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EMBEDDING IN GLOBALS OF FINITE SEMILATTICES 

MATTHEW GOULD, Nashville, JOSEPH A. ISKRA, Macon, and PÉTER PAL PÄLFY, Budapest 
(Received October 24, 1984) 

1. INTRODUCTION 
The global, or power semigroup, of a semigroup S is the family P(5) of all non­

empty subsets of S, with the natural multiphcation 

ÄB = [ab: aeA, b e B} for all A, В e P{S). 

S is said to be combinatorial if all subgroups of S are trivial. Among the combinatorial 
semigroups are those semigroups S with zero such that S" = {0} for some n; such 
a semigroup is said to hQ nil. 

The purpose of this paper is to estabhsh the embeddability of various kinds of 
finite, commutative semigroups in globals of finite semilattices; by a result of the 
first two authors [3], any semigroup embeddable in the global of a finite semilattice 
is also embeddable in the global of a finite abeHan group (indeed, an elementary 
2-group). The semigroups considered here include all finite Rees quotients of free 
commutative semigroups, all combinatorial commutative semigroups of order 
less than 5, and certain extensions of zero semigroups. (To avoid confusion of the 
terms nil and null, we use the term zero semigroup to indicate that all products 
are equal.) 

We are concerned only with combinatorial semigroups because, as noted by M. S. 
Putcha [5], the global of a finite semilattice is combinatorial. Our emphasis is on 
nil semigroups because, by results of Gould and Iskra [3] and A. Lau [4], the embed-
dabihty of all finite commutative nil semigroups in globals of finite semilattices 
would imply the embeddability of all finite commutative semigroups in globals of 
finite abehan groups. Finiteness is considered because, by a result of V. Trnkova 
[8], every commutative semigroup is embeddable in the global of an infinite abelian 
group. Finally, commutativity is presumed for two reasons: S. G. Bersadskii [1] has 
shown that every semigroup is embeddable in the global of an infinite non-abeUan 
group; and Lau [4] noted the existence of finite non-commutative semigroups 
that are not embeddable in the global of any finite group. 
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2. QUOTIENTS OF FREE COMMUTATIVE SEMIGROUPS 

Unless otherwise noted, all semigroups in this section are given in additive nota­
tion. Because the symbol 0 in this notation would represent an identity element, the 
symbol 00 will be used for the additive counterpart of the multiplicative zero. 

The height of a nil semigroup S is the smallest positive integer h such that hS = 
= {oo}. Given positive integers n and h, the free commutative nil semigroup of height 
h on n free generators is discussed in T. Tamura [7]. We shall denote this semigroup 
by F(n, h). It is free in the sense that every commutative nil semigroup of height at 
most /2 and having a generating set of at most n elements is a homomorphic image 
of F{n, h). 

To construct F(n, h), first consider the free commutative semigroup F(n) on n 
generators. F{n) is the subsemigroup of non-zero elements of the n-th direct power 
of the additive semigroup of non-negative integers. F(n, h) is then F{n)\l, where / 
is the ideal of F{n) given by 

n 
/ = {(wi,..., w„) e F{n): Y^Wt^h] , 

i=l 

The free generators of F(n, h) are of course the unit vectors x^ for 1 ^ г ^ n, where Xi 
is the n-tuple having 1 in its i-th component and 0 everywhere else. Although the 
vector 0 = (0 , . . . , 0) is not an element of F(n, h), it is a linear combination of the 
unit vectors in the trivial sense. 

In Gould and Iskra [3] it was shown that each F(n, h) is embeddable in the global 
of a finite semilattice. Inasmuch as F(n, h) is a Rees quotient of F(n), the following 
theorem extends that result to Rees quotients of F{n, h). 

Theorem 2.1. Every finite Rees quotient of a free commutative semigroup is 
embeddable in the global of a finite semilattice. 

Proof. Given an ideal / of F(n) such that F{n)ll is finite, we seek a finite semilat­
tice Fand a homomorphism / of F[n) into P(Y) such that f{a) = f(b) if and only 
if a and b belong to /. 

Let Y be the semilattice of all subsets of the set {F(n) u (0}) \ / , under the operation 
of union. For AEY and j e {1, ..., n} we define the "j-th coefficient count" of A 
to be the number of distinct coefficients of the generator Xj that occur in the re­
presentation of members of A. That is, we define Qj{A) = Ца^: A e Л}|, where each 

n 

a E F(n) u {0} has the unique representation a = Y, ^i^t for non-negative a .̂ 
i = i 

We now define / to be the unique homomorphism of F{n) into P{Y) having the 
property that f{x^ = [AEY: Qi{Ä) = 1} for all i. Specifically, for b e F(n) and 

n 

л e 7, we have A Ef{b) if and only if there exist A^,..., Л„ e У such that A = \J Ai 
and QlA^ й bi for alii, ' = ^ 

We first show that all elements of/ have the same image under / , namely P{Y). 
Indeed, fix ^ e / and let AEY. For each / G ( 1 , ..., n} set Ai = [aEA: a,- < ti}. 



Clearly Qi{Ai) ^ r,-, and, since A is disjoint from the ideal / , every element of A 
belongs to some A^. It follows that A ef(t), whence/(r) = P{Y). 

n 

For each a e F{n)\I define C^=- {xe F{n): x-, ^ a,- for all i} G 7. If Q 3 U ^i 
i = 1 

with Qi{Ai) ^ a I then there are numbers 0 ^ Ci ̂  сц such that c,- is not the i-th 
n n 

component of any member oï A^. Then с = ^ c^Xi ф (J Л,-. This shows that C^ Ф1{^), 
t = 1 1 = 1 

hence f(ci) ф i^(î^) if « eF(n)\L Moreover, if a and b are distinct elements of 
F[n)\I then we may suppose aj < bj for somej, whereupon C^ Ф/{с^) but C^ e / (b) 
as Qj{Ca) = aj + 1 S bj. Thus / is one-to-one on F{n)\I and the theorem is proved. 

Before generahzing the above theorem to a wider class of quotients, we define the 
concept of height for elements of F{n, h). Given a e F(n, h) other than oo, define 

n n 

H[a) = Yj^h where a = Yj ^t^t- Finally, Я(оо) is defined to be h. (This definition is 
1 = 1 i=l 

consistent with the more general definition of Tamura [7].) 
A congruence 9 on F(n, h) is said to be height-preserving if H(a) = Я(Ь) 

whenever a 9 b. For such 9 we define the height of a 9-class to be the height of each 
of its elements. 

We omit the very easy proof of the following statement. 

Lemma 2.2. For all positive integers n and h the following hold: 
(i) For all a, b, ce F{n, /г), z/ a + Ь = с + Ь Ф oo, then a = c. 

(ii) A congruence 9 on F{n, h) is height-preserving if and only if {oo} is a 9-class. 

Theorem 2.3. Let 9 be a height-preserving congruence on F{ji, h) such that there 
is at most one non-singleton 9-class of each height. Then F(n, h)J9 can be embedded 
in the global of a finite semilattice. 

Proof. Set S = F{n, h). It is obviously sufficient to express 5/Ö as a subdirect 
product of semigroups each of which is embeddable in the global of a finite semilat­
tice. Thus we seek to express 9 as the intersection of congruences rj and Q such that 
Sjrj and SJQ can be so embedded. 

Let rj be the congruence on S given by: a rj b if and only if H(a) = ЩЬ). Then 
Sjf] is isomorphic to F( l , /г), hence is embeddable in the global of a finite semilattice 
by Theorem 2.L 

Set / = X u {oo}, where К is the union of the non-singleton ö-classes. We note 
that / is an ideal, as follows. Let a el and b e S such that a + b Ф oo. Then there 
exists ce S\ {a} such that a 9 c, hence a + b and с + b are Ö-related, and the above 
lemma gives a + b ф с + b. Hence a + bel, and so / is an ideal. 

Now let Q be the Rees congruence associated with /. By Theorem 2.1 Sjg is embed­
dable in the global of a finite semilattice. It thus remains to show that rj n Q = 9. 

As 9 is height-preserving, we have 9 ^ rj, and the definition of / then gives 9 ^ 
^ f] n Q, Now let (a, b) e rj n Q such that a ^ b. Then a and b are elements of / 
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having the same height, and each belongs to a non-singleton ö-class. Since there is 
only one such class of a given height, we have ав b. Thus в = rj n Q, concluding 
the proof. 

3. SEMIGROUPS OF ORDER < 5 AND EXTENSIONS 
OF ZERO SEMIGROUPS 

Let S be a combinatorial commutative semigroup of finite order n. In the proof 
of Theorem 2.4 of Gould and Iskra [3] it is shown that S is embeddable in the 
global of a finite semilattice if every subdirectly irreducible commutative nil semigroup 
of order ^ n is so embeddable. By a result of B. M. Schein [6], a commutative nil 
semigroup T is subdirectly irreducible if and only if the map t -^ {x e T: tx = 0] 
is one-to-one for all non-zero t e T. (It follows that the semigroups F(l, h) are sub­
directly irreducible.) Clearly, no zero semigroup of more than two elements is sub­
directly irreducible. 

The following proof utihzes the fact (noted by Tamura [7]) that every non-trivial 
finite nil semigroup S has a unique prime generating set, that is, a set of generators 
disjoint from 5^. 

Theorem 3.1. Each combinatorial commutative semigroup of order less than 5 
is embeddable in the global of a finite semilattice. 

Proof. In light of the above considerations, let 5 be a subdirectly irreducible 
commutative nil semigroup of order <5. Let h denote the height of S, and and let n 
be the number of elements in the prime generating set of S. 

We assume that n is not 1, for otherwise S would be isomorphic to F(l, h) and 
Theorem 2.1 would apply. Clearly n cannot be 4 since 0 is not prime. Moreover, if 
n = 3 then S is a zero semigroup and therefore not subdirectly irreducible. Thus 
n = 2, and h is at least 2. If h were 2 then S would be a zero semigroup, while 
h = 4 would imply n = 1. Hence h = 3, and |5| is at least 3. But then |S| = 4, 
since otherwise S would be a zero semigroup. 

We may now take S = FJO, where F = F(2, 3) and 0 is a congruence on F. Let / 
denote the ö-class of oo; obviously / is an ideal. Because F does not contain more 
than three elements of a given height. Theorem 2.3 would give the desired embedding 
if в were height-preserving, so we assume this is not the case. By Lemma 2.2, it then 
follows that |/| > l. Since \F\ = 6 and |iS| = 4, we cannot have |/] > 3, and |/| = 3 
would imply that 9 is the Rees congruence associated with /, whereupon Theorem 2.1 
would apply. We therefore now assume that |/| = 2. It follows that there is only one 
other non-singleton ö-class К, and \К\ = 2. 

Suppose the elements of К differ in height. Then one of the free generators of F 
would have to be a member of iC, inasmuch as oo ^ K. Assuming x^eK^WQ then have 
К = {х|, b] for some b e {x^ + X2, 2x^, 2x2}. If b = Xi + X2 then addition of Х2 
to each element of К would show that 00 is ö-related to b, contradicting the dis-
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jointness of / and K. Likewise the assumption that b = Ix^ yields a contradiction. 
If b = 2x2 the same method forces oo to be ö-related to both Ix^ and x̂  + X2, 
which is impossible because |/| = 2. 

Thus the elements of К have the same height, which we denote k. lî к = Ï then 
2xi, 2^2, and Xi + X2 would be three ö-related elements, a contradiction. Thus 
fc = 2, and a similar argument shows that the noninfinity element of /, which we 
shall denote r, also has height 2. 

There are three cases to consider, depending on the value of r. However, we need 
only deal with two cases, since the semigroups obtained for r = 2xi and r = 2x2 
are isomorphic. In both cases S will be embedded into P{Y), where 7is the semilattice 
of all subsets of the set (l, ..., 5}, under the operation of union. 

Case 1. Suppose r = x^ + X2. Then addition in S is given by: {x j + {x j = 
= {X2} + {X2} = К and all other sums are equal to /. It follows that an embedding 
of S into P{Y) is given by: 

< 3 } , 
< 3 and Л Ф {l,2}}u{{3, 4, 5}}, 

< 5 } , 

Case 2. Suppose r = 2x^. Then addition in S is given by: {x j + {X2} = {X2} + 
+ {̂ 1} ^ {^2} + {̂ 2} = К and all other sums are equal to /. It follows that an 
embedding of S into P{Y) is given by: 

< 3 and A Ф {3, 5}} u {{1,2,3}}, 
< 3 and yl Ф {4, 5}} , 

. . < 5} , 

and the theorem is proved. 
M. Yamada and T. Tamura [10] noted that a non-trivial finite commutative 

semigroup is nil if and only if it is an ideal extension of a nil semigroup by a two-
element zero semigroup. For such extensions of zero semigroups, we have the desired 
embeddability. 

Theorem 3.2. Every commutative ideal extension of a finite zero semigroup by 
a two-element zero semigroup is embeddable in the global of a finite semilattice. 

Proof. Let Ж denote the class of all such extensions. As in the proof of Theorem 
2.3, it is sufficient to express each semigroup in JT as a subdirect product of semi­
groups each of which is embeddable in the global of a finite semilattice. 

It is easy to verify that any non-trivial homomorphic image of a member of j f 
must again belong to Jf. It then follows from G. BirkhofF's [2] subdirect representa-
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tion theorem that every semigroup in Jf" is a subdirect product of subdirectly ir­
reducible members of Ж, By Theorem 3.1, it remains only to show that every sub-
directly irreducible semigroup in Ж has order less than 5. 

Let Tbe a subdirectly irreducible member of Ж, and let S be an ideal of T such that 
5^ = |0} and T/S is a two-element zero semigroup. Set A — \xeS\xt = 0}, where t 
is the only member of T that does not belong to S. Every ae A satisfies \xeT\ 
(3x = 0} = T, and every Ь e 5 \ Л satisfies {x G T: Ьл: = 0} = 5. The criterion of 
Schein [6] cited above now implies that \.À\ < 3 and |S\y4| < 2, whence |Т| < 5 
and the theorem is proved. 

We note in conclusion that methods for constructing all finite commutative nil 
semigroups were developed in Yamada and Tamura [10] and Yamada [9]. Our 
initial proofs of Theorems 3.1 and 3.2 made extensive use of those methods. 
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