q)$ given by the graph in Figure 3.]

![Fig. 3.](image-url)

Here the circuit $C = \langle a_2, a_3, a_4, a_5, a_2 \rangle$ does not contain a vertex u with $h(u) = 1$.]

Let $k_i < n - 1$ be the length of the (directed) path on C joining the vertex a_i with the vertex u, i.e., $u \in a_i q^{k_i}$. Then there is a path of length $s_i = n - 1 - k_i$ (on C) joining u with a_i, i.e., $a_i \in uq^{s_i}$. Using $u \in uq^{h_0}$ consider the chain with $\lfloor n/2 \rfloor$ terms:

$$uq^{s_i} \subset uq^{h_0 + s_i} \subset uq^{2h_0 + s_i} \subset \ldots \subset uq^{(\lfloor n/2 \rfloor - 1)h_0 + s_i}$$

and (with $t \geq 0$) the chain:

$$uq^{s_i + t} \subset uq^{h_0 + s_i + t} \subset \ldots \subset uq^{(\lfloor n/2 \rfloor - 1)h_0 + s_i + t}.$$

a) We first show that $a_i = uq^{s_i}$ cannot hold, so that $|uq^{s_i}| \geq 2$. Indeed, $a_i = uq^{s_i}$ implies $aq^{h_0} = uq^{s_i + h_0}$; further, $a_i = uq^{s_i} \subset uq^{h_0}q^{s_i} = aq^{h_0}$, hence $h_0 \geq n - 1$, a contradiction.

b) Suppose $a_i q^t \subset uq^{s_i + t}$, $a_i q^t \neq uq^{s_i + t}$ for $t = 0, 1, \ldots, t_0 - 1$, while $a_i q^{t_0} = uq^{s_i + t_0}$, where $t_0 > 0$. Since q is primitive such a $t_0 > 0$ exists. [We have denoted $a_i q^0 = a_i$.]

b 1) For $t < t_0$, the first term in (11) contains at least two elements of V so that

$$\left\lfloor \frac{n}{2} \right\rfloor + 1 \leq |uq^{(\lfloor n/2 \rfloor - 1)h_0 + s_i + t}|.$$

225
Since $u \in a_0 \xi^{k_1}$, we conclude
\[
\left\lfloor \frac{n}{2} \right\rfloor + 1 \leq |a_0 \xi^{(\lfloor n/2 \rfloor - 1)h_0 + s_1 + t + k_1}|.
\]

The exponent on the right hand side is $(\lfloor n/2 \rfloor - 1) h_0 + (n - 1 - k_i) + t + k_i = L_1 + t$. This proves (10) for all $t < t_0$.

b) The equality $a_0 \xi^{t_0} = u \xi^{s_i + t_0}$ implies $a_0 \xi^t = u \xi^{s_i + t}$ for all $t \geq t_0$.

The chain (11) with $\left\lfloor \frac{n}{2} \right\rfloor + 1$ terms can be now written (for $t \geq t_0$) in the form

\[
a_0 \xi^t \subset a_0 \xi^{t + h_0} \subset \cdots \subset a_0 \xi^{(\lfloor n/2 \rfloor - 1)h_0 + t},
\]

and multiplying by $\xi^{n - 1 - h_0}$ we obtain

\[
a_0 \xi^{t + (n - 1 - h_0)} \subset a_0 \xi^{t + h_0 + (n - 1 - h_0)} \subset \cdots \subset a_0 \xi^{(\lfloor n/2 \rfloor - 1)h_0 + (n - 1 - h_0)}.
\]

Since $t + \left\lfloor \frac{n}{2} \right\rfloor h_0 + n - 1 - h_0 = L_1 + t$, we conclude

\[
|a_0 \xi^{L_1 + t}| \geq \left\lfloor \frac{n}{2} \right\rfloor + 1.
\]

This proves (10) for all $t \geq t_0$. Lemma 2.7 is completely proved.

Remark. It is essential for our further purposes that (10) holds not only for $t = 0$ but also for all $t > 0$.

We now prove:

Theorem 2.2. Let ξ be primitive, $\xi \in B(V)$, $n \geq 4$. Suppose that $G(\xi)$ has no elementary circuit of length n. Then for any $a_i, a_j \in V$ we have

\[
L(a_i, a_j) \leq \begin{cases} N(n) & \text{for } n \text{ even}, \\ N(n) - \frac{1}{2}(n - 1) & \text{for } n \text{ odd}. \end{cases}
\]

Proof.

a) If $h_0 = 1$, then (by Lemma 2.4) $L(a_i, a_j) \leq n - 1$. For $n \geq 4$ we have $n - 1 < N(n) - \frac{1}{2}(n - 1)$. Hence our statement holds.

b) If $h_i \leq n - 2, h_j \leq n - 2$ our statement holds by Theorem 2.1.

In the following we may suppose that at least one of the numbers h_i, h_j is equal to $n - 1$. Note again that since ξ is primitive not all elementary circuits can be of length $n - 1$, hence $h_0 \leq n - 2$.

In the following we may suppose that at least one of the numbers h_i, h_j is equal to $n - 1$. Note again that since ξ is primitive not all elementary circuits can be of length $n - 1$, hence $h_0 \leq n - 2$.

If $h_0 > 1$ and $h_i = h_j = n - 1$, we have $a_0 \xi^{L_0} \cap a_0 \xi^{L_1} + 0$ by Lemma 2.7, where $L_1 = (\lfloor n/2 \rfloor - 1) h_0 + (n - 1) h_0 + (n - 1)$. Hence

\[
L(a_i, a_j) \leq \left(\left\lfloor \frac{n}{2} \right\rfloor - 1 \right) (n - 2) + (n - 1) = \begin{cases} N(n) & \text{if } n \text{ is even}, \\ N(n) - \frac{1}{2}(n - 1) & \text{if } n \text{ is odd}. \end{cases}
\]

d) Suppose $h_0 > 1$ and $h_i = n - 1, h_j \leq n - 2$. By Lemma 2.7 we have $|a_0 \xi^{L_1 + t}| \geq \left\lfloor \frac{n}{2} \right\rfloor + 1$ for any t and $L_1 = (\lfloor n/2 \rfloor - 1) h_0 + n - 1$. By considering the chain [see (9)]

\[
a_0 \xi^t \subset a_0 \xi^{t + h_j} \subset \cdots \subset a_0 \xi^{(\lfloor n/2 \rfloor - 1)h_j},
\]

226
we obtain

$$|a_0^{L_2+t'}| \geq \left[\frac{n}{2} \right] + 1$$

for any $t' \geq 0$. Here $L_2 = \lceil n/2 \rceil$. If $L_2 < L_1$, choose $t' = t_1 > 0$ such that $L_2 + t_1 = L_1$. Then $a_0^{L_1} \cap a_0^{L_1} \neq \emptyset$ and this gives the same estimate as in c).

If $L_2 \geq L_1$, choose $t = t_2 \geq 0$ so that $L_1 + t_2 = L_2$. We then have $a_0^{L_2} \cap a_0^{L_2} \neq \emptyset$. This implies

$$L(a_1, a_j) \leq \left[\frac{n}{2} \right] h_j \leq \left[\frac{n}{2} \right] (n - 2) = \begin{cases} N(n) - 1 & \text{if } n \text{ is even}, \\ N(n) - \frac{1}{2}(n + 1) & \text{if } n \text{ is odd}. \end{cases}$$

Theorem 2,2 is proved.

In the foregoing considerations we have used a simple principle. If both $a_0^{L_0}$ and $a_0^{L_0}$ contain more than a half of all vertices, then $L(a_1, a_j) \leq L_0$.

We cannot expect that this method will give the best possible results since a common consequent may exist even if one (or both) of the sets $a_0^{L_0}$, $a_0^{L_0}$ contain a half or less than a half of all vertices. This is shown by Example 2,1 below. Nevertheless, the result obtained in Theorem 2,2 is sufficient for our purposes, since in the “worst” case, namely the case in which there is a vertex a_1 with $h(a_1) = n$, we obtain sharp estimates in which the bounds are not smaller than those given by Theorem 2,2.

Example 2,1. Consider the relation ρ for which $G(\rho)$ is given by Figure 4. Here $h(a_1) = 4$, $h(a_2) = h(a_3) = h(a_4) = 3$.

$$M(\rho) = \begin{pmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 1 & 1 & 0 & 0 \end{pmatrix}.$$

A simple computation shows that the matrix representations of ρ^2, ρ^3, ρ^4 and ρ^5 are, successively,

$$\rho^2 = \begin{pmatrix} 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 1 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}, \quad \rho^3 = \begin{pmatrix} 1 & 1 & 0 & 0 \\ 0 & 0 & 1 & 1 \\ 1 & 1 & 1 & 0 \\ 0 & 0 & 1 & 1 \end{pmatrix}, \quad \rho^4 = \begin{pmatrix} 0 & 1 & 1 & 0 \\ 0 & 0 & 1 & 1 \\ 1 & 1 & 0 & 1 \\ 1 & 1 & 1 & 0 \end{pmatrix}.$$

Here $L(a_1, a_3) = 5$, though $|a_1\rho^5| = 2 < 3$. Also $L(a_1, a_2) = 4$ though both
\(|a_1q^4| = |a_2q^4| = 2\). It can be immediately checked that \(a_1q^5 \cap a_jq^5 = \emptyset\), while \(a_1q^4 \cap a_3q^4 = \emptyset\). This implies \(L(a_i, a_j) = 5 = N(4)\).

This example will be used in proving Corollary 2.4 below.

B

We shall now suppose that \(G(q)\) contains a vertex \(a_1\) with \(h(a_1) = n\) and \(n \geq 4\). With respect to Lemma 2.6 it is sufficient to consider only such \(q\) for which \(G(q)\) has no elementary circuits of length \(\leq n - 3\).

For brevity we introduce the following

Notation. We shall say that \(q\) satisfies Condition \(H\) if \(n \geq 4\) and all elementary circuits contained in \(G(q)\) are of length \(h \geq n - 2\).

We first find the possible types of primitive relations satisfying Condition \(H\).

Consider the equality

\[a_1q \cup a_1q^2 \cup \ldots \cup a_1q^n = V.\]

We shall use several times Lemma 2.1 in the following form: Let \(Q \subset V\) and \(|Q| = s < n\). Then \(|Q \cup a_iq| = s_1 > s\). If \(s_1 < n\), then \(|(Q \cup a_iq) \cup (Q \cup a_iq) \emptyset| = = |Q \cup a_iq \cup a_iq^2| > s_1\), etc.

The set \(a_iq\) cannot contain more than one element of \(V\) since otherwise (by successively applying Lemma 2.1) we should obtain that \(a_1q \cup a_1q^2 \cup \ldots \cup a_1q^{n-1} = = V\), contrary to the supposition \(a_1q \notin a_iq^{h}\) if \(h < n\). Denote \(a_2 = a_1q\).

Analogously, each segment \(a_2q \cup a_2q^2 \cup \ldots \cup a_2q^r\), \(r \leq n - 1\), contains \(r\) different elements and \(a_2q^r\) contains exactly one element which is not contained in \(a_1q \cup \ldots \cup a_1q^{r-1}\). Denote this element by \(a_r+1\), so that \(a_r+1 \in a_1q^r\).

If no further condition is imposed, \(a_1q^2\) may contain \(\{a_3, a_2\}\). If \(a_2 \in a_1q^2\), i.e. \(a_2 \in a_2q\), we have a loop in \(a_2\). Hence if we suppose that Condition \(H\) is fulfilled we necessarily have \(a_3 = a_1q^2\).

Again if no condition is imposed, \(a_1q^3\) may contain a subset of \(\{a_4, a_3, a_2\}\). If \(a_2 \in a_1q^3\), i.e. \(a_2 \in a_2q^2\), then \(q\) has a circuit of length 2. If \(a_3 \in a_1q^3\), i.e., \(a_3 \in a_3q\), then we have a loop in \(a_3\). Hence if \(n \geq 5\) and Condition \(H\) is fulfilled we necessarily have \(a_4 = a_1q^3\).

In this manner, supposing that Condition \(H\) is satisfied, we obtain the following sequence:

\[a_2 = a_1q, \ a_3 = a_1q^2, \ldots, \ a_{n-2} = a_1q^{n-3}, \ a_{n-1} = a_1q^{n-2} .\]

Even the last term \(a_1q^{n-2}\) is necessarily a one point set since, for instance, \(a_2 \in\ e a_1q^{n-2}\) would imply \(a_2 \in a_1q \cdot q^{n-3}\), i.e. \(a_2 \in a_2q^{n-3}\).

The situation changes in the next step. The set \(a_{n-1}q = a_1q^{n-1}\) contains a new element \(a_n\) that does not contain \(a_1\), may contain \(a_2\), but cannot contain any element of the set \(\{a_{n-1}, a_{n-2}, \ldots, a_3\}\). [The inclusion \(a_2 \in a_1q^{n-1}\) is possible since \(a_2 \in a_2q^{n-2}\) indicates the existence of a circuit of length \(n - 2\) which is not forbidden.]

Finally, \(a_1q^n\) contains \(a_1\), may contain \(a_2\) and \(a_3\), but contains no element of the
set \{a_n, a_{n-1}, \ldots, a_5, a_4\}. [If for instance \(a_4 \in a_1 q^n\), we should have \(a_4 \in a_4 q^{n-3}\), hence a circuit of length \(n - 3\).]

The whole situation is illustrated in Figure 5. Here the dotted edges are possible edges (not excluded by Condition \(H\)).

![Figure 5](image)

Note that if \(G(q)\) contains the edge \(\langle a_{n-1}, a_2\rangle\), i.e. \(a_2 \in a_{n-1} q \subset a_{n-1} q^2 = a_n q^n\), hence \(G(q)\) contains also the edge \(\langle a_n, a_3\rangle\).

Denote by \(C\) the elementary circuit \(\langle a_1, a_2, \ldots, a_n, a_1\rangle\) passing through \(a_1\). We then have the following 5 possible types of graphs \(G(q)\):

\(\alpha\) \(G(q_1)\), consisting of \(C\) and the edge \(\langle a_n, a_2\rangle\);

\(\beta\) \(G(q_2)\), consisting of \(C\) and the edges \(\langle a_n, a_2\rangle\) and \(\langle a_n, a_3\rangle\);

\(\gamma\) \(G(q_3)\), consisting of \(C\) and the edges \(\langle a_n, a_2\rangle, \langle a_n, a_3\rangle, \langle a_{n-1}, a_2\rangle\);

\(\delta\) \(G(q_4)\), consisting of \(C\) and the edge \(\langle a_n, a_3\rangle\);

\(\varepsilon\) \(G(q_5)\), consisting of \(C\) and the edges \(\langle a_n, a_3\rangle, \langle a_{n-1}, a_2\rangle\).

For our purposes the case \(\beta\) and \(\gamma\) can be reduced to the study of the case \(\alpha\). The graph \(G(q_1)\) is a (directed) subgraph of \(G(q_2)\) and \(G(q_3)\). The relation \(q_1\) is primitive (since it contains elementary circuits of lengths \(n\) and \(n - 1\)). Hence \(q_2\) and \(q_3\) are primitive.

Suppose that we know the number \(L(a_i, a_j) = L_q(a_i, a_j)\) for a given \(q\). If we form a new relation \(q'\) by adding some new edges to \(q\), we have \(L_{q'}(a_i, a_j) \leq L_q(a_i, a_j)\). In our case \(L_{q_3}(a_i, a_j) \leq L_{q_2}(a_i, a_j)\) and \(L_{q_2}(a_i, a_j) \leq L_{q_1}(a_i, a_j)\). Hence it is sufficient to find an estimate of \(L(a_i, a_j)\) for the graph \(G(q_1)\).

Analogously \(G(q_4)\) is a subgraph of \(G(q_3)\). They both contain circuits only of lengths \(n\) and \(n - 2\). Such graphs are primitive iff \(n\) is odd. Since (under this supposition) \(L_{q_3}(a_i, a_j) \leq L_{q_2}(a_i, a_j)\), it is sufficient for our purposes to deal only with the graph \(G(q_4)\).

Summarily: We have to treat only the cases \(\alpha\) and \(\delta\).

1) We begin with the second case, i.e. consider the relation \(q\) with the graph given in Figure 6, where \(n\) is odd (hence \(n \geq 5\)).

Lemma 2.8. For the relation \(q\) given by the graph in Figure 6 (where \(n \geq 5\) is odd) we have

\[L(a_i, a_j) \leq N(n) - \frac{1}{4}(n - 3)\]

229
Proof. Consider the chains

\[a_3 \in a_3 q^{n-2} \subset a_3 q^{2(n-2)} \subset \ldots \subset a_3 q^{[n/2](n-2)} \]

and

\[a_3 q^t \subset a_3 q^{n-2+t} \subset a_3 q^{2(n-2)+t} \subset \ldots \subset a_3 q^{[n/2](n-2)+t}, \]

and denote \(L_1 = [n/2] (n - 2) = \frac{1}{2} n^2 - \frac{3}{2} n + 1 = N(n) - \frac{1}{2}(n + 1) \). (12) implies (for any integer \(t \geq 0 \)) \(|a_3 q^{L_1+1}| \geq [n/2] + 1 = \frac{1}{4}(n + 1) \). Since \(a_3 = a_1 q^2 \), \(a_3 = a_2 q \), the last inequality (with \(t = 0 \) and \(t = 1 \)) implies

\[|a_1 q^{L_1+2}| \geq \frac{n + 1}{2}, \quad |a_2 q^{L_1+2}| \geq \frac{n + 1}{2}. \]

Further, for \(3 < i \leq n \) we have \(a_i = a_3 q^{i-3} \), whence

\[|a_3 q^{L_1+1}| = |a_3 q^{i-3} q^{L_1-(i-3)+t}| = |a_1 q^{L_1-(i-3)+t}| \geq \frac{n + 1}{2}. \]

Putting \(t = i - 1 \), we obtain \(|a_i q^{L_1+2}| \geq \frac{1}{2}(n + 1) \). [Note that for \(n \geq 5 \), \(L_1 - (i - 3) \geq L_1 - (n - 3) = \frac{1}{2} n^2 - \frac{3}{2} n + 4 > 0 \).]

Summarily: \(|a_i q^{L_1+2}| \geq \frac{1}{2}(n + 1) \) for any \(a_i \in V \). This implies \(L(a_i, a_j) \leq L_1 + 2 = N(n) - \frac{1}{2}(n - 3) \). Lemma 2,8 is proved.

