Pavol Marušiak
Oscillatory properties of solutions of nonlinear differential systems with deviating arguments

Persistent URL: http://dml.cz/dmlcz/102086

Terms of use:

© Institute of Mathematics AS CR, 1986

Institute of Mathematics of the Czech Academy of Sciences provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these Terms of use.
OSCILLATORY PROPERTIES OF SOLUTIONS OF NONLINEAR
DIFFERENTIAL SYSTEMS WITH DEVIATING ARGUMENTS

PAVOL MARUŠIČ, Žilina

(Received July 2, 1984)

INTRODUCTION

In this paper we consider the nonlinear differential system with deviating arguments:

(S) \[\begin{align*}
 y'_i(t) &= p_i(t) y_{i+1}(t), & i &= 1, 2, \ldots, n - 2, \\
 y'_{n-1}(t) &= p_{n-1}(t) f_{n-1}(y_n(h_n(t))), \\
 y'_n(t) &= -p_n(t) f_n(y_1(h_1(t))).
\end{align*} \]

The following conditions are always assumed to be fulfilled:

(1) (a) \(p_i: [0, \infty) \to [0, \infty) \), \(i = 1, 2, \ldots, n \), are continuous functions and not identically zero on any subinterval of \([a, \infty) \subset [0, \infty) \); \(\int_0^\infty p_i(t) \, dt = \infty \), \(i = 1, 2, \ldots, n \).

(b) \(h_i: [0, \infty) \to \mathbb{R}, \quad i = 1, n \), are continuous and \(\lim_{t \to \infty} h_i(t) = \infty \);

(c) \(f_i: \mathbb{R} \to \mathbb{R}, \quad i = n - 1, n \), \(f_i(u) > 0 \) for \(u > 0 \) and \(f_i(u) \) are nondecreasing in \(u \).

Definition 1. System (S) is called \((\alpha_{n-1}, \alpha_n)\) superlinear if there are positive numbers \(\alpha_{n-1}, \alpha_n \) such that \(\alpha_n \cdot \alpha_{n-1} > 1 \) and

\[\frac{|f_i(u)|}{|u|^\alpha_i} = \frac{|f_i(v)|}{|v|^\alpha_i} \quad \text{for} \quad |u| > |v|, \quad u, v > 0, \quad i = n - 1, n. \]

Denote by \(W \) the set of all solutions \(y(t) = (y_1(t), \ldots, y_n(t)) \) of the system (S) which exist on some ray \([T, \infty) \subset [0, \infty) \) and satisfy \(\sup \{ \sum_{i=1}^n |y_i(t)|; t \geq T \} > 0 \) for \(T \geq T_y \).

Definition 2. A solution \(y \in W \) is called oscillatory if each of its components has arbitrarily large zeros. A solution \(y \in W \) is called nonoscillatory (weakly nonoscillatory) if each of its components (at least one component, respectively) is eventually of a constant sign.
By Lemma 1 [4] it follows that every solution of (S) is either oscillatory or non-oscillatory.

Definition 3. We shall say that the system (S) has the property A, if every solution $y \in W$ is oscillatory for n even, while for n odd it is either oscillatory or $y_i \ (i = 1, 2, \ldots, n)$ tend monotonically to zero as $t \to \infty$.

The oscillation properties of two-dimensional nonlinear differential systems with deviating arguments were studied for example by Kitamura and Kusano [2, 3], Sevelo and Varech [5, 6, 7]. The oscillation results for n-dimensional systems were obtained by Foltynska and Werbowski, and by the present author [4].

In this paper we extend some results established in [7] to the system (S).

OSCILLATION THEOREMS

In what follows we shall use the following notations:

$$h_i^*(t) = \min \{h_i(t), t\}, \quad i = 1, n,$$

$$\gamma_i(t) = \sup \{s \geq 0; t > h_i^*(s)\} \quad \text{for} \quad t \geq 0, \quad i = 1, n,$$

$$\gamma(t) = \max \{\gamma_1(t), \gamma_n(t)\}.$$

Let $i_k \in \{1, 2, \ldots, n\}, \ k \in \{1, 2, \ldots, n - 1\}, \ t, s \in [a, \infty)$. We define: $I_0 = 1$,

$$I_k(t, s; p_{i_k}, \ldots, p_{i_1}) = \int_s^t p_i(x) I_{k-1}(x, s; p_{i_k-1}, \ldots, p_{i_1}) \, dx.$$

It is not difficult to verify that the following identities hold:

$$y_i(t) y_i(t) > 0 \quad \text{on} \quad [t_0, \infty) \quad \text{for} \quad i = 1, 2, \ldots, l,$$

$$(-1)^{n+i} y_i(t) y_i(t) > 0 \quad \text{on} \quad [t_0, \infty) \quad \text{for} \quad i = l + 1, \ldots, n.$$

Lemma 1. Let (1a)–(1c) hold. Let $y = (y_1, \ldots, y_n) \in W$ be a nonoscillatory solution of (S) on the interval $[a, \infty)$. Then there exist an integer $l \in \{1, 2, \ldots, n\}$, $n \equiv l \ (\mod 2)$, and a $t_0 \geq a$ such that

$$y_i(t) y_i(t) > 0 \quad \text{on} \quad [t_0, \infty) \quad \text{for} \quad i = 1, 2, \ldots, l,$$

$$(-1)^{n+i} y_i(t) y_i(t) > 0 \quad \text{on} \quad [t_0, \infty) \quad \text{for} \quad i = l + 1, \ldots, n.$$

Lemma 2. Let (1a)–(1c) hold. Let $y = (y_1, \ldots, y_n) \in W$ be a solution on the interval $[a, \infty)$. Then the following relations hold:

$$y_i(t) = \sum_{j=0}^{m} (-1)^j y_{i+j}(s) I_j(s, t; p_{i+j}, \ldots, p_i) +$$

$$+ (-1)^{m+1} \int_t^s y_{i+m+1}(x) p_{i+m}(x) I_m(x, t; p_{i+m}, \ldots, p_i) \, dx.$$

224
for $0 \leq m \leq n - i - 2,$ $1 \leq i \leq n - 2,$ $t, s \in [a, \infty);$

\[
y_i(t) = \sum_{j=0}^{n-i-1} (-1)^j y_{i+j}(t) I_j(t, s; p_{i+j-1}, \ldots, p_i) +
+ (-1)^{n-i} \int_s p_{n-1}(x) f_{n-1}(y_n(h_n(x))) I_{n-i-1}(x, s; p_{n-2}, \ldots, p_i) \, dx
\]

for $i = 1, 2, \ldots, n - 1,$ $t, s \in [a, \infty).$

The proofs of Lemma 1 and Lemma 2 are found in the paper [4].

Lemma 3. Let \((1a)-(1c)\) hold. Let \(y = (y_1, \ldots, y_n) \in \mathbb{W}\) be a nonoscillatory solution of \((S)\) on the interval \([a, \infty)\) with \(y_1(t) > 0\) for \(t \geq a.\)

Then there exist an integer \(l \in \{1, 2, \ldots, n\}, l \equiv n \, (\text{mod} \, 2),\) and a \(t_0 \geq a\) such that \((4), (5)\) hold,

\[
y_i(t) \geq \int_{t_0}^t H_{l, l-1}(s, t_0) p_{n-1}(s) f_{n-1}(y_n(h_n(s))) \, ds,
\]

for \(l \in \{2, 3, \ldots, n\}, i = 1, 2, \ldots, l - 1, t \geq t_0,

where

\[
H_{l, l-1}(s, t_0) = \int_{t_0}^s I_{l-1}(t, x; p_l, \ldots, p_{l-1}) I_{l-1}(x) \times
\times I_{n-1}(s, x; p_{n-2}, \ldots, p_l) \, dx,
\]

\(l \in \{2, 3, \ldots, n-1\}, s \geq t_0,

\[
H_{l, n-1}(s, t_0) = I_{n-1}(t, s; p_l, \ldots, p_{n-2}), \quad l = n, \quad t_0 \leq s \leq t.
\]

Proof. We put \(m = l - i - 1, s = t_0\) in \((6)\) and use \((3), (4).\) Then we have

\[
y_i(t) = \sum_{j=0}^{n-i-1} (-1)^j y_{i+j}(t) I_j(t, t_0; p_l, \ldots, p_{l+j-1}) +
+ \int_{t_0}^t y_i(u) p_{l-1}(u) I_{l-1}(t, u; p_l, \ldots, p_{l-2}) \, du \geq
\]

\[
\int_{t_0}^t y_i(u) p_{l-1}(u) I_{l-1}(t, u; p_l, \ldots, p_{l-2}) \, du \quad \text{for} \quad i = 1, 2, \ldots, l - 1, \quad t \geq t_0.
\]

On the other hand, we put \(i = l, s = u\) in \((7)\) and using \((5)\) for \(t \geq u\) we then have

\[
y_i(u) = \sum_{j=0}^{n-l-1} (-1)^j y_{i+j}(t) I_j(t, u; p_{i+j-1}, \ldots, p_i) +
+ (-1)^{n-l} \int_u^t p_{n-1}(x) f_{n-1}(y_n(h_n(x))) I_{n-1}(x, u; p_{n-2}, \ldots, p_l) \, dx \geq
\]

\[
\int_u^t p_{n-1}(x) f_{n-1}(y_n(h_n(x))) I_{n-1}(x, u; p_{n-2}, \ldots, p_l) \, dx.
\]
Substituting (12) into (11), we get

\[y_i(t) \geq \int_0^t \left(p_{t-1}(u) I_{t-1}(t, u; p_1, \ldots, p_{t-2}) \int_u^t p_{n-1}(x) f_{n-1}(y_n(h_n(x))) \right) \times \]
\[\times I_{n-1}(x, u; p_{n-2}, \ldots, p_1) \, dx \, du = \]
\[= \int_0^t H_{i, t-1}(x, t_0) p_{n-1}(x) f_{n-1}(y_n(h_n(x))) \, dx . \]

Let \(l = n \). Put \(t = t_0, s = t \) in (7) and use (3) and (4). We get

\[y_i(t) \geq \int_0^t p_{n-1}(x) I_{t-1}(t, x; p_1, \ldots, p_{n-2}) f_{n-1}(y_n(h_n(x))) \, dx \quad \text{for} \quad t \geq t_0 . \]

The proof of the lemma is complete.

Let us denote

\[\phi_n(t) = \int_t^\infty p_n(s) \, ds, \]
\[J_{k,n}(t, t_0) = I_{n-1}(t, t_0; p_k, \ldots, p_{n-1}), \]
\[J_{k,l}(t, t_0) = \int_{t_0}^t H_{k, l-1}(s, t_0) p_{n-1}(s) \, ds \quad \text{for} \quad l = 1, 2, \ldots, n - 1 . \]

Theorem 1. Let there exist a continuous nondecreasing function \(g \) on \([a, \infty)\) such that

(13) \[h_n(t) \leq g(t), \quad g(h_1(t)) \leq t . \]

Let (14) i) \(f_n(u, v) \geq K f_n(u) f_n(v) \) (0 < \(K = \text{const.} \));

ii) \(\int_0^\infty \frac{dx}{f_n(f_{n-1}(x))} < \infty, \quad \int_0^{-a} \frac{dx}{f_n(f_{n-1}(x))} < \infty \)

for every constant \(\alpha > 0 \);

(15) \[\int_U^\infty p_n(t) f_n(J_{1,l}(h_1(t), T)) \, dt = \infty \quad \text{for} \quad l = 2, 3, \ldots, n . \]

If \(n \) is odd, suppose in addition that for every constant \(L > 0 \),

(16) \[\int_T^\infty p_{n-1}(t) I_{n-2}(L, \phi_n(h_n(t))) \, dt = \infty . \]

Then the system (S) has the property A.

Proof. Let \(y = (y_1, \ldots, y_n) \in W \) be a nonoscillatory solution of (S). Without loss of generality we may suppose that \(y_1(t) > 0, y_1(h_1(t)) > 0 \) for \(t \geq t_1 \geq a \). Then the \(n \)-th equation of (S) implies that \(y_n'(t) \leq 0 \) for \(t \geq t_1 \) and it is not identically zero on any subinterval of \([t_1, \infty)\). Because \(y_1(t) > 0, y_1'(t) \leq 0 \) for \(t \geq t_1 \), then by Lemma 3, for \(t \geq t_2 \geq t_1 \) (4), (5) and (8) hold.
Let \(l \in \{2, 3, \ldots, n\} \). For \(i = 1 \), \(t_0 = t_2 \), using the monotonicity of \(y_n, f_{n-1} \), (13) and (3), we obtain from (8) that

\[
y_1(t) \geq \int_{t_2}^{t} H_{1,l-1}(s, t_2) p_{n-1}(s) f_{n-1}(y_n(h_s(s))) \, ds \geq f_{n-1}(y_n(g(t))) J_{1,l}(t, t_2), \quad t \geq t_2.
\]

Putting (17) into the \(n \)-th equation of (S) and then using (13), (14i), we get

\[
y'_n(t) \geq -p_n(t) f_n(y_n(h_1(t))) \leq -p_n(t) f_n(f_{n-1}(y_n(g(h_1(t)))) J_{1,l}(h_1(t), t_2)) \leq -p_n(t) f_n(f_{n-1}(y_n(t))) J_{1,l}(h_1(t), t_2) \leq -K p_n(t) f_n(f_{n-1}(y_n(t))) f_n(J_{1,l}(h_1(t), t_2))
\]

for \(t \geq t_3 = \gamma(t_2), l = 2, 3, \ldots, n \).

Dividing (18) by \(f_n(f_{n-1}(y_n(t))) \) and then integrating from \(t_3 \) to \(u(\geq t_3) \), we get

\[
\int_{t_3}^{u} \frac{y'_n(t)}{f_n(f_{n-1}(y_n(t)))} \, dt \leq -K \int_{t_3}^{u} p_n(t) f_n(J_{1,l}(h_1(t), t_2)) \, dt.
\]

From (19) for \(u \to \infty \) we obtain

\[
K \int_{t_3}^{\infty} p_n(t) f_n(J_{1,l}(h_1(t), t_2)) \, dt \leq \int_{0}^{p_n(t_3)} \frac{dx}{f_n(f_{n-1}(x))} < \infty,
\]

which contradicts (15).

Let \(l = 1 \) \((n \) is odd). Then \(y_1(t) \downarrow k \) as \(t \uparrow \infty \), where \(k \geq 0 \). We suppose that \(k > 0 \). If we put \(i = 1, s = t_2 \) in (7) and use (5), we have

\[
y_1(t_2) \geq \int_{t_2}^{t} p_{n-1}(x) f_{n-1}(y_n(h_1(x))) I_{n-2}(x, t_2; p_{n-2}, \ldots, p_1) \, dx \quad \text{for} \quad t \geq t_2.
\]

Integrating the \(n \)-th equation of (S) from \(t \) to \(\infty \) and using \(y_1(t) \geq k \) for \(t \geq t_2 \), we get

\[
y_n(t) \geq f_n(k) \int_{t}^{\infty} p_n(s) \, ds = L \phi_n(t), \quad \text{where} \quad L = f_n(k) \neq 0.
\]

Then in view of the monotonicity of \(y_n, f_{n-1} \) and (13), the inequality (20) yields

\[
y_1(t_2) \geq \int_{t_2}^{t} p_{n-1}(x) I_{n-2}(x, t_2; p_{n-2}, \ldots, p_1) f_{n-1}(L \phi_n(h_1(x))) \, dx,
\]

which contradicts (16) for \(t \to \infty \).

Therefore \(\lim_{t \to \infty} y_i(t) = 0 \) for \(i = 1, 2, \ldots, n \).

Remark. Theorem 1 extends the results of the author [4; Theorem 3], Kitamura and Kusano [3; Theorem 6], Sevelo and Varech [7; Theorem 1].

227
Theorem 2. Suppose that (14), (16) hold and
\[h_n(t) \leq t, \quad h_1(t) \geq t \quad \text{on} \quad [a, \infty). \]
If
\[\int_a^\infty p_n(t) f_n(J_1, t(t, T)) \, dt = \infty \quad \text{for} \quad l = 2, 3, \ldots, n, \]
then the system (S) has the property A.

Proof. Let \(y = (y_1, \ldots, y_n) \in W \) be a nonoscillatory solution of (S) such that \(y_1(h_1(t)) > 0 \) for \(t \geq t_1 \). Proceeding in the same way as in the proof of Theorem 1 we get (4), (5), (7) and (8) for \(t \geq t_2 \geq t_1 \).

I. Let \(l \in \{2, 3, \ldots, n\} \). For \(i = 1, t_0 = t_2 \), using (21) and the monotonicity of \(y_n, f_{n-1} \), we obtain from (8) that
\[y_j(t) \geq f_n(y_j(t)) J_1, J(t, t_2), \quad t \geq t_2. \]
If we put the last inequality into the \(n \)-th equation, we get
\[y_j(t) \leq -p_n(t) J_n(y_j(t)) \leq -K p_n(t) f_n(f_{n-1}(y_j(t))) J_n(J_1, t(t, t_2)) \quad \text{for} \quad l = 2, 3, \ldots, n, \quad t \geq t_2. \]
Dividing (23) by \(f_n(f_{n-1}(y_j(t))) \) and then integrating from \(t_2 \) to \(\tau \to \infty \) we get a contradiction to (22).

II. If \(l = 1 \) \((n \text{ is odd})\) we proceed in the same way as in the case II of the proof of Theorem 1.

Theorem 3. Let the system (S) be \((\sigma_{n-1}, \sigma_n) \) superlinear. Let
\[g_1(t) \leq \min \{h_1(t), t\}, \quad h_n(t) \leq t \quad \text{on} \quad [a, \infty), \]
where \(g_1 \) is an increasing function on \([a, \infty)\) and \(\lim_{t \to \infty} g_1(t) = \infty \).

Let
\[\int_a^\infty p_n(t) \, dt < \infty, \]
\[\int_a^\infty J_2, t(g_1(t), a) p_1(g_1(t)) g_1'(t) f_{n-1}(K \phi_n(t)) \, dt = \infty \]
for any constant \(K > 0 \), \(l = 3, 4, \ldots, n \).

In addition we suppose that a) for \(n \) even,
\[\int_a^\infty p_1(g_1(t)) g_1'(t) \int_t^\infty p_{n-1}(x) f_{n-1}(K \phi_n(x)) l_{n-3}(x, g_1(t); p_{n-2}, \ldots, p_2) \, dx \, dt = \infty \]
for any \(K > 0 \);

b) for \(n \) odd, (16) holds.

Then the system (S) has the property A.
Proof. Let \(y = (y_1, \ldots, y_n) \in W \) be a nonoscillatory solution of (S). Proceeding in the same way as in the proof of Theorem 1, we get (4), (5), (7) and (8). We suppose that \(y_1(t) > 0, y_1(h_1(t)) > 0 \) for \(t \geq T_1 \). Integrating the \(n \)-th equation of (S) from \(t(\geq T_1) \) to \(\tau \), we get
\[
y_n(\tau) - y_n(t) = - \int_t^\tau p_n(s) f_n(y_1(h_1(s))) \, ds ,
\]
and then for \(\tau \to \infty \) we have
\[
y_n(t) \geq \int_t^\infty p_n(s) f_n(y_1(h_1(s))) \, ds , \quad t \geq T_1 .
\]

I. Let \(l \geq 2 \). Then \(y_1 \) is nondecreasing and therefore \(y_1(h_1(t)) \geq c \) for some \(c > 0 \) and \(t \geq T_2 \geq T_1 \). Using the fact that the system (S) is superlinear, we obtain
\[
f_n(y_1(h_1(t))) \geq \frac{f_n(c)}{c^{\alpha_n}} (y_1(h_1(t))) = c^{-\alpha_n} f_n(c) (y_1(h_1(t)))^{\alpha_n} \quad \text{for} \quad t \geq T_3 \geq T_2 .
\]

Combining (29) with (28) we get
\[
y_n(t) \geq c^{-\alpha_n} f_n(c) \int_t^\infty p_n(s) (y_1(h_1(s)))^{\alpha_n} \, ds , \quad t \geq T_3 .
\]

Because \(y_1(h_1(t)) \geq c \) for \(t \geq T_2 \), (28) implies
\[
y_n(g_1(t)) \geq f_n(c) \int_{g_1(t)}^\infty p_n(s) \, ds = M \phi_n(g_1(t)) , \quad \text{where} \quad M = f_n(c) .
\]

In view of (30), (24) and the monotonicity of \(y_n \) we have
\[
y_n(g_1(t)) \geq y_n(t) \geq c^{-\alpha_n} M \int_t^\infty p_n(s) (y_1(h_1(s)))^{\alpha_n} \, ds .
\]

Using the superlinearity of \(f_{n-1} \) and (31), we get
\[
f_{n-1}(y_n(g_1(t))) \geq \frac{f_{n-1}(M \phi_n(t))}{(M \phi_n(t))^{\alpha_{n-1}}} (y_n(g_1(t)))^{\alpha_{n-1}} .
\]

a) Let \(l \geq 3 \). We put \(i = 2, T_3 = t_0 \) in (8) and using the monotonicity of \(f_{n-1}, y_n \) and (24), we obtain
\[
y_{2}(t) \geq \int_{T_1}^{t} H_{2,1-1}(s, T_3) p_{n-1}(s) f_{n-1}(y_n(h_n(s))) \geq f_{n-1}(y_n(t)) J_{2,1}(t, T_3) \quad (l = 3, 4, \ldots, n - 1) ,
\]
and
\[
y_{2}(t) \geq \int_{T_3}^{t} I_{n-3}(t, s; p_2, \ldots, p_{n-2}) p_{n-1}(s) f_{n-1}(y_n(h_n(s))) \, ds \geq f_{n-1}(y_n(t)) J_{2,1}(t, T_3) .
\]
Substituting (33) and (32) in (34), we get
\[
\frac{y_2(g_1(t))}{y_1(g_1(t))} \geq f_{n-1}(y_n(g_1(t))) J_{2,1}(g_1(t), T_3) \geq \frac{f_{n-1}(M \phi_n(t))}{(M \phi_n(t))^{\alpha-1}} \left(M c^{-\alpha} \int_t^\infty p_n(s) (v_1(g_1(s)))^\alpha ds \right)^{\alpha-1} J_{2,1}(g_1(t), T_3) \geq \frac{f_{n-1}(M \phi_n(t)) c^{-\alpha}(y_1(g_1(t)))^\alpha J_{2,1}(g_1(t), T_3)}{\alpha},
\]
where \(\alpha = \alpha_n \alpha_{n-1} > 1, \ l = 3, 4, \ldots, n. \)

Multiplying the last inequality by \(p_1(g_1(t)) (y_1(g_1(t)))^{-\alpha} g_1'(t) \) and using the first equation of (S), we get
\[
(35) \quad \frac{y_1'(g_1(t)) g_1'(t)}{(y_1(g_1(t)))^\alpha} \geq c^{-\alpha} f_{n-1}(M \phi_n(t)) J_{2,1}(g_1(t), T_3) p_1(g_1(t)) g_1'(t).
\]

Integrating (35) from \(T_4 = \gamma(T_3) \) to \(\tau \), we obtain
\[
\frac{c^\alpha}{\alpha - 1} \left[y_1(g_1(T_3)) \right]^{1-\alpha} \geq \int_{T_4}^{\tau} J_{2,1}(g_1(t), T_3) p_1(g_1(t)) g_1'(t) f_{n-1}(M \phi_n(t)) dt,
\]
which contradicts (26) as \(\tau \to \infty \).

Let \(L = 2 \). We put \(i = 2 \) in (7) and use (5), obtaining
\[
(36) \quad y_2(t) \geq \int_t^\tau p_{n-1}(x) f_{n-1}(y_n(h_n(x))) I_{n-3}(x, t; p_{n-2}, \ldots, p_2) dx \quad \text{for} \quad \tau \geq t.
\]

Using the superlinearly of \(f_{n-1} \), (24) and (30), we obtain
\[
y_2(g_1(t)) \geq \int_{g_1(t)}^\tau p_{n-1}(x) f_{n-1}(M \phi_n(x)) (y_n(x))^{\alpha-1}.
\]
\[
\cdot I_{n-3}(x, g_1(t); p_{n-2}, \ldots, p_2) dx, \quad t \geq T_3.
\]

Multiplying the last inequality by \(p_1(g_1(t)) g_1'(t) \) and using the first equation of (S), (32) and (24), we get
\[
(37) \quad y_1'(g_1(t)) g_1'(t) \geq p_1(g_1(t)) g_1'(t) \int_t^\tau p_{n-1}(x) f_{n-1}(M \phi_n(x)) c^{-\alpha}(y_1(g_1(x)))^\alpha.
\]
\[
\cdot I_{n-3}(x, g_1(t); p_{n-2}, \ldots, p_2) dx \geq \geq c^{-\alpha}(y_1(g_1(t)))^\alpha p_1(g_1(t)) g_1'(t) \int_t^\tau p_{n-1}(x) f_{n-1}(M \phi_n(x)).
\]
\[
\cdot I_{n-3}(x, g_1(t); p_{n-2}, \ldots, p_2) dx, \quad t \geq T_3.
\]

Let \(g_1(t) \geq T_3 \) for \(t \geq T_4 \). Multiplying (37) by \(c^\alpha y_1(g_1(t))^{-\alpha} \) and then integrating from \(T_4 \) to \(u \), we get
\[
\frac{c^\alpha}{\alpha - 1} \left(y_1(g_1(T_4)) \right)^{1-\alpha} \geq \int_{T_4}^{u} \left(p_1(g_1(t)) g_1'(t) \int_t^\tau p_{n-1}(x) f_{n-1}(x) f_{n-1}(M \phi_n(x)) \cdot I_{n-3}(x, g_1(t); p_{n-2}, \ldots, p_2) dx \right) dt,
\]
which contradicts (27) as \(u \to \infty, \tau \to \infty. \)
II. Let \(l = 1 \) (\(n \) is odd). Then we proceed in the same way as in the proof of Theorem 1. This completes the proof of the theorem.

References

Author's address: 01 088 Žilina, Marxa-Engelsa 25, Czechoslovakia (Vysoká škola dopravy a spojov).