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AN ORDERING OF SOME METRICS DEFINED 
ON THE SPACE OF GRAPHS 

MARK JOHNSON, Kalamazoo 

(Received June 27, 1985) 

1. INTRODUCTION 

Recently, a number of metrics have been defined on the space Г of graphs or various 
subsets of Г. Zelinka [3] defined a metric di over all graphs Г{р) having order p 
where di(A, B) was based upon the largest graph which is an induced subgraph of 
both A and B; we shall call di the induced-subgraph metric. Chartrand, Saba and 
Zou [1]) defined a metric d^^ over all graphs Г(р, q) having order p and size q where 
der{A, B) was based upon the minimum number of edge rotations required to trans­
form A into B; we shall call d^r the edge-rotation metric, Johnson [2] defined a metric 
ds over all graphs Г where ds{A, B) was based upon the largest graph which is a sub­
graph of both A and B; we shall call d^ the subgraph metric. 

Johnson also showed that metrics defined on graphs may be applied to problems 
in medicinal chemistry. Such apphcations of metrics raise problems of selecting the 
appropriate metric. This selection cannot be based upon topological properties 
because each of these metrics induces the discrete topology on its respective domain. 
However, these metrics are differentiated by their graphs. Since the graph of the 
discrete metric defined on any finite set is the complete graph, and since the graph 
of any other metric defined on that same set is always a subgraph of the complete 
graph, it makes sense to partially order the metrics based upon the partial ordering 
arising from the subgraph relation. 

This paper explores this partial ordering. The preceding metrics are defined in 
section 2 and another metric d^s is defined on the space Гс{р, q) of connected graphs 
of order p and size q where d^si^, B) is based upon a more restricted notion of an 
edge rotation which will be called an edge shift. Some terminology for comparing 
these metrics is developed in section 3. In section 4, we estabhsh that d^ | Г{р) ^ di 
and that d^r è d^ \ Г(р, q) where ^ denotes the expansion relation. We also show 
that des ^ der ^ ds'^ di^ da when all metrics are restricted to Гс{р, q) and that 
there exists [p, q) such that strict inequality holds in each case. In the last section, we 
show that the preceding metrics are graphable and that di | Г^(р, q) and d̂ ^ | Гс{р, q) 
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are connected for all p and q, but not graphable for all p and q. W^ also show that 
4ДЛ, B) ^ d,{A, Б)/2 = q - s where s is the size of any maximum common sub­
graph. (Chartrand, Saba and Zou [1] have already shown 2{q ^ s) ^ d^^{A, B).) 

2. SOME METRICS DEFINED ON GRAPHS 

We start by reviewing the definitions of the preceding metrics beginning with those 
defined on the largest domains. 

Let Г denote the space of finite graphs. The discrete metric d/. Г x Г -^ Z^ is 
defined by dd{A, B) = 0 if A ^ В and da{A, B) = 1, otherwise. 

Define the cardinality \G\ of a graph G to be \V{G)\ + \E{G)\ where V{G) and E{G) 
denote the vertex set and edge of G. Johnson [1] defined the subgraph metric d^: 
Г X Г -^ Z'^ such that ds{A, B) is the minimum of |^1 + \В\ — 2\C\ taken over all 
graphs С which are isomorphic to subgraphs of both A and B. Note that there always 
exist graphs A\ B' and С such that 

(1) d{A\ B') = \V{A' \ C)\ + \V{B' \ C)\ + \E{A' \ C)\ + E{B' \ C)\ 

where V{A' \ C) and E{A' \ C) denote V{A') \ V{C) and E[Ä) \ E{C% respectively, 
and where A' ^ A, B' ^ В and С ^ C. 

Zelinka defined the induced subgraph metric J^: Г{р) x Г(р) -^ Z"̂  such that 
d[A, B) = n where p — nis the order of a largest graph that is an induced subgraph 
of both A and B. 