II. We now turn to the last case, namely to the relation \(q \) defined by the graph in Figure 7.

We first consider the set \(V' = \{a_2, a_3, \ldots, a_n\} \). Let \(M_0 \) be the least integer \(m \) such
that \(a_1q^m \cap a_jq^m \neq \emptyset\) holds for all \(a_i, a_j \in V'.\) [Clearly, \(M_0 = \max L(a_i, a_j),\) where \(a_i, a_j\) run through all \(a_i, a_j \in V'.\)]

Since \(a_k = a_2q^{k-2} (k = 2, 3, \ldots, n)\) we have to find the least \(m\) such that

\[(13)\]

\[a_2q^{m+i-2} \cap a_2q^{(m+i-2)+j-i} \neq \emptyset\]

holds for all couples \((i, j)\) with \(2 \leq i < j \leq n.\) Another way to write \((13)\) is

\[(14)\]

\[a_2q^{m+i-2} \cap a_2q^{(m+i-2)+s} \neq \emptyset\]

for \(i = 2, \ldots, n - 1\) and \(s = 1, 2, \ldots, n - 2.\) This is equivalent to finding the least integer \(m > 0\) such that

\[(15)\]

\[a_2q^m \cap a_2q^{m+s} \neq \emptyset\]

for \(s = 1, 2, \ldots, (n - 2).\) [For, if \((15)\) is satisfied, then multiplying \((15)\) by \(q^{i-2}\) we obtain \((14).\)]

Note that for \(s = n - 1\) we have \(a_2q^{m+s} = a_2q^{n-1}. q^m = \{a_1, a_2\} q^m,\) hence \(a_2q^m \cap a_2q^{m+n-1} \neq \emptyset\) for any \(m > 0.\)

Next let \(M_1\) be the least integer \(m > 0\) such that \(a_1q^m \cap a_1q^m \neq \emptyset\) for \(i = 2, 3, \ldots, n.\) [Clearly \(M_1 = \max L(a_1, a_i).\)] Since \(a_i = a_2q^{i-2}, a_2 = a_1q,\) this can be rewritten as

\[(16)\]

\[a_2q^{m-1} \cap a_2q^{m-1+(i-1)} \neq \emptyset\]

for \(i = 2, 3, \ldots, n.\) As noted above, \((16)\) is always satisfied if \(i = n.\) Hence we have:

The number \(M_1\) is the least integer \(m\) for which

\[a_2q^{m-1} \cap a_2q^{m-1+s} \neq \emptyset\]

for all \(s = 1, 2, \ldots, (n - 2).\) This immediately implies \(M_1 - 1 = M_0.\)

We have proved:

Lemma 2.9. If \(M_0\) is the least integer \(m > 0\) such that \(a_2q^m \cap a_2q^{m+s} \neq \emptyset\) for \(s = 1, 2, \ldots, (n - 2),\) then \(\max L(a_i, a_j) = M_0 + 1,\) where \(a_i, a_j \in V.\)

To find \(M_0\) we describe \(a_2q^i\) explicitly:

\[(17)\]

\[a_2q^{n-1} = \{a_2, a_1\},\]

\[a_2q^{2(n-1)} = \{a_1q^{n-1}, a_2q^{n-1}\} = \{a_2, a_1, a_n\},\]

\[a_2q^{3(n-1)} = \{a_1q^{n-1}, a_1q^{n-1}, a_2q^{n-1}\} = \{a_2, a_1, a_n, a_{n-1}\},\]

\[a_2q^{k(n-1)} = \{a_2, a_1, a_n, a_{n-1}, \ldots, a_{n-(k-2)}\}.\]

The last equality holds for those \(k\) for which \(n - (k - 2) \geq 3\) and \(k \geq 2,\) i.e. \(2 \leq k \leq n - 1.\) [For \(k = 1\) we have \((17).\)]

From now on we consider the cases \(n\) even and \(n\) odd separately.

a) Let \(n\) be even. The case \(n = 4\) has been settled in Example 2.1.
If \(n \geq 6 \), then \(k = \frac{1}{2}n - 1 \) satisfies \(2 \leq k \leq n - 1 \). In (18) put \(k = \frac{1}{2}n - 1 \) and denote \(L_1 = (\frac{1}{2}n - 1)(n - 1) \). The following set contains \(\frac{1}{2}n \) elements of \(V \):

\[
a_2q^{L_1} = \{ a_2, a_1, a_{n-1}, \ldots, a_{n/2+1} \}.
\]

Denote further \(L_0 = L_1 + \frac{1}{2}n - 1 - \frac{1}{2}n^2 - n \). The last equality implies

\[
a_2q^{L_0} = a_2q^{L_1+n/2-1} = \{ a_{n/2+1}, a_{n/2}, \ldots, a_3, a_2 \},
\]

\[
a_2q^{L_0+1} = a_2q^{L_1+n/2} = \{ a_{n/2+2}, a_{n/2+1}, \ldots, a_4, a_3 \}.
\]

We assert that \(a_2q^{L_0} \cap a_2q^{L_0+s} = \emptyset \) for \(s = 1, 2, \ldots, n - 2 \) (hence \(M_0 \leq L_0 \)).

For \(s = 1, 2, \ldots, \frac{1}{2}n - 1 \), each of the „shifted” sets \(a_2q^{L_0+1}, a_2q^{L_0+2}, \ldots \), \(a_2q^{L_0+n/2-1} \) contains the element \(a_{n/2+1} \) so that our statement is true.

For \(s \geq \frac{1}{2}n \) we use the usual argument. Since

\[
a_2 \in a_2q_{n/2-1} \subset \ldots \subset a_2q^{(n/2)(n-1)},
\]

we have \(|a_2q^{(n/2)(n-1)}| \leq \frac{1}{2}n + 1 \) and also \(|a_2q^{(n/2)(n-1)+1}| \leq \frac{1}{2}n + 1 \) for any \(t \geq 0 \).

Now \(\frac{1}{2}n(n - 1) + t = L_0 + \frac{1}{2}n + t \), so that \(|a_2q^{L_0+s}| \leq \frac{1}{2}n + 1 \) for \(s = \frac{1}{2}n, \frac{1}{2}n + + 1, \ldots, n - 2 \). Since \(|a_2q^{L_0}| = \frac{1}{2}n \) we have \(a_2q^{L_0} \cap a_2q^{L_0+s} = \emptyset \) for \(s = \frac{1}{2}n, \frac{1}{2}n + + 1, \ldots, n - 2 \). This proves our statement.

To prove that \(M_0 = L_0 \) it is sufficient to show that for some \(s \in \{ 1, 2, \ldots, n - 2 \} \) we have \(a_2q^{L_0-1} \cap a_2q^{L_0-1+s} = \emptyset \).

Now

\[
a_2q^{L_0-1} = \{ a_{n/2}, a_{n/2-1}, \ldots, a_2, a_1 \}
\]

and for \(s = \frac{1}{2}n \),

\[
a_2q^{L_0-1+n/2} = \{ a_n, a_{n-1}, \ldots, a_{n/2+1} \}.
\]

Hence

\[
a_2q^{L_0-1} \cap a_2q^{L_0-1+n/2} = \emptyset
\]

(19) implies \(|a_2q^{L_0}| = \frac{1}{2}n \) and also \(|a_2q^{L_0+s}| \leq \frac{1}{2}(n + 1) \) for any \(s > 0 \). Hence \(a_2q^{L_0} \cap a_2q^{L_0+s} = \emptyset \) for \(s = 1, 2, \ldots, n - 2 \) This implies \(M_0 \leq L_0 \).

To show that \(M_0 = L_0 \) it is sufficient to show that for some \(s \in \{ 1, 2, \ldots, n - 2 \} \) we have \(a_2q^{L_0-1} \cap a_2q^{L_0-1+s} = \emptyset \).
For $n \geq 5$ and $k = \lfloor \frac{1}{2}n \rfloor$ we have $2 \leq k \leq n - 1$ so that we can use (18) by which
\[a_2q^{L_0} = \{a_2, a_1, a_n, \ldots, a_{(n+5)/2}\}, \]
while
\[(20) \quad a_2q^{L_0-1} = \{a_n, a_{n-1}, \ldots, a_{(n+3)/2}\}. \]
Multiplying (20) by $q^{(n-1)/2}$ we obtain
\[a_2q^{L_0-1+(n-1)/2} = \{a_{(n+1)/2}, a_{(n-1)/2}, \ldots, a_2, a_1\}. \]
Hence for $s = \frac{1}{2}(n - 1)$ we have $a_2q^{L_0-1} \cap a_2q^{L_0-1+s} = \emptyset$. This proves $M_0 = L_0$.

Lemma 2.9 again implies $\max L(a_i, a_j) = L_0 + 1 = N(n)$. We further have
\[a_2q^{L_0-1} \cap a_2q^{L_0-1+(n-1)/2} = a_1q^{L_0} \cap a_{(n+1)/2}q^{L_0} = \emptyset. \]
Hence:

Corollary 2.5. If n is odd, $\max L(a_i, a_j) = N(n)$ and the value $N(n)$ is achieved for the couple $(a_1, a_{(n+1)/2})$.

Lemma 2.10. If q is the relation defined by the graph in Figure 7, then $L(a_i, a_j) \leq \leq N(n)$. The bound is sharp since there is a pair (a_1, a_j) for which $L(a_1, a_j) = N(n)$.

Taking into account Corollary 2.3, Lemma 2.6, Theorem 2.2 Lemma 2.8 and Lemma 2.10 we finally have:

Theorem 2.3. *(The main result.)* Let q be primitive, $q \in B_n(V)$, $n \geq 2$. Then for any $a_i, a_j \in V$ we have $L(a_i, a_j) \leq N(n)$. This result is the best possible.

The goal of the following sections is to prove that the estimate of Theorem 2.3 holds not only for primitive relations but for any $q \in B_n(V)$.

3. Irreducible Relations with $d(q) > 1$

Let now $q \in B_n(V)$, q irreducible but not primitive. Since in this case $L(a_1, a_2)$ does not exist for $n = 2$, we may suppose $n \geq 3$.

Without loss of generality we shall suppose that the matrix representation of q is of the form
\[M(q) = \begin{pmatrix} 0 & B_1 & \ldots & 0 & 0 \\ 0 & 0 & \ldots & 0 & 0 \\ \vdots \\ 0 & 0 & \ldots & 0 & B_{d-1} \\ B_d & 0 & \ldots & 0 & 0 \end{pmatrix}, \]
Here $d = d(q) > 1$ is the index of imprimitivity of q. In this case we have
\[M(q^d) = \begin{pmatrix} A_1 & 0 & \ldots & 0 \\ 0 & A_2 & \ldots & 0 \\ 0 & 0 & \ldots & A_d \end{pmatrix}, \]
where A_k are primitive $v_k \times v_k$ Boolean matrices, $\Pi(A_k) = V_k$ are the sets of imprimitivity of q, and $V_1 \cup \ldots \cup V_d = V$, $v_1 + \ldots + v_d = n$. 233
By Theorem 1.1, \(L(a_i, a_j) \) exists if and only if \(a_i, a_j \) are contained in the same set of imprimitivity, say \(V_k \). Suppose that this is the case and \(v_k \geq 2 \). We may use Theorem 2.3 by which

\[
L(a_i, a_j) \leq d \cdot \left(\frac{1}{2} v_k^2 - v_k + \varepsilon_{v_k} \right).
\]

We essentially improve this straightforward result. Denote \(\min_{k=1, \ldots, d} |V_k| = \beta \) and denote by \(V_0 \) a fixed chosen set of imprimitivity with \(|V_0| = \beta \).

a) Suppose first \(|V_0| = \beta = 1 \). If \(|V_k| = 1 \) for all \(k = 1, \ldots, d \), no two elements of \(V \) have a c.c. In any \(V_k \) with \(|V_k| \geq 2 \) choose two vertices \(a_i, a_j \). Since \(V_0 = V_kQ^u \) for some \(u, 1 \leq u \leq d - 1 \), we have \(a_iQ^u = a_jQ^u \), i.e. \(L(a_i, a_j) \) exists and \(L(a_i, a_j) \leq \leq d - 1 \).

b) Next suppose \(|V_0| = \beta \geq 2 \). For any \(a_i, a_j \in V_0 \) we have \(L(a_i, a_j) \leq \leq d(\frac{1}{2} \beta^2 - \beta + \varepsilon_{\beta}) = L_0 \), i.e. \(a_iQ^L \cap a_jQ^L \neq \emptyset \). Let \(V_k \neq V_0 \) be any set of imprimitivity and \(a_i, a_j \in V_k \). Since \(V_0 = V_0Q^u \) with some \(u, 1 \leq u \leq d - 1 \), both \(a_iQ^u, a_jQ^u \) are contained in \(V_0 \). Therefore \(a_iQ^u \cap a_jQ^u \neq \emptyset \). Hence \(L(a_i, a_j) \leq \leq u + L_0 \leq d - 1 + d(\frac{1}{2} \beta^2 - \beta + \varepsilon_{\beta}) \).

We have proved:

Theorem 3.1. Suppose that \(q \in B_n(V) \), \(n \geq 3 \), \(q \) is irreducible and \(d(q) > 1 \). Denote \(\min_{k} |V_k| = \beta \).

a) If \(\beta = 1 \) and \(L(a_i, a_j) \) exists, then \(L(a_i, a_j) \leq d - 1 \).

b) If \(\beta > 1 \) and \(L(a_i, a_j) \) exists, then

\[
L(a_i, a_j) \leq d - 1 + d(\frac{1}{2} \beta^2 - \beta + \varepsilon_{\beta}).
\]

We now transform (21) into another form which enables us to obtain estimations in which \(\beta \) does not appear explicitly. This will be worse than (21), but sufficient for our purposes.

Write \(n = \alpha d + \alpha_1 \), where \(\alpha \geq 1 \) is an integer and \(0 \leq \alpha_1 \leq d - 1 \). At least one of the numbers \(|V_1|, \ldots, |V_d| \) is \(\leq \alpha \). [If all of them were \(\geq \alpha + 1 \) this would imply \(d(\alpha + 1) = \alpha d + d > n \].

We have \(2 \leq \beta \leq \alpha = (n - \alpha_1)/d \). Since \(N(\beta) \) is an increasing function of \(\beta \) we have (for any \(a_i, a_j \) for which \(L(a_i, a_j) \) exists)

\[
L(a_i, a_j) \leq d - 1 + (\frac{1}{2} \alpha^2 - \alpha + \varepsilon_\alpha) d = d - 1 + d \left[\frac{1}{2} \left(\frac{n - \alpha_1}{d} \right)^2 - \left(\frac{n - \alpha_1}{d} \right) + \varepsilon_\alpha \right] =
\]

\[
= \frac{1}{2d} \left(n - d - \alpha_1 \right)^2 + d(\varepsilon_\alpha + \frac{1}{2}) - 1.
\]

Putting here \(\alpha_1 = 0, \varepsilon_\alpha = \frac{1}{2} \) we obtain:

Corollary 3.1. Let \(q \in B_n(V) \), \(q \) irreducible, \(n \geq 3 \), \(d(q) > 1 \). If \(L(a_i, a_j) \) exists, then

\[
L(a_i, a_j) \leq \frac{1}{2d} \left(n - d \right)^2 + 2d - 1.
\]

234
A still weaker estimate in which even \(d \) does not appear explicitly is obtained as follows.

Suppose \(n = 3 \). If \(d = 3 \), then \(M(\varrho) \) is a permutation matrix and \(L(a_i, a_j) \) does not exist. If \(d = 2 \), then \(\beta = 1 \) and (by Theorem 3.1) \(L(a_i, a_j) = 1 < N(3) = 3 \). Suppose \(n = 4 \). If \(d = 4 \), \(L(a_i, a_j) \) does not exist. If \(d = 3 \), then \(\beta = 1 \) and (by Theorem 3.1) \(L(a_i, a_j) \leq 2 < N(4) = 5 \). If \(d = 2 \), then \(\beta = 2 \) and (by Theorem 3.1), \(L(a_i, a_j) \leq 2d - 1 = 3 < N(4) = 5 \).

Suppose \(n \geq 5 \), and note that for \(d = n \) the matrix \(M(\varrho) \) is a permutation matrix, so that \(L(a_i, a_j) \) does not exist. The function

\[
f(d) = \frac{1}{2d} (n - d)^2 + 2d - 1 = \frac{1}{2d} n^2 - n + \frac{5}{2} d - 1
\]

is a decreasing function of \(d \) in \((1, n/\sqrt{5})\) and an increasing function in \((n/\sqrt{5}, n)\). Hence it assumes the largest value either for \(d = 2 \) or \(d = n - 1 \). We have

\[
\begin{align*}
 f(2) &= \frac{1}{4} n^2 - n + 4, \\
 f(n - 1) &= 2n - 3 + \frac{1}{2(n - 1)}.
\end{align*}
\]

Hence

\[
L(a_i, a_j) \leq \max \left[\frac{1}{4} n^2 - n + 4, 2n - 3 + \frac{1}{2(n - 1)} \right].
\]

For \(n \geq 5 \), \(\frac{1}{4} n^2 - n + 4 < N(n) \) and \(2n - 3 + 1/(2(n - 1)) < N(n) \). This implies:

Corollary 3.2. Let \(\varrho \in B_n(V), n \geq 3 \), \(\varrho \) irreducible but not primitive. If \(L(a_i, a_j) \) exists, we have \(L(a_i, a_j) < N(n) \).

This together with Theorem 2.3 implies:

Theorem 3.2. Let \(\varrho \) be irreducible, \(\varrho \in B_n(V), n \geq 2 \). If \(L(a_i, a_j) \) exists, we have \(L(a_i, a_j) \leq N(n) \).

Remark. Though it is irrelevant for our purposes, we remark that Corollary 3.2 can be easily sharpened. Since

\[
\left(\frac{n^2}{4} - n + 4 \right) - \left[2n - 3 + \frac{1}{2(n-1)} \right] = \frac{1}{4} \left[(n-6)^2 - 8 \right] - \frac{1}{2(n-1)}
\]

and the right hand side is positive iff \(n \geq 9 \), we have:

Corollary 3.3. Suppose that \(\varrho \in B_n(V), n \geq 3 \), \(\varrho \) is irreducible but not primitive. If \(L(a_i, a_j) \) exists, we have

\[
L(a_i, a_j) \leq \begin{cases}
 1 & \text{for } n = 3, \\
 3 & \text{for } n = 4, \\
 2n - 3 & \text{for } n = 5, 6, 7, 8, \\
 \frac{1}{3} n^2 - n + 4 & \text{for } n \geq 9.
\end{cases}
\]

[Even these results are not the best ones.]
4. SOME LEMMAS

We now have to consider the case

\[M(\varrho) = \begin{pmatrix} A_1 & \cdots & A_r \end{pmatrix} \]

where \(A_i \) are irreducible.

If \(|\Pi(M)| = n\), we wish to prove that for any \(x, y \in \Pi(M) \) for which \(L(x, y) \) exists, we have \(L(x, y) < N(n) \).

With respect to Lemmas 0.3 and 0.4 we may suppose that \(M(\varrho) \) has no zero rows nor zero columns.

Though such a result may be intuitively expected the detailed proof is rather long.

We begin by considering the case \(\varrho \in B_\delta(V) \), where

\[M(\varrho) = \begin{pmatrix} A & 0 \\ C & B \end{pmatrix} \]

Here \(A \) is any \(r \times r \) Boolean matrix without a zero row, \(B \) is an \(s \times s \) irreducible Boolean matrix and \(B \neq 0 \). For our convenience we write \(\Pi(A) = \{a_1, a_2, \ldots, a_r\} \), \(\Pi(B) = \{b_1, b_2, \ldots, b_s\} \), \(r > 0 \), \(s > 0 \), and \(r + s = n \).

Further, let \(\Pi(B) = T_1 \cup T_2 \cup \ldots \cup T_d \) be the decomposition of \(\Pi(B) \) into the sets of imprimitivity of \(B \). Put \(|T_i| = s_i \), so that \(s_1 + \ldots + s_d = s \).

In this section we shall find some estimates for \(L(a, b) \), where \(a \in \Pi(A) \), \(b \in \Pi(B) \), and for \(L(b_i, b_j) \), where \(b_i, b_j \in \Pi(B) \) [provided they exist].

If \(L(a, b) \) exists, the \(s \times r \) matrix \(C \) cannot be the zero matrix. Denote \(\varrho_C = \varrho \cap \cap [B \times A] \) and let

\[\varrho_C = \{(b'_i, a'_i), (b'_2, a'_2), \ldots, (b'_v, a'_v)\} \]

If \(b_i, b_j \in \Pi(B) \) have a common consequent, two cases are possible:

a) There is a c.c. of \(b_i, b_j \) which is contained in \(\Pi(B) \). This is the case iff both \(b_i, b_j \) are contained in the same set of imprimitivity. By Theorem 3.2 we then have \(L(b_i, b_j) \leq N(s) < N(n) \).

b) If \(L(b_i, b_j) \) exists but the c.c. is contained in \(\Pi(A) \), then \(\varrho_C = 0 \) [and we shall again suppose that \(\varrho_C \) is given by (23)]. In this case we necessarily have \(b_i \in T_w, b_j \in T_v \) and \(T_w \cap T_v = \emptyset \).

We first give two examples to show various possibilities which may occur. (Both examples will be used in the proof of Lemma 4.5.)

Example 4.1. Consider the relation \(\varrho \) given by the matrix

\[
\begin{pmatrix}
a_1 & a_2 & b_1 & b_2 \\
1 & 0 & 0 & 0 \\
1 & 0 & 0 & 0 \\
1 & 0 & 0 & 1 \\
0 & 0 & 1 & 0
\end{pmatrix}
\]
Here $\mathcal{Q}_c = \{(b_1, a_1)\}$. Recall the definition of $L(A)$ (before Lemma 0,1). Here $L(a_2, b_1) = 1$ while $L(A) = 0$. Next, $L(a_1, b_2) = 2$ as the following diagram of paths shows:

$$
an_1 \rightarrow a_2 \rightarrow a_1,
\quad b_2 \rightarrow b_1 \rightarrow \{a_1, b_2\}.
$$

$L(b_1, b_2)$ does not exist since the diagram is of the form

$$
b_1 \rightarrow \{a_1, b_2\} \rightarrow \{a_2, b_1\} \rightarrow \{a_1, b_2\} \rightarrow \ldots,
\quad b_2 \rightarrow \{b_1\} \rightarrow \{a_1, b_2\} \rightarrow \{a_2, b_1\} \rightarrow \ldots
$$

In this simple case the situation becomes clear when considering the graph $G(\mathcal{Q})$.

[See Fig. 8.]

![Diagram](image)

Fig. 8.

Clearly (up to an isomorphism) the same situation takes place if \mathcal{Q}_c is any couple (b_i, a_j).

For further purposes consider more generally all Boolean matrices of the form

$$
\begin{pmatrix}
a_{11} & a_{12} & 0 & 0 \\
a_{21} & a_{22} & 0 & 0 \\
1 & 0 & 0 & 1 \\
0 & 0 & 1 & 0
\end{pmatrix}.
$$

If $a_{11} = 1$, $L(b_1, b_2) = 2$. There are only 3 matrices A for which $a_{11} = 0$ and A does not have a zero row, namely

$$
\begin{pmatrix}
0 & 1 \\
1 & 0
\end{pmatrix},
\begin{pmatrix}
0 & 1 \\
0 & 1
\end{pmatrix},
\begin{pmatrix}
0 & 1 \\
1 & 1
\end{pmatrix}.
$$

In the first case $L(b_1, b_2)$ does not exist, in the second and the third case $L(b_1, b_2) = 3$. Hence in any case either $L(b_1, b_2)$ does not exist or $L(b_1, b_2) \leq 3$.

Example 4.2. Let \mathcal{Q} be given by the 5×5 Boolean matrix

$$
\begin{pmatrix}
a_1 & a_2 & b_1 & b_2 & b_3 \\
a_1 & 0 & 1 & 0 & 0 \\
a_2 & 1 & 0 & 0 & 0 \\
b_1 & 1 & 0 & 0 & 1 \\
b_2 & 0 & 0 & 0 & 1 \\
b_3 & 0 & 0 & 1 & 0
\end{pmatrix}.
$$
By considering the graph [see Fig. 9]

we easily find that \(L(a_1, b_2) = 6 \). The vertex \(a_1 \) is reached from \(a_1 \) by paths of length \(2k_1 \), from \(b_2 \) by paths of length \(3k_2 + 3 + 2k_3 \) (nonnegative integers). Now \(s = 2k_1 = 3k_2 + 3 + 2k_3 \) has a solution with the smallest \(s > 0 \) if \(k_1 = 3, k_2 = 1, k_3 = 0 \). The corresponding sequence is (we omit the arrows):

\[
(24) \quad \left(\begin{array}{c} a_1 \\ b_2 \\ b_3 \end{array} \right), \left(\begin{array}{c} a_2 \\ b_3 \\ b_1 \end{array} \right), \left(\begin{array}{c} a_1 \\ b_1 \\ b_2 \end{array} \right), \left(\begin{array}{c} a_1 \\ b_1 \\ b_3 \end{array} \right), \left(\begin{array}{c} a_2 \\ b_1 \\ b_3 \end{array} \right), \left(\begin{array}{c} a_1 \end{array} \right).
\]

The sequence (24) shows that \(L(a_i, b_j) \) exists for any couple \(\left(\begin{array}{c} a_i \\ b_j \end{array} \right) \). In our example \(q_c = \{(b_1, a_1)\} \) but it is clear that an analogous situation takes place if \(q_c \) is equal to any couple \((b_i, a_j) \).

Consider now the couple \(\left(\begin{array}{c} b_2 \\ b_3 \end{array} \right) \). The vertex \(a_1 \) is reached from the vertex \(b_2 \) by paths of length \(3k_1 + 3 + 2k_2 \), from the vertex \(b_3 \) by paths of length \(3k_3 + 2 + 2k_4 \). The positive minimum of \(s = 3k_1 + 3 + 2k_2 = 3k_3 + 2 + 2k_4 \) is achieved by putting \(k_1 = 0, k_2 = 1, k_3 = 1, k_4 = 0 \). The corresponding sequence is

\[
\left(\begin{array}{c} b_2 \\ b_3 \\ b_1 \end{array} \right), \left(\begin{array}{c} b_3 \\ b_1 \\ b_2 \end{array} \right), \left(\begin{array}{c} a_1 \\ b_1 \\ b_3 \end{array} \right), \left(\begin{array}{c} a_2 \\ b_1 \\ b_3 \end{array} \right), \left(\begin{array}{c} a_1 \end{array} \right).
\]

Hence \(L(b_2, b_3) = 5 \) and \(L(b_i, b_j) \leq 5 \).

Again for further purposes, consider the case that

\[
A = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}
\]

is replaced by any \(2 \times 2 \) Boolean matrix without a zero row (and not changing \(q_c \) and \(B \)). If there is a loop in \(a_1 \), then \(L(b_i, b_j) \leq 3 \). The case

\[
A = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}
\]

238
has been settled above. In the remaining cases

\[A = \begin{pmatrix} 0 & 1 \\ 0 & 1 \end{pmatrix} \quad \text{and} \quad A = \begin{pmatrix} 0 & 1 \\ 1 & 1 \end{pmatrix} \]

we easily find \(L(b_i, b_j) \leq 4 \).

Summarily: In any case in which \(A \) does not have a zero row \(L(b_i, b_j) \) exists, and \(L(b_i, b_j) \leq 5 \).

We have obtained this result by supposing that \(|e_c| = 1 \); it holds the more if \(|e_c| > 1 \).

ESTIMATIONS FOR \(L(a, b), a \in \Pi(A), b \in \Pi(B) \)

We suppose \(M(q) \) in the form (22). Our aim is to find estimations for \(L(a, b), a \in \Pi(A), b \in \Pi(B) \).

If \(n = 2 \), then

\[M(q) = \begin{pmatrix} 1 & 0 \\ 1 & 1 \end{pmatrix} \]

is the single case for which \(L(a, b) \) exists and \(L(a, b) = 1 \). In the following we shall suppose \(n \geq 3 \).

1) We first settle the case \(r = 1, s \geq 2 \). (By supposition, \(A \neq 0 \).) Any sequence which leads to a common consequent is of the form

\[\left(\begin{array}{c} a \\ b \end{array} \right), \left(\begin{array}{c} a \\ b^{(1)} \end{array} \right), \left(\begin{array}{c} a \\ b^{(2)} \end{array} \right), \ldots \]

Hence after at most \(s \) steps we obtain the couple \(\left(\begin{array}{c} a \\ a \end{array} \right) \). Therefore \(L(a, b) \leq s = n - 1 < N(n) \).

From now on we suppose \(r \geq 2 \).

2) Next we settle the case \(s = 1 \). Write \(\Pi(B) = \{ b \} \). [Recall that \(B = 0 \) has been settled by Lemma 0.4.]

Since \(b \in bg \), we have \(b \in bg \subset bg^2 \subset \ldots \subset bg^{n-1} = bg^n = \ldots \). If \(L(a_j, b) \) exists, then there is an \(l > 0 \) such that \(a_j \in \cup bq^l \). Let \(a' = a_j \cup b \). Since \(a_j \in \cup bq^l \), there is a \(v \), \(1 \leq v \leq n-1 \), such that \(a' \in a_j v \). Hence \(a' \in a_j v \subset bq^l \subset bq^{n-1} \). Multiplying by \(v \), we have \(a' v \in a_j v \subset bq^{n-1} \). [Here \(a' v \) denotes \(a' \).]

Hence \(L(a_j, b) \leq r = n - 1 < N(n) \). [Note that we have used that \(A \) has no zero row.]

3) Suppose that \(s \geq 2, r \geq 2 \) and \(q_e \) is given by (23). Then any one-step transition from a vertex in \(\Pi(B) \) to a vertex in \(\Pi(A) \) is of the form \(b_i \to a_i^n \) (\(i = 1, 2, \ldots, v \)).

The shortest sequence which leads to a common consequent is of the form

\[\left(\begin{array}{c} a \\ b \end{array} \right) = \left(\begin{array}{c} a^{(0)} \\ b^{(0)} \end{array} \right), \left(\begin{array}{c} a^{(1)} \\ b^{(1)} \end{array} \right), \ldots, \left(\begin{array}{c} a^{(t)} \\ b^{(t)} \end{array} \right), \left(\begin{array}{c} a^{(t+1)} \\ b^{(t+1)} \end{array} \right), \ldots \]

for some \(t \in \{ 1, 2, \ldots, v \} \).
The necessary steps to obtain such a sequence are described by the diagram

\[
\begin{align*}
\begin{array}{c}
a \\
\end{array} \xrightarrow{k_0} \begin{array}{c} a^{[1]} \\
\end{array} \xrightarrow{k_1} \begin{array}{c} a^{[2]} \\
\end{array} \xrightarrow{k_2} \ldots \xrightarrow{k_{r-1}} \begin{array}{c} a^{[s]} \\
\end{array} \xrightarrow{1} \begin{array}{c} a^{(l+1)} \\
\end{array} \rightarrow \ldots , \\
\begin{array}{c} b \\
\end{array} \xrightarrow{k_0} \begin{array}{c} b_1^{[1]} \\
\end{array} \xrightarrow{k_1} \begin{array}{c} b_1^{[2]} \\
\end{array} \xrightarrow{k_2} \ldots \xrightarrow{k_{r-1}} \begin{array}{c} b_1^{[s]} \\
\end{array} \xrightarrow{1} \begin{array}{c} a_i^* \\
\end{array} \rightarrow \ldots .
\end{align*}
\]

Here \(a^{[u]} = a^{(t)}\), \(0 \leq k_0 \leq s - 1\), \(1 \leq k_i \leq s\) (for \(i > 0\)).

Since no repetitions are allowed, there are at most \(r\) terms of the form \(a^{[u]}\) so that the length of the paths by which \(\begin{pmatrix} a^{[u]} \\ b_i^{[u]} \end{pmatrix}\) is reached is at most \(k_0 + (k_1 + \ldots + k_{r-1}) \leq (s - 1) + (r - 1) s = rs - 1\). This result is trivial since there are exactly \(rs\) different couples of the form \(\begin{pmatrix} a_i^* \\ b_i^* \end{pmatrix}\). But the method by which (26) has been constructed allows to easily sharpen the result obtained.

a) Suppose that the column corresponding to \(a_i^*\) in \(A\) has a non-zero entry. Then there is a vertex \(a_i^* \in \Pi(A)\) such that \(\begin{pmatrix} a_i^* \\ b_i^* \end{pmatrix} \in \mathfrak{g}\). We then have \(a_i^* \in \Pi(A) \cap b_i^* \mathfrak{g}\), i.e. \(L'(a_i^*, b_i^*) = 1\).

If \(\begin{pmatrix} a_i^* \\ b_i^* \end{pmatrix}\) is contained in (25), then it is reached in at most \(rs - 1\) steps and \(L'(a, b) \leq (rs - 1) + 1 = rs\). (Note that in this case \(a^{(t+1)} = a_i^*\).)

If (25) does not contain the couple \(\begin{pmatrix} a_i^* \\ b_i^* \end{pmatrix}\), then in (26) we have at most \(r - 1\) terms of the form \(\begin{pmatrix} a^{[u]} \\ b_i^{[u]} \end{pmatrix}\). The couple \(\begin{pmatrix} a^{[u]} \\ b_i^{[u]} \end{pmatrix}\) is reached by a path of length at most \(s - 1 + s(r - 2)\), so that after \(s - 1 + s(r - 2) + 1 = rs - s\) steps the both „coordinates” are contained in \(\Pi(A)\). Hence

\[L'(a, b) \leq rs - s\] if \(a^{(t+1)} = a_i^*\), and

\[L'(a, b) \leq rs - s + L'(A)\] if \(a^{(t+1)} \neq a_i^*\).

[b) Suppose that the column corresponding to \(a_i^*\) in \(A\) consists entirely of zeros. Then the couple \(\begin{pmatrix} a_i^* \\ b_i^* \end{pmatrix}\) is not contained in (26) so that \(\begin{pmatrix} a^{[u]} \\ b_i^{[u]} \end{pmatrix}\) is reached by path of length at most \(s - 1 + s(r - 2)\). We certainly have \(a^{(t+1)} \neq a_i^*\) and

\[L'(a, b) \leq (s - 1) + s(r - 2) + 1 + L'(a^{(t+1)}, a_i^*) \leq rs - s + L'(A)\].

We have proved:

Lemma 4.1. Suppose that \(M(\mathfrak{g})\) is of the form (22), where \(A\) is any \(r \times r\) Boolean matrix without a zero row and \(B \neq 0\) is an irreducible \(s \times s\) Boolean matrix. Denote \(n = r + s\) and suppose \(n \geq 3\). Let \(a \in \Pi(A)\), \(b \in \Pi(B)\) and suppose that \(L'(a, b)\) exists. We then have:

1) If \(r = 1\), \(s \geq 2\), then \(L'(a, b) \leq n - 1 < N(n)\).
2) If \(r \geq 2, s = 1 \), then \((a, b) \subseteq n - 1 < N(n)\).

3) If \(r \geq 2, s \geq 2 \), then \(L(a, b) \leq \max [rs, rs - s + L(A)]\).

Remark. The proof shows that Lemma 4.1 holds also without the supposition that \(B \) is irreducible.

The next lemma will be useful in some forthcoming computations.

Lemma 4.2. If \(n = r + s, (r \geq 2, s \geq 2) \), then

\[
N(r) + N(s) = N(n) - rs + \delta_{rs},
\]

where

\[
\delta_{rs} = \begin{cases}
2 & \text{if both } r, s \text{ are odd}, \\
1 & \text{in all the other cases}.
\end{cases}
\]

Proof:

\[
N(r) + N(s) = \frac{1}{2}r^2 - r + \varepsilon_r + \frac{1}{2}s^2 - s + \varepsilon_s = \\
= \frac{1}{2}(r + s)^2 - rs - (r + s) + \varepsilon_r + \varepsilon_s = \\
= \frac{1}{2}n^2 - n + \varepsilon_n - rs + (\varepsilon_r + \varepsilon_s - \varepsilon_n) = N(n) - rs + \delta_{rs}.
\]

We now apply Lemma 4.1 to the case of \(A \neq 0 \) irreducible. First, \(rs \leq \frac{1}{4}n^2 < N(n) \). Next, \(L(A) \leq N(r) \) so that

\[
rs - s + L(A) \leq rs - s + N(r) = N(n) - N(s) + \delta_{rs} - s.
\]

Note that \(\delta_{r2} = 1 \), so that \(\delta_{rs} - s < 0 \) for any \(s \geq 2 \). Hence \(rs - s + L(A) \leq N(n) - N(s) - 1 \leq N(n) - 2 < N(n) \). We have proved:

Corollary 4.1. Suppose that the suppositions of Lemma 4.1 are satisfied and \(A \neq 0 \) is irreducible. Then \(L(a, b) < N(n) \).

THE ESTIMATES FOR \(L(b_i, b_j), b_i \in T_i, b_j \in T_j, T_i \neq T_j \)

Suppose that \(M(\varrho) \) is of the form (22) and \(s \geq 2 \). Suppose that \(b_i \in T_i, b_j \in T_j, T_i \neq T_j \) and \(L(b_i, b_j) \) exists. The c.c. is then necessarily contained in \(\Pi(A) \) and \(\varrho_c \neq \emptyset \).

The diagram of paths which lead to a common consequent \(a^{(i)} \in \Pi(A) \) has the following form:

\[
(28) \quad b_i = b_i^{(0)} \rightarrow b_i^{(1)} \rightarrow \ldots \rightarrow a = a^{(0)} \rightarrow a^{(1)} \rightarrow \ldots \rightarrow a^{(t)},
\]

\[
b_j = b_j^{(0)} \rightarrow b_j^{(1)} \rightarrow \ldots \rightarrow b = b^{(0)} \rightarrow b^{(1)} \rightarrow \ldots \rightarrow a^{(t)}.
\]

Denote by \(g(b_i, b_j) = g[M(\varrho), b_i, b_j] \) the number of couples in (28) which are of the form \((b_i^{(v)}, b_j^{(v)}) \), \(v \geq 0 \). After the terms of this form a certain number of couples of the form \((a^{(v)}, b^{(v)}) \) follow (possibly none) before entering with both “coordinates” into \(\Pi(A) \).
If in (28) no term of the form \(a^{(e)} \) occurs, then either
\[
L(b_i, b_j) \leq g(b_i, b_j) \quad \text{or} \quad L(b_i, b_j) \leq g(b_i, b_j) + L(a^{(o)}, a^{(e)})
\]
for some \(a^{(o)} \neq a^{(e)} \). Hence in both cases \(L(b_i, b_j) \leq g(b_i, b_j) + L(A) \).

If \(\left(\begin{array}{c} a \\ b \end{array} \right) \) occurs, then \(L(b_i, b_j) \leq g(b_i, b_j) + L(a, b) \).

In any case we have to find an estimate for \(g(b_i, b_j) \). We suppose that (28) describes a shortest sequence leading to a common consequent.

In a shortest sequence no repetitions of a couple \(\left(\begin{array}{c} b' \\ b'' \end{array} \right) \) are possible. Further, analogously as in the proof of Lemma 0,1, if \(\left(\begin{array}{c} b' \\ b'' \end{array} \right) \) occurs in (28), then \(\left(\begin{array}{c} b' \\ b'' \end{array} \right) \) cannot occur. This reduces the number of pairs \(\left(\begin{array}{c} b' \\ b'' \end{array} \right) \) to at most \(\frac{1}{2}s(s - 1) \). But here a further reduction can be made. No pair \(b_i^{(e)}, b_j^{(k)} \) can be contained in the same say, any \(T_i \), since otherwise there would exist a common consequent in \(II(B) \), contrary to our assumption. Denote as above \(|T_i| = s_i \), so that \(s_1 + s_2 + \ldots + s_d = s \). The set \(T_k \) contains exactly \(\frac{1}{2}s_k(s_k - 1) \) unordered pairs with different coordinates which are included in the number \(\frac{1}{2}s(s - 1) \) and which have to be subtracted. Hence
\[
g(b_i, b_j) \leq \frac{1}{2}s(s - 1) - \sum_{i=1}^{d} \frac{1}{2}s_i(s_i - 1) = \frac{1}{2}s^2 - \frac{1}{2} \sum_{i=1}^{d} s_i^2.
\]

We first settle the case that for all \(s_i \) we have \(s_i \geq 2 \) (hence \(s \geq 4 \)). In this case \(s_i \geq 2 \) implies \(s_i^2 \geq 2s_i \) and \(\sum_{i=1}^{d} s_i^2 \geq 2 \sum_{i=1}^{d} s_i = 2s \). Hence \(g(b_i, b_j) \leq \frac{1}{2}s^2 - \frac{1}{2} \cdot 2s = \frac{1}{2}s^2 - s < N(s) \).

It remains to deal with the case that at least one of the sets of imprimitivity of \(B \) is a one-point set.

Suppose first \(d = 2 \) and put \(T_1 = \{ b_1 \}, T_2 = \{ b_2, b_3, \ldots, b_s \} \). Recall that \(T_1 \cap = T_2, T_2 \cap = T_1 \). When beginning with the couple \(\left(\begin{array}{c} b_i \\ b_j \end{array} \right), j \in \{2, 3, \ldots, s\} \), any admissible sequence is of the form
\[
\left(\begin{array}{c} b_i \\ b_j \end{array} \right), \left(\begin{array}{c} \cdot \\ b_i \end{array} \right), \left(\begin{array}{c} b_i \\ \cdot \end{array} \right), \left(\begin{array}{c} b_i \\ b_i \end{array} \right), \ldots.
\]

No such sequence without repetitions can contain more than \(s - 1 \) terms. Hence \(g(b_i, b_j) \leq s - 1 < N(s) \) for \(s \geq 3 \). For \(s = 2 \) we have \(g(b_i, b_j) = 1 \).

Suppose now \(d \geq 3 \) (hence \(s \geq 3 \)) and \(b_i \in T_i, b_j \in T_j \). Consider the sequences
\[
(29) \quad T_i, T_i \cap, T_i \cap^2, \ldots, T_i \cap^{d-1}, \quad T_j, T_j \cap, T_j \cap^2, \ldots, T_j \cap^{d-1}.
\]

Let \(\{ b_0 \} \) be one of the sets of imprimitivity containing exactly one element. Then
there is integer \(k_0, 0 \leq k_0 \leq d - 1 \), and an integer \(l_0, 0 \leq l_0 \leq d - 1 \), such that \(T_{i} q^{k_0} = \{b_0\}, T_{j} q^{l_0} = \{b_0\} \). [Here \(T_i q^0 \) denotes \(T_i \).] Denote \(T_{i} q^{k_0} = T'' \), \(T_{j} q^{l_0} = T' \). The equality \(k_0 = l_0 \) cannot hold since the couple \((b_i, b_j)\) has no common consequent in \(\Pi(B) \). Now (29) can be written in the following form:

\[
\begin{align*}
T_i, T_{i} q^{k_0}, ..., \{b_0\}, ..., T'', ..., T_{i} q^{d-1}, \\
T_j, T_{j} q^{l_0}, ..., T', ..., \{b_0\}, ..., T_{j} q^{d-1}.
\end{align*}
\]

[It may happen that \(\{b_0\} \) appears in the second row earlier than in the first row, but this has no influence on the following considerations.] Denote \(T' = \{\beta_1, ..., \beta_u\} \), \(T'' = \{\gamma_1, ..., \gamma_v\} \) and consider the paths

\[
\begin{align*}
b_i & \xrightarrow{k_0} b_0 \xrightarrow{d} b_0 \xrightarrow{d} \cdots \xrightarrow{d} b_0, \\
b_j & \xrightarrow{l_0} \beta_1 \xrightarrow{d} \beta_2 \xrightarrow{d} \cdots \xrightarrow{d} \beta_u.
\end{align*}
\]

Another application of a path of length \(d \) necessarily leads to a repetition, while an addition of a path of length \(d - 1 \) cannot be excluded.

If \(b_i \neq b_0 \) (i.e. \(k_0 \neq 0 \)), we have

\[
g(b_i, b_j) \leq (1 + k_0) + \lfloor |T'| - 1 \rfloor \cdot d + (d - 1) \leq \lfloor |T'| + 1 \rfloor \cdot d - 1.
\]

If \(b_i = b_0 \), we obtain

\[
g(b_i, b_j) \leq 1 + \lfloor |T'| - 1 \rfloor \cdot d + (d - 1) = |T'| \cdot d.
\]

We may proceed analogously with the second row and consider the paths

\[
\begin{align*}
b_i & \xrightarrow{l_0} \gamma_1 \xrightarrow{d} \gamma_2 \xrightarrow{d} \cdots \xrightarrow{d} \gamma_v, \\
b_j & \xrightarrow{k_0} b_0 \xrightarrow{d} b_0 \xrightarrow{d} \cdots \xrightarrow{d} b_0,
\end{align*}
\]

whence

\[
g(b_i, b_j) \leq d \lfloor |T''| + 1 \rfloor - 1 \quad \text{if} \quad b_j \neq b_0 \quad \text{and} \quad g(b_i, b_j) \leq |T''| \cdot d
\]

if \(b_j = b_0 \).

We have proved:

Lemma 4.3. If \(d \geq 3 \), then using the notations introduced above we have

\[
g(b_i, b_j) \leq d \cdot \min(|T'|, |T''|) + d - 1.
\]

We now prove:

Lemma 4.4. Let \(M(\varphi) \) be of the form (22) and \(s \geq 4 \). If \(b_i, b_j \in \Pi(B) \) have a common consequent in \(\Pi(A) \), then \(g(b_i, b_j) \leq N(s) \).

Remark. For \(s = 2 \) we have \(g(b_1, b_2) = 1 \), and for \(s = 3 \) we have \(g(b_i, b_j) \leq 3 \).

Proof. With respect to the results obtained above it is sufficient to suppose that \(d \geq 3 \) and at least one of the sets of imprimitivity is a one-point set.

1) Suppose that \(s \) is even (hence \(s \geq 4 \)). Then both \(|T'\varphi|, |T''\varphi| \) cannot be \(\geq \frac{1}{2}s \).
simultaneously since then the cardinality of \(\{feo\} \cup T' \cup V \) would be \(>s \). We may suppose \(|T'| \leq \frac{1}{2}s - 1 \) and \(|T''| \geq |T'| \).

a) If \(|T'| \leq \frac{1}{2}s - 2 \) (hence \(s \geq 6 \)), then (since \(d \leq s \)) we have by (31)
\[
g(b_i, b_j) \leq s(\frac{1}{2}s - 2) + s - 1 = \frac{1}{2}s^2 - s - 1 < N(s).
\]

b) Suppose that \(|T'| = \frac{1}{2}s - 1 \) (hence \(s \geq 4 \)). Since \(|\{feo\}| + |T'| + |T''| \geq 1 + (\frac{1}{2}s - 1) + (\frac{1}{2}s - 1) = s - 1 \), there is at most one further class of imprimitivity, so that \(d \leq 4 \) and by (31)
\[
g(b_i, b_j) \leq d[|T'| + 1] - 1 = 4(\frac{1}{2}s - 1 + 1) - 1 = 2s - 1 < N(s) \quad \text{for} \quad s \geq 6.
\]

If \(s = 4 \), \(d = 3 \), we have \(g(b_i, b_j) \leq 5 = N(s) \).

It remains to assume \(s = 4 \), in the case all sets of imprimitivity are one-point sets. It is immediately seen that in this case \(g(b_i, b_j) = 4 < N(4) = 5 \).

2) Suppose that \(n \) is odd. Then both \(|T'| \) and \(|T''| \) cannot be greater than \(\frac{1}{2}(s - 1) \) simultaneously. We suppose \(|T'| \leq |T''| \) in what follows

a) If \(|T'| = |T''| = \frac{1}{2}(s - 1) \), then \(d = 3 \), and by (31) we have \(g(b_i, b_j) \leq 3 \cdot \frac{1}{2}(s - 1) + (3 - 1) = \frac{3}{2}s + 1 < N(s) \) for \(s \geq 5 \).

b) If \(|T'| \leq \frac{1}{2}(s - 5) \) (hence \(s \geq 7 \)), then by (31) we have \(g(b_i, b_j) \leq s \cdot \frac{1}{2}(s - 5) + s - 1 = \frac{1}{2}s^2 - \frac{3}{2}s - 1 < N(s) \).

c) Let \(|T'| = \frac{1}{2}(s - 3) \) (hence \(s \geq 5 \)). Since \(|\{feo\}| + |T'| + |T''| \geq 1 + \frac{1}{2}(s - 3) + \frac{1}{2}(s - 3) = s - 2 \), there are at most two further sets of imprimitivity so that \(d \leq 5 \) and by (31) for \(s > 5 \),
\[
g(b_i, b_j) \leq 5\left[\frac{s - 3}{2} + 1\right] - 1 = \frac{1}{2}(5s - 7) < N(s).
\]

If \(s = 5 \), then \(|T'| = 1 \) and \(d \) is either 3 or 4 or 5. If \(d = 3 \), then (by (31)) \(g(b_i, b_j) \leq 5 < N(4) = 5 \). If \(d = 4 \), (again by (31)) \(g(b_i, b_j) \leq 7 < N(5) \). If \(d = 5 \), we immediately have \(g(b_i, b_j) = 5 < N(5) \).

This proves Lemma 4.4.

We are finally able to find estimates for \(L(b_i, b_j) \) if the c.c. is contained in \(I(A) \).

1) Suppose \(r = 1 \), \(s \geq 2 \). This case can be treated directly. By supposition there is a \(b_i' \in I(B) \) such that \((b_i', a) \in g \), i.e. \(a = aq \cap b_i'q \) (since \(a = aq = aq^2 = \ldots \)). Since \(B \) is irreducible, for any \(b_k \) there exists an integer \(l_k \) (\(0 \leq l_k \leq s - 1 \)) such that \(b_k' \in b_kq^{l_k} \), hence \(a \in b_kq^{l_k} \). This implies \(a \in b_kq^{\ast} \) (for any \(k \)). In particular \(a \in b_kq^{n} \cap \cap b_i'q^{n} \), whence \(L(b_i, b_j) \leq s = n - 1 < N(n) \).

2) Suppose \(r = 2 \), \(s \geq 2 \). Returning to (28) recall that if no term of the form \(\left(a^{(o)} \atop b^{(o)} \right) \) occurs in (28) we have \(L(b_i, b_j) \leq g(b_i, b_j) + L(A) \).

3) Suppose that \(r = 2 \), \(s \geq 2 \) and (18) contains a term of the form \(\left(a^{(o)} \atop b^{(o)} \right) \). Then \(L(b_i, b_j) \leq g(b_i, b_j) + L(a, b) \) with some \(a \in I(A) \), \(b \in I(B) \). Hence
\[
L(b_i, b_j) \leq g(b_i, b_j) + \max [rs, rs - s + L(A)].
\]

If \(L(A) < s \), \(\max [rs, rs - s + L(A)] = rs > s > L(A) \). If \(L(A) \geq s \),
\[
\max [rs, rs - s + L(A)] = rs - s + L(A) = (r - 1)s + L(A) > L(A).
\]
Hence we always have $L(A) < \max \{rs, rs - s + L(A)\}$, so that the case 2) may be omitted (giving bounds smaller than the case 3)).

a) Suppose $L(A) > s$, then $L(b_i, b_j) \leq g(b_i, b_j) + rs - s + L(A)$. By Lemma 4.2

$$L(b_i, b_j) \leq \left[g(b_i, b_j) - N(s) \right] + N(n) - \left[N(r) - L(A) \right] - (s - \delta_r).$$

Since $g(b_i, b_j) - N(s) \leq 0$, $s - \delta_r \geq 1$, we have $L(b_i, b_j) < N(n) - N(r) + L(A)$.

b) Suppose $L(A) \leq s$, then $L(b_i, b_j) \leq g(b_i, b_j) + rs = \left[g(b_i, b_j) - N(s) \right] + N(n) - \left[N(r) - \delta_r \right]$.

For $r \geq 3$ we have $N(r) - \delta_r \geq 1$, and since $g(b_i, b_j) - N(s) \leq 0$ we obtain $L(b_i, b_j) < N(n)$.

If $r = 2$ and $s > 4$, we have $g(b_i, b_j) - N(s) < 0$ and $N(r) - \delta_r = 0$, hence $L(b_i, b_j) < N(n)$. For $r = 2, s = 4$, we find directly $L(b_i, b_j) \leq 6 < N(n)$.

Now two cases remain, namely $r = 2, s = 2$ and $r = 2, s = 3$. The case $r = 2, s = 2$ has been settled in Example 4.1 by which $L(b_1, b_2) \leq 3 < N(4) = 5$. The case $r = 2, s = 3$ and $d_B = 3$ has been considered in Example 4.2 by which $L(b_1, b_2) \leq 5 < N(5) = 9$. If $r = 2, s = 3$ and $d_B = 2$, we have seen above that $g(b_i, b_j) \leq s - 1 = 2$, so that $L(b_i, b_j) \leq 2 + rs = 8 < N(5) = 9$. [As a matter of fact by considering the corresponding graph we obtain in the last case that either $L(b_i, b_j)$ does not exist or $L(b_i, b_j) \leq 3$.]

We have proved:

Lemma 4.5. Suppose that $M(q)$ is of the form (22), where A is an $r \times r$ Boolean matrix without a zero row and B is an irreducible Boolean matrix with $s \geq 2$. Put $r + s = n$. Suppose that $b_i, b_j \in \Pi(B)$ have a common consequent contained in $\Pi(A)$. Then the following holds:

a) If $r = 1$, $s \geq 2$, then $L(b_i, b_j) \leq n - 1 < N(n)$.

b) If $r \geq 2$, $s \geq 2$ and $L(A) \leq s$, then $L(b_i, b_j) < N(n)$.

c) If $r \geq 2$, $s \geq 2$ and $L(A) > s$, then $L(b_i, b_j) < N(n) - N(r) + L(A)$.

In the special case that also A is irreducible we have $L(A) \leq N(r)$ (for $r \geq 2$), so that $L(b_i, b_j) < N(n)$. This enables us to prove:

Theorem 4.1. Suppose that $M(q)$ is of the form (22) and both $A \neq 0$, $B \neq 0$ are irreducible. Let $x, y \in \Pi(A) \cup \Pi(B)$. If $L(x, y)$ exists, then $L(x, y) < N(n)$.

Proof. We have to consider the following cases: a) $x, y \in \Pi(A)$ (if $r > 1$); b) $x \in \Pi(A), y \in \Pi(B)$; c) $x, y \in \Pi(B)$ (if $s > 1$). In the first case (by Theorem 3.2) $L(x, y) \leq N(r) < N(n)$. In the second case $L(x, y) < N(n)$ (by Corollary 4.1). In the third case if the c.c. of x, y is contained in $\Pi(B)$, $L(x, y) \leq N(s) < N(n)$. If the c.c. is contained in $\Pi(A)$, then $L(x, y) < N(n)$ (by the remark made just before the statement of our theorem). This proves Theorem 4.1.
5. THE CASE OF REDUCIBLE RELATIONS

Theorem 5.1. Let $M(q)$ be a $n \times n$ Boolean matrix of the form

$$M(q) = \begin{pmatrix} A_1 & A_2 \\ A_{21} & A_2 \\ \vdots & \vdots \\ A_{11} & A_{12} & \cdots & A_l \end{pmatrix},$$

where $l \geq 2$ and A_i ($i = 1, 2, \ldots, l$) are irreducible Boolean matrices. If $x, y \in \Pi(M)$ and $L(x, y)$ exists, then $L(x, y) < N(n)$.

Proof. We may suppose $A_1 \neq 0$ since otherwise the statement is true by Lemma 0.3. We proceed by induction. For our convenience we denote

$$A^{[k]} = \begin{pmatrix} A_1 & A_2 \\ A_{21} & A_2 \\ \vdots & \vdots \\ A_{k1} & A_{k2} & \cdots & A_k \end{pmatrix}$$

and $A_{k+1} = B$, so that

$$A^{[k+1]} = \begin{pmatrix} A^{[k]} & 0 \\ C & B \end{pmatrix},$$

where C has the obvious meaning. Denote $|\Pi(A^{[k]})| = r$, $|\Pi(B)| = s$, so that $r + s = n$.

The statement is true for the matrix $A^{[2]}$. Indeed, if $A_2 = 0$ it follows from Lemma 0.4, if $A_2 \neq 0$, it is the statement of Theorem 4.1.

Let $k \geq 2$ and suppose that for any $x, y \in \Pi(A^{[k]})$ we have $L(x, y) < N(r)$. Our statement will be proved if we are able to show that then $L(x, y) < N(n)$ for all pairs $x, y \in \Pi(A^{[k+1]})$ (provided $L(x, y)$ exists).

We may suppose $r \geq 2$. Then we have to consider several cases. When writing $L(x, y)$ we suppose that it exists.

1) If $x, y \in \Pi[A^{[k]}]$ and $L(A^{[k]}) > 0$, we have by supposition $L(x, y) \leq N(r) < < N(n)$.

2) If $A^{[k]}$ has a zero row, we have (by Lemma 0.3) $L(x, y) < N(n)$ for any $x, y \in \Pi(A^{[k+1]})$.

3) If $s = 1, B = 0$, we have (by Lemma 0.4) $L(x, y) < N(n)$ for any $x, y \in \Pi(A^{[k+1]})$.

4) If $s = 1, B \neq 0$, $x \in \Pi(A^{[k]}), y \in \Pi(B)$, we have (by Lemma 4.1) $L(x, y) \leq n - 1 < N(n)$.

5) Suppose $s \geq 2$, $A^{[k]}$ has not a zero row, and $x \in \Pi(A^{[k]}), y \in \Pi(B)$.

By Lemma 4.1 we have $L(x, y) \leq \max(rs, rs - s + L(A^{[k]}))$. Now $rs \leq \frac{1}{2}n^2 < < N(n)$. Next, since $L(A^{[k]}) < N(r)$, by the induction hypothesis, we have

$rs - s + L(A^{[k]}) < rs - s + N(r) = N(n) - N(s) - s + \delta_{rs} < N(n)$.

Hence $L(x, y) < N(n)$. 246
6) Suppose $s \geq 2$, $A^{[k]}$ has not a zero row, and $x, y \in \Pi(B)$. If the c.c. of x and y is in $\Pi(B)$, then (by Theorem 3,2) $L(x, y) \leq N(s) < N(n)$. Suppose therefore that the c.c. is contained in $\Pi(A^{[k]})$.

If $L(A^{[k]}) \leq s$, then (by Lemma 4,5b) $L(x, y) < N(n)$.
If $L(A^{[k]}) > s$ [and, of course, $L(A^{[k]}) < N(r)$ by supposition], we have (by Lemma 4,5c) $L(x, y) < N(n) - N(r) + L(A^{[k]}) < N(n)$. This proves Theorem 5,1.

References

Author’s address: 814 73 Bratislava, Obrancov mieru 49, Czechoslovakia (Matematický ústav SAV).