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1. INTRODUCTION

The concept of archimedean equivalence has been an important one in the study
of partially ordered algebraic structures. Holder’s characterization [IO] of additive
subgroups of the reals as totally ordered groups (o-groups) with only one non-
trivial archimedean class was followed in 1907 by Hahn’s representation [9] of any
abelian o-group as a group of real-valued functions on its set of archimedean classes.
Renewed interest in the topic in the 1950s led eventually to the Conrad-Harvey-
Holland representation theorem [7] for abelian lattice-ordered groups (l-groups);
archimedean equivalence has also been studied for non-abelian I-groups (see e.g. [6]).

In the last fifteen years T. Saito has studied archimedean equivalence for totally
ordered semigroups (o-semigroups) ([ 14], [15], [16]); in this paper we shall consider
this concept for lattice-ordered semigroups (l-semigroups).

By an l-semigroup we shall mean a semigroup equipped with a lattice order, so
that multiplication distributes over both of the lattice operations, from both the left
and the right (this definition is a bit stronger than that in [8]).

The concept of archimedean equivalence is easiest defined for positive elements,
but there is some ambiguity about what is meant by a ““positive element” in a par-
tially ordered semigroup. We shall in this paper confine ourselves to the strongest
possible definition (thus following Saito in [16]): an element a of an l-semigroup S
is said to be strictly positive if ab A ba = b for all b in S. An l-semigroup is said
to be strictly positive if each of its elements is; all -semigroups considered in this
paper are assumed to have this property.

2. ARCHIMEDEAN EQUIVALENCE

Let S be a strictly positive l-semigroup. Elements a and b of S are said to be
archimedean equivalent if there exist positive integers m and n for which

a<b" and b =a".
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Since the positive powers of a positive element form an ascending sequence, we
may evidently assume that m and n are equal. We shall denote archimedean equi-
valence by writing a a b; more specifically, if a and b are bounded above by nth
powers of b and a, respectively, we shall write a @ b via n. We shall call S a-simple
in case all elements of S are archimedean equivalent.

The following results are all straightforward generalizations of Saito’s work for
the totally ordered case ([14], [16]); for completeness’ sake, we will include the
proofs:

1. ais an equivalence relation.

Proof. It is evident that a is reflexive and symmetric. If a @ b via m and b a ¢ via n,
then we have

and similarly, ¢ < a™.

2. a is a semigroup congruence.

Proof. If a a b via n, we have

ac £ (b") ¢ =< (be)", and be < (ac)".

The other side works the same way.

3. ais a lattice congruence. v

Proof. If a a b via n, we have

anNcED AcE(D" AL TTeA.AC)=(bAc).
Three similar strings of inequalities together show that
(anc)a(brc) and (avc)a(bvec).

4. Each a class is an l-subsemigroup.

Proof. It is obvious that each a class is a sublattice. To show an a class is a sub-
semigroup as well, suppose that a @ b via n. Then ab £ b"*1, and

b < ab = (ab)"*?,
and so b aab.

5. Foralla,bin S, ababaa(a v b).

Proof. We have
ab < b(ab) a = (ba)*,

and similarly for ba. Now, (a v b) < ab, while
ab < (a v b)*.
Putting 1. through 5. together gives us the following:

Theorem. Let S be a strictly positive l-semigroup. Then S/a is a commutative
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band where [a] [b] = [ab] = [a v b]; that is, S is a lattice of a-simple I-semi-
groups.

This means that in order to understand the structure of strictly positive l-semi-
groups, it suffices to consider those which are a-simple. The following result, which is
also a straightforward generalization of Saito’s result [14] in the totally ordered
case, shows that the a-simple l-semigroups fall into two distinct classes. In order to
state this classification, we need a little terminology: a semigroup is a nilsemigroup
if it has a zero element 0, and some finite power of every other element equals O (see
[13] for a discussion of totally ordered nilsemigroups). An element of a semigroup
is torsion-free if all of its positive powers are distinct, and a semigroup is torsion-
free if all of its elements are.

Theorem. Let S be an a-simple I-semigroup. Then either S contains a unique
idempotent and S is a nilsemigroup, or else-every element of S is torsion-free.

Proof. Suppose first that S contains an idempotent e. Then for any other a in S,
there exists some integer n for which a a e via n. But " = e, and so e is necessarily
the largest element of S, and hence the unique idempotent of S and a zero for S;
furthermore, a" = e. On the other hand, if S contains no idempotents, obviously

a<a*<ad...,
and so S is torsion free.

In the next section we shall consider the a-simple case.

In section 5 we include examples to show that neither the set of torsion elements,
nor the set of torsion-free elements, need form l-subsemigroups of S.

3. A-SIMPLE NIL-L-SEMIGROUPS

In this section we shall obtain structural results for a-simple l-semigroups which
are also nilsemigroups. We shall call such semigroups a-simple nil-lI-semigroups;
throughout this section S will denote such a semigroup.

We shall begin by considering the left annihilators of S. For a in S, let
Lla) = {b: ba = 0},

the left annihilator of a. The reader may easily verify that L{a A b) = L{a) n L{b)
and that L( a) is a sublattice of S. Furthermore, because O is the largest element of S,
Llaq) is also a dual lattice ideal (that is, if b > ¢ and ¢ is in L{a), then so is b).

We shall now impose one further condition on S; we shall assume that 0 is finitely
join irreducible: that is, if a v b = 0, then a or b is 0. We shall call an a-simple nil-
I-semigroup with this additional assumption a step. In section 4 of the paper we shall
become acquainted with the reason for this terminology, and better understand that
this is not an unnatural assumption to make at this point. For now, we observe

¢
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that this assumption obviously implies that L{(a v b) = L{a) U L’b), thus giving us
the dual of the equation mentioned above.
We now define the relation ¢, on S:

aey b ifandonlyif L(a)= L(b).

This is obviously a lattice congruence. In fact, it is also a left semigroup congruence,
because if L(a) = L(b), then L(ca) = L(cb). Furthermore, S|e, is a totally ordered
set. This can be verified directly, but in fact follows from (the dual of) Lemma 1
of [3], since {0} is a v-prime dual lattice ideal of S, and e, is just the left Dubreil
congruence for the set {0} (see [5], page 182).

We shall now inductively define a sequence of equivalence relations e, on S, as
follows:

ae,b ifandonlyif ae,_,b and Lla") = L(b").

This is obviously an equivalence relation; unfortunately, e, need not be a lattice
congruence on all of S; however, it is such a congruence on the equivalence classes
of its predecessor, as the next proposition asserts. Denote by [a], the e, equivalence
class for a in S.

Proposition. e, is a lattice congruence on the lattice [a],_y, and [a],_,[e, is totally
ordered.

Proof. Suppose that a, b and ¢ are all in [a],-{, and that a e, b. If w is a word
with positive exponents in a and ¢ with exponents adding to n, we claim that L(w) is
equal to either L(a") or L{c"). Let v be the word w with the leftmost entry deleted.
We have by inductive hypothesis that L{v) equals either L(a"~') or L(¢"~'). But
since e, is a left congruence, L(w) must equal one of the following (depending on
what the leftmost entry of w is, and what L{v) equals): L(a"), L{c"), L(ca"~") or
L{ac"~1'). The first two cases are what we desire. But inductively we have that
L(a"~') = L(¢"~ '), meaning that the second two cases reduce to the first. Application
of the distributive law now gives us L{(a A b)) = L(a" A b") and likewise for joins,
which shows that e, is in fact a lattice congruence on [a],—;. To see that [a],-4/e,
is totally ordered, we need only observe that [a], < [b], exactly when L(a") = L(b"),
and that S/e, is totally ordered.

We intend to use the congruences e, to study the structure of S. We will apply
them to certain subsemigroups of S defined as follows: for a positive integer n let

S(n) = {a:a" = 0}.

It is evident that each S(n) is a v -subsemigroup of S (an example in Section 5 shows
that S(n) need not be an l-semigroup); furthermore, S is the union of this ascending
chain of subsemigroups. Note that S(1) is of course just {0}.

We shall now inductively provide a structural decomposition for each of the S(n)’s,
by making use the the relations e,. For a in S(n), denote by {a}, the intersection of
[a], with S(n). For the sake of clarity, we will consider the case n = 2 separately.
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Theorem. S(2) is a chain of zero l-semigroups, with multiplication left zero to the
right.

Proof. For a and b in {a},, L{a) = L(b); but because a is in L(a), this means that
ab = 0. Thus, {a}, U {0} is a zero semigroup. Because [a], is lattice and S(2) is
a v -semigroup, we need only check that {a}, U {0} is closed under taking meets to
verify that it is an l-semigroup. But for a and b in {a},,

(a A b)>=a®> Aab A ba nb>=0,

and so a A b is an element of S(2).

Now obviously S(2) is a disjoint union of the totally ordered set of e, equivalence
classes, each of which forms a zero l-semigroup when 0 is added. By the last phrase
in the statement of the theorem we mean that if {a}, < {b},, then ab = 0. But this
is clear, because a € L{a) = L(b).

Theorem. S(n) is a chain of l-semigroups all of which contain S(n — 1), with
multiplication left S(n — 1) to the right.

Proof. For a in S(n), we show that {a}, U S(n — 1) is an l-semigroup. Since
S(n — 1) is upper directed, to show that this is a semigroup we clearly need only
check that if b is in {a},, then so is ab. But we know that L(a"~') = L(b"~") and so
ab"™! = 0. But then (ab)"~! = ab"~! = 0; that is, ab is in S(n — 1). To show that
we have an l-semigroup, we must show that @ v b and a A b belong to {a},. But

L{(a v b)") = L(a" v b") = L{a"),
and similarly for meets.

Now, S(n) is of course the disjoint union of its e, equivalence classes, and each of
these together with S(n — 1) is an l-semigroup. These I-semigroups form a chain
under the lexicographic order, where we consider successively the orders from
ey, €,, ..., e, It remains to show that if a and b are in S(n) — S(n — 1) and {a}, <
< {b},, then ab is in S(n — 1). If these classes are equal, this is clear. If not, suppose
that e, is the first stage at which {a}; < {b},. Then a"~ e L(b"), and so

0= an—ibi < (ab)n-—l ;
thus, ab is in S(n — 1). (Actually, in this case ab is in S(k), where k is the minimum
of n — iand i)
Thus, to summarize, each step S is an ascending union of the v -semigroups S(n);
at each stage, the outgrowth S(n) — S(n — 1) can be decomposed as a totally
ordered set of classes in which multiplication reverts to the previous level. We shall

apply and interpret these results in the case of an important example in the following
section.
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4. DISTRIBUTIVE A-SIMPLE NIL-L-SEMIGROUPS

Let T be a totally ordered set and S(T) the set of order preserving functions
from Tinto itself. Then S(T) is an l-semigroup under functional composition and the
pointwise order; see [2] for a discussion of this semigroup. The underlying lattice of
this semigroup is certainly distributive; we call l-semigroups with this property
distributive. The problem of representing distributive l-semigroups in some S(T)
(thus obtaining an analogue of Holland’s representation theorem for l-groups [11])
has been considered in [3] and [1]. In particular, any such I-semigroup to which an
identity can be adjoined admits such a representation. It is obvious that we can
alway adjoin an identity (if not already present) as least element to a strictly positive
lI-semigroup; consequently every distributive strictly positive l-semigroup can be
l-embedded into some S(T') (and in fact in S(T)*, the set of positive elements of S(T)).

Now, an idempotent in S(T)* is a function which is the identity on its range [2].
If we think for a moment of the case when T'is the set of real numbers, this means that
the graph of such a function lies above the line y = x, but that points on the graph
strictly above this line are connected to it by horizontal segments to the right; there
may of course be infinitely many of these “steps™. If we now consider such an idem-
potent with only a single step, it is clear that the archimedean class of this idempotent
is a step in the sense of the previous section, because the idempotent is clearly finitely
join irreducible.

So, consider now the archimedean class S of an idempotent 0 in S(T)* which maps
all elements of the interval (s, f] to ¢, and leaves all other elements of T fixed. S is
then a step, and the equivalence relations e, of the previous section can be inter-
preted as follows. For a in S, let

M(a) = {xe(s, t]: xa = t}.

e

In order that some finite power of a be 0, it follows that M(a) must contain more
elements than just z; it is in fact a final segment of (s, ¢]. Furthermore, a = 0 exactly
when M(a) = (s, t]. The reader may verify that a e; b means exactly that M(a) =
= M(b), and that inductively, a e, b means that

M(a) = M(b), M(a®) = M(b?), ..., M(a") = M(b").

We can now use this representation to describe all distributive a-simple nil-I-semi-
groups in terms of steps:

Theorem. Each distributive a-simple nil-l-semigroup is a subdirect product of
steps. '

Proof. Let S be such an l-semigroup with unique idempotent 0. We may suppose
that S is an l-subsemigroup of S(T), for some totally ordered set T. To eliminate
a special case in the argument which follows, we may as well assume that T has
a least element (if not, just adjoin one, and specify that each element of S maps it to
itself). Then a maximal interval of T on which 0 is constant is always of the form (s, £].
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Now consider the function p from S into S((s, t]) defined as the restriction of elements
of S to the interval (s, f]. Because for each a in S, a < 0, and some power of a
equals 0, we know that (s, 1] a < (s, t], and so this is well-defined. It is then easy
to see that p is an l-homomorphism; furthermore, p(S) is obviously a step.

We can now define such a function p for each non-singleton maximal interval
on which 0 is constant; it is evident that for any distinct elements a and b of S, there
exists at least one such p for which p(a) + p(b). Thus, S is a subdirect product of
the steps p(S).

Question. Is the preceding theorem true for non-distributive I-semigroups?

Question. The proof of the theorem above uses the fact that a distributive a-simple
nil-l-semigroup which has a representation in which 0 has only a single interval on
which it is not the identity, is necessarily a step (that is, 0 is finitely join irreducible).
Is the converse of this statement true?

We can summarize what we now know about distributive strictly positive 1-semi-
groups: Each is a lattice of a-simple l-semigroups, and each of the torsion archimedean
classes is a subdirect product of steps, which can be described completely by the theory
of the preceding section. Consequently, complete understanding of the structure of
such l-semigroups is reduced to this:

Question. What can be said about the structure of strictly positive (distributive)
a-simple torsion-free l-semigroups?

Notice that the theorem of section 2 gives us a semigroup analogue of the Hahn
[9] theorem for abelian o-groups, and the Conrad-Harvey-Holland theorem [7]
for abelian l-groups: arbitrary l-semigroups described in terms of a-simple ones.
However, we do lose an important part of the group-theoretic results, as we shall
now describe. If G is an I-subgroup of an I-group H, and every element of H is archi-
medean equivalent to some element of G, then H is an a-extension (see [6] or [4])
of G. Hahn’s theorem not only provides a representation for abelian o-groups;
it demonstrates the existence of a maximal a-extension (or a-closure) in that class
of groups. Conrad [6] calculates a cardinality bound on a-extensions of abelian
I-groups, and consequently infers the existence of a-closures for such l-groups;
Khuon [12] obtains the corresponding bound in the non-abelian case. As we show
below, no such theory of a-closure for l-semigroups is possible:

Theorem. A distributive a-simple nil-l-semigroup admits a-extensions of arbitrar-
ily large cardinality.

Proof. Let S be such a semigroup, with idempotent 0; we may assume that S
has been l-embedded into some S(T'). Notice that the archimedean class of the idem-
potent 0 in S(T) is of course an a-extension of S. Suppose that (s, {] is some non-
singleton maximal interval on which 0 is constant; choose x = ¢ in this interval.
Let K be a totally ordered set of cardinality strictly larger than that of S. Let U be
the totally ordered set obtained from T by replacing {x} by K. Choose some element j

¢

24



in K. Then, for a in S(T), we can define an element «* in S(U), by specifying that
ya* = j whenever ya = x, ya* = z whenever ya = z and y #+ x # z, and ka* =
= xa, for all k in K. This gives us an l-embedding of S(T) into S(U). But for each k
in K, we can define an element z, as follows:
m0 if mé(s, ]
mz, =<k if s <m<k
t if k<mgt.

It is evident that {z,: k € K} is a subset of the a-class of 0 in S(U), and consequently,
the cardinality of this a-extension of S is strictly larger than the cardinality of S;
thus, we can clearly make the cardinality of an a-extension of S as large as we please.

5. EXAMPLES

In this section we will provide some examples promised earlier in the paper. All
of the examples considered here are I-subsemigroups of the semigroup S(R)* of order-
preserving functions on the real numbers R.

1. The set of torsion elements need not be a subsemigroup.
Define idempotents e, / in S(R) as follows:

[x (—o0,0]

1/2 (0, 1/2]

3/4 (1/2, 3/4]

78 (3/4,7/8)

X [1, o)

Xxe =

and
(m x (— 0, 1/4]
5/8  (1/4, 5/8]
13/16  (5/8, 13/16]
M =12032  (13/16, 29/32]

| x [1, )

Now, we know that ef and e v f are archimedean equivalent. Explicitly, e v f is
defined as follows:

X (=00, 0]

12 (0, 1/4]

5/8 (1/4,1/2]

x(e v f) =1 3/4 (172, 5/8]

13/16 (5/8, 3/4]

x [1, o0).
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It is easily seen that this is torsion free, because successive applications of this function
to 1/4 yields:
1/4, 1)2, 5/8, 3[4, ....

2. The set of torsion free elements need not be a subsemigroup.

Let e be an idempotent in S(R)* with just two steps, say on intervals (0, 1] and
(2, 3] Then construct two torsion free elements, both with support equal to that of e:
one which agrees with e on (0, 1] and maps the interval (2, 3) onto itself; and the
other with the roles of the two intervals interchanged. Then the product (and join)
of these elements is e.

3. S(n) need not be a A-subsemigroup of a step.

Let e be the one step idempotent with support (0, 1), and S its archimedean class.
Define elements a, b of S as follows:

1 [12,1]
= {1/2 (0, 1/2]

b = {1 [3/4, 1]

718 (0, 3/4]

Then clearly a®> = b? = e; however, (a A b)> < e. Thus, S(2) is clearly not a A-sub-
semigroup of S; similar examples can be constructed for any integer n.
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