We shall say A can be transformed into a graph В by an edge rotation if Л contains 
distinct vertices w, v and w such that wi? G E{A), UW ф E{Ä) and В ^ A ~ uv + uw. 
Denote this edge rotation by (w, Ü, W) and the graph A — uv + uw by tA where 
t = (M, Î;, W). Chartrand, Saba and Zou [1] defined the edge rotation metric d̂ :̂ 
r{p, q) X r(p, q) -^ Z~^ by ^ДЛ, Б) = 0 if Л ^ Б and by dJ^A, B) = n, otherwise 
where n is the smallest positive integer for which there exists a sequence t^, . . . , t„ 
of edge rotations such that r„ . . . t^A ^ Б. 

An edge shift on a graph A is an edge rotation t = (w, f, w) such that vw is an edge 
of v4. As with an edge rotation, tA will denote the newly formed graph A — uv + uw. 
The edge shift metric d^s' Ej^p, q) x Ec{p, q) -^ Z^ is defined by d^j^A, Б) = 0 
if Л = Б and by d^lA, B) = n otherwise, where n is the smallest integer for which 
there exist edge shifts, t^,..., t„, such that t„... t^^A ^ Б. That d^^ is a metric follows 
immediately from propositions 1 and 2. 

Proposition 1. Let A e Г dp, q)- Let t be any edge shift. Then tA e Г dp, q)-

Proof. Clearly, tA e Г{р, q). Thus, we need only show that tA is connected. Write 
t = (a, b, c) and let x and у be any two vertices of tA. Since A is connected, there 
exists a path P = x^, ...,x„ in A connecting x and у which we shall assume is 
a shortest such path. If P does not pass through the edge ab, then P is also a path 
of tA. Thus, we need only consider the case in which ab occurs once in P. 
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If ab or ba is a subpath of P and be or cb is not, construct the walk P' from P by 
replacing ab or ba by acb or bca. If ab or ba is a subpath of P and be or cb is also, 
then P contains a subpath of the form abc or cba since P is a shortest path. Form 
the path P ' by replacing abc or cba with ac or ca, respectively. In either case, P ' is 
a path connecting x and j . ^ 

Proposition 2. For nonisomorphic graphs Ä, В E Pj^p, q), there exists a sequence 
ti, ..., „̂ of edge shifts such that t„ ... t^A ^ B, 

Proof. Let AePj^p, q). We shall say G = ({1, ..., p}, {e^,..., e j ) is a standard 
form of Л if (1) G ^ A, (2) ê  = ab impHes a < b and (3) i < j impHes ê  < Cj 
based upon the lexicographical ordering of the edges, i.e. ab < cd if a < c, or if 
a = с and b < d. Call s{G) = c^,.. . , ^̂  the edge sequence of G. If ej,{G) = z/, we 
shall say 5(G) increases mfn/ma/Zyarfe if ^fc+i(G) = i{j + l ) for j Ф pandCfc+i(G) = 
= (ï + 1) (i + 2) for y = p. We shall call G k-minimal if s(G) increases minimally 
at y for 7 ^ fe. Clearly, if G and Я are both in Гс{р, q) and are both ^-minimal, then 
G ^ Я . A ^-minimal sequence has the following form: 

12, . . . , Ip,...,(/ -- 1)/ , . . . , ( ï - 1) p,i{i + 1) , . . . , i(f + m ) . 

We will show that there exists a standard form G of Л and a sequence t^, ..., t^ 
of edge shifts such that t„.,. t^G ^ B. Following the approach of Chartrand, Saba 
and Zou [1], we first prove that there exists a sequence t^, ..., „̂ of edge shifts such 
that „̂ . . . ĵ̂ G is ^-minimal. 

Assume otherwise.Then there is a largest k, k<q, such that t^^ ... t[G is /c-minimal 
for some edge shift sequence ^ i , . . . , 4 and some standard form G of A. Let Я = 
= tin... t[G. We shall obtain a contradiction by showing there exists a standard 
form of Я and a sequence t^, ...,t„ of edge shifts such that t„ ... t^H is [k + 1)-
minimal. 

Case к <{p - 1): Then С;̂ (Я) = 1{к + 1), but ek+i{H) = f/ where either i = 1 
and 7 > /c + 2, or i > 1. 

There must exist an edge uv where и ^ к + 1 < v for otherwise the subgraph 
induced by the vertex set { 1 , . . . , /c + 1} would form a component of Я . Form the 
graph Я ' by interchanging the labels v and к + 2. Clearly H' is fe-minimal. If w = 1, 
Я ' is also (fe + l)-minimal. If w ф 1, then the edge shift t = (k + 2, w, 1) exists, 
and tH' is (k + l)-minimal. 

Case ;? — 1 ^ /c < tjf: Let CjJl^H) = ij and С;,+ 1(Я) = uv where (1) j < p imphes 
^k+i{H) Ф i(i + 1) ^1^^ (^) *̂ = P^ implies е^+1(Я) Ф (/ + 1) (f + 2). It follows 
that i > 1 and that 1 is a star vertex, i.e. the edges Im exist for m = 2 , . . . , p. 

Assume j < p and ej^+i{H) = (j + 1) и. Then t^([j + 1), 1, i) exists, deletes 
1(7 + 1) and creates i{j + 1). It follows that t2{{j + 1), v, 1) exists for t^H, deletes 
(j + i)v and recreates l(j + 1). Clearly, ^2^1^ = Я - (j + 1) Ü + i(j + 1). It 
follows that t2tiH is (/<: + l)-minimal. 
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By the same argument, one can show that if j < p and ek+i{H) = u(j + 1), 
then there exist t^ and 2̂ such that Г2Г1Я is {k + l)-minimal. 

Assume j < p and в^^+l(Я) = uv where u, v Ф {j + 1). Then t^{u, l,j + 1) 
exists for Я and t2{u, v, 1) exists for t^H. It follows that ^2^1^ =^ H - uv Л- u{j + 1) 
is A:-minimal and has an edge of the form {j + l)w or u{j + 1), and, by the preceding 
argument, Я can be transformed into a (/c + l)-minimal graph. 

The case j = pis proved similarly with i replaced by f + 1 and with j + 1 replaced 
by f + 2 in the preceding argument. By contradiction then, there exists a sequence 
f i , . . . , t„ of edge shifts such that t^... t^H is ^-minimal where Я is a standard form 
of Ä. 

Now let А,ВЕГС{Р, q). We have shown that for some standard forms G of ^ and Я 
of B, there exist edge shift sequences, f̂ , ..., „̂ and м ,̂ ..., u„^, such that t^ ... t^G 
and u^ ... u^H are both ^-minimal. If t = (w, v, w), let ^"^ = (w, w, ?;) and call t"^ 
the inverse of f. If ^ is well-defined on G, then r~^ is well-defined on tG and r~^tG == 
= G. It follows that u'[\..u~4„... t^G ^ Я. „ 

3. COMPARING THE GRAPHS OF INTEGER METRICS 

We shall now develop some terminology for relating integer metrics and the 
path metrics of their associated graphs. 

A metric d:Wx W -^ Z^ taking values on the positive integers will be called an 
integer metric with unit X where Я = min {J(w, w')| w,w' eW and w ф w']. It 
will be convenient to say an integer metric defined on a singleton set has unit Я for 
any X. One can associate the graph G[d) = {W, E) with integer metric d by putting 
ww' e Eif and only if J(w, w') = L Let d' be another integer metric. If G(J) is a sub­
graph of G((i'), then d will be said to expand d' and we shall write d ^ d'. Since the 
subgraph relation is a partial order, this relation of expansion is also a partial order. 
We shall say d strictly expands d' if d expands d\ but not vice versa; and we shall 
write d > d'. The following propositions will be needed to establish the expansion 
relationship between restrictions of integer metrics. The proof of the first proposition 
is trivial. 

Proposition 3. Let d and d^ be integer metrics defined on W where d has unit X 
and d^ denotes the discrete metric. Then d ^ d^, and if d{w, w') > 1 for any 
w, W G W, then d > d^. 

Proposition 4. Let d and d' he integer metrics defined on W with units X and X', 
If X' ^ Я* and if d{w, w') — X implies d'{w, w') S X^, then X' = A* and d '^ d'. 

Proof. If Ж is a singleton set, the proposition is true by setting Я* = X\ 
If W is not a singleton set, there exists w,w' eW such that d{w, w') = X. This 

implies d\w, w') ^ 1*, and consequently, X' ^ 1*. It follows that d{w, w') = X 
implies d'{w, w') = X'. Consequently, d ^ d'. щ 
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A similar proof can be used to establish the following proposition. 

Proposition 5. Let d and d' be integer metrics defined on W with units Я and X', 
Let W cz W.Ifd^ d' and ifd\W has unit Я, then d' \ W has unit X' and d\W' -^ 
^ d' I W. 

Let d be any integer metric on Ж having graph G[d). If G{d) is connected, then d 
will be called connected. Since G{d) is connected, there exists a shortest path con­
necting w, w' e G{d) whose length we denote by (5(w, w'). The associated function 
d:W X TF-> Z"*" is a metric which will be called the path metric associated with d. 
Before proceeding further, note that the metric d defined on {1, 2, 3} by J ( l , 2) = 1, 
J ( l , 3) = 2 and J(2, 3) = 2 is not connected since 3 is an isolated vertex of Gid). 
The following proposition follows immediately from the triangle inequality. 

Proposition 6. Let d be a connected integer metric with unit X defined on W, 
and let Ô be the associated path metric. Then for every w, w' e W, 

d{A, B) й ЩЛ, В) . 

A number of metrics were defined in the preceding section. The following proposi­
tion will be useful in proving various restrictions of them are connected. 

Proposition 7. Let d and d' be any two integer metrics defined on W. If d ^ d' 
and d is connected, then d' is connected. 

Proof. The proof follows immediately from the fact G{d) is a connected subgraph 
of G[d') having the same vertex set as G{d'). н 

Let d be any connected integer metric with graph G[d) and path metric 6. If 
d(w, w') = yl(5(w, w') for all w, w' e H^hen d will be said to be graphable. Note that 3 
is always graphable with unit L By defining d':Wy. W-^Z"^ by d'{w,w') = 
= d{w, w')/A, we see that any graphable metric with unit X is equivalent to a graphable 
metric with unit 1. However, if d is not graphable, d' may not be an integer metric. 
Unless specifically stated otherwise, we shall assume all metrics have unit L 

A metric can be connected, but not graphable. The metric d defined on {1, 2, 3, 4} 
by d{i, i + 1) = 1 for i = 1, 2, 3, d{i, i + 2) = 2 for i = 1, 2 and J ( l , 4) = 2 is 
connected, but not graphable. The graph of this metric is given by 

• — n — H — • 
but misrepresents d since (5(1, 4) = 3 Ф 2 = d{l, 4). Clearly, this last metric is 
changed into a graphable metric by redefining d{l,4) = 3. 

Our use of the symbol ^ for the expansion relation is a consequence of the fol­
lowing proposition. 

Proposition 8. Let d and d' be integer metrics defined on W with units X and X\ 
respectively. Let d be graphable. If d ^ d\ then d(w, w') ^ {XjX') d'{w, w') for all 
W, W' G W. 
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Proof. Let w, w' e W. By assumption, d{w, w')/A = ô{w, w'). Proposition 7 and 
d ^ d' imply that d' is connected. Consequently, <5' is defined. Since G{d) is a sub­
graph of G{d'), ô(w, w') ^ (5'(w, w'). By proposition 6, 5'(w, w') ^ d\w, w')/A'. ц 

4. SOME COMPARISONS BETWEEN THE DISCRETE METRICS DEFINED 
ON GRAPHS 

The expansion relation is developed in this section for the metrics defined in section 
2. Proposition 9 is an immediate consequence of proposition 3. 

Proposition 9. The integer metrics di, ds, d^r, and J^s strictly expand d^ an their 
respective domains. 

Proposition 10. ds restricted to Г{р) expands di, and strictly expands d^for some p. 

Proof. Let e denote any edge of K^. Then dJ^Kp^Kp ~ e) = 1. Thus the unit 
of ds I r(p) is L Let G{ds \ Г^р)) denote the graph of d^ restricted to Г{р). 

To show 4 I r{p) ^ di, let AB be any edge in G(4 | Г{р)). Then (i,(^, B) = 1. 
Thus, one of the sets on the right hand side of equation 1 has one member and the 
others are null. It follows that either Л is a proper subgraph of В or vice versa. 

Without loss of generality, we can assume that Л is a proper subgraph of В and 
either V(A) = V{B) and \E{B)\E{A)\ = 1, or E{A) = E{B) and \V{B)\V{A)\ = 1, 
In the first case, assume uv e E[B) \ E{Ä). Then Л — w is an induced subgraph of 
both A and Б, in which case di{A, Б) = L In the second case, A is an induced, 
subgraph of both A and B, in which case di[A, B) = L It follows that di{A, B) ^ 1. 
Since A is not isomorphic to Б, di{A, B) = 1. Thus AB e G{di), i.e. d^ ̂  di. 

To show ds > di for p ^ 3, simply note that if ;? ^ 3, there exist u,v,we V(Kp). 
Let A = Kp and В =- Kp - uv - uw. It follows that ds{A, B) = 2 > 1 = di(A, B), 
i.e. AB e E{G{d,)), but AB ф £ (0(4)) . « 

Proposition 11. der expands d^ restricted to Г{р, q), and there exists p and q 
such that d^j. strictly expands d^. 

Proof. We will estabhsh the conditions of proposition 4. Let A' denote the unit 
of ds I r(p, q). Note that ds{A, B) = 1 impHes either Л or Б is a proper subgraph 
of the other, i.e. {A, B} is not a subset of Г{р, q) for any p and q. Thus, Я' ^ 2. 

Let AB be any QdgQ of G(d^y) i.e. d^^i^, B) = 1. By definition, we can write В ^ 
^ A ~ uv + uw where w, v and w are vertices of A, uv e E[A) and uw ф E[A), and 
where A is not isomorphic to B. It follows that A — uvisa, subgraph of both A and B, 
and, consequently, ds{A, B) ^ 2. Thus, by proposition 4, d^^ è 4 ] Г{р, q) where 
Я* = 2. 

To show there exists p and q such that d^r > ds, let A and В be defined by Figure 1. 
Clearly, a single edge rotation of any edge lying on the 6-cycle of A will not suffice 

to transform A into B, for such a rotation results in a graph without a 6-cycle. Like-
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wise, a single rotation of the 35 edge of A ehminates any 4-cycle of A unless a vertex 
of degree 4 is formed, of which В has none. Thus, d^ri^, B) ^ 2, i.e. AB is not an 
edge of G(der)' Since, Л-35 is a subgraph of both A and B, ds{A, B) ^ 2, and since A 

b'-

5 — \ 

\ 
— 2 

—3 
4 / 

/ \ 
— 2 

в 
Fig. 1. 

is not isomorphic to Б, d^A, B) = A'. Thus AB is an edge of G{ds \ Г{6, 8). It follows 
that d^r < ds on Г{6, 8). ^ 

Proposition 12. / / (ij, (î , ^s, d^^ ^^d d^^ ^^^ restricted to Г^{р, q), then d^ ^ di ^ 
S ds ^ der S des- Moreover, there exist p and q such that strict inequality holds 
in each case. 

Proof. From proposition 5 axid the transitivity of the extension relation, we need 
only show that d^^ ^ ^er to estabhsh the first set of inequahties. But this is obvious, 
because any edge shift is a special case of an edge rotation. 

To estabhsh the strict extension relation for some (p, q), consider the graphs in 
the Figure 2, and let Я ( = 2) denote the unit of d^ \ Fj^p, q). 

\ 

d с b d с b 

Fig. 2. 

First note that С — v contains a 5-cycle for alj v. Since A does not contain a 5-cycle, 
di{A, C) > 1. It follows that di \ Г,(9, 11) > d,r,{9. И). 

Clearly, A — b = В — b. Thus di{Ä, Б) = 1. However, В - e' contains a 3-cycle 
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for all edges e'. Since A contains no 3 cycles, d^A, B) > X. Thus d^ \ ГД9, U) > 
> di I r,(9, 11). 

Since С — ai ^ D — gh, dJ^C, D) = X. However, no single edge rotation will 
convert С into D. For rotating an edge on an 8-cycle of С would destroy C's only 
8-cycle, and D has an 8-cycle. Rotating any of the other edges, ef, ai, or dc, to create 
the desired 3-cycle in D either creates a vertex of degree 4 or eUminates the only 
terminal vertex of D. Since С has a terminal vertex, but no vertex of degree 4, 
4 , (C, D) > 1. Thus, 4 . 1 Гс(9, 11) > d, I r , (9 , 11). 

Finally, t(D) ^ £ where t is the edge rotation (c, d, h). Thus, dJ^D, E) = 1. To 
show that d^^(D, E) > 1, note that the edges gi and hi cannot be shifted. Any edge 
shift of any other edges lying on the 8-cycle of D, eHminates either the only 8-cycle 
or the only terminal vertex of D, and E has both an 8-cycle and a terminal vertex. 
Finally, the edges gh, ef and dc of С cannot be shifted to form a 3-cycle with a vertex 
adjacent to a terminal vertex, and D has such a vertex. It follows dJ^C, D) > 1, 
and consequently, d^, \ Г,{9, 11) > d,r \ Г,{9, 11). » 

5. CONNECTEDNESS AND GRAPHABILITY OF ds, du der AND des 

In this section, the subgraph, induced subgraph, edge-rotation and edge-shift 
metrics will be shown to be graphable on Г, Г(р), Г(р, q) and Г^.(р, q), respectively. 
The restrictions of the subgraph metric to Г{р), Г{р, q) and Г dp, q) will be shown 
to be graphable for all p and q. The restrictions to Гс{р, q) of the induced subgraph 
metric and the edge-rotation metric will be shown to be connected, but not graphable 
for all p and q. 

Proposition 13. The subgraph, induced subgraph, edge-rotation and edge-shift 
metrics are graphable. 

Proof. The edge-rotation and edge-shift metrics are trivially graphable because 
they are defined to be the path metric of their associated graphs. 

To show di is graphable, let A and В be any two graphs of order p where d/^A, B) = 
= n. Let С have the largest vertex set of any graph that is isomorphic to an induced 
subgraph of both A and B. Without loss of generality, we can assume that A and В 
are defined on the same vertex set, V, and that С is a subgraph of both A and B, 
Let V be any vertex in V\ V{C). By definition, \V\ V{C)\ = n. 

Let veV\ V{C) and let Ej{v) and EB{V) denote the edges of A and of J5, respectively, 
that are adjacent to v. Clearly, E^{v) Ф Eß{v), for otherwise С + v + Ej(v), which is 
larger that C, would be an induced subgraph of A and Б — a contradiction. Let 
v^, ..,,v„ be any ordering of the vertices in F \ V(C). Define HQ, ,..,Н„Ъу HQ = A 
and Hi+i = Hi - E^{Vi) + EB{V^ for i = l,...,n - 1. Since Hier{p), i = 
= 0, ...,n, dlfli, Hi+^) ^ 1 for i = 0 , . . . , n, and H„ ^ B, it follows that there 
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exists a subsequence of HQ, ..., Д , which is a path of G{di) connecting A and B. Thus, 
ö(A, В) ^ n = di{A, B), and hence, df is graphable by proposition 6. 

To show ds is graphable, let С be any maximum common subgraph of A and B. 
Without loss of generality, we can assume С is a subgraph of both A and B. 

We will define a sequence of transformations converting A to В that begins by 
deleting vertices in V{A \ C) and then edges in E(A \ C) and ends by adding vertices 
in V(B \ C) and then edges in E{B \ C). Specifically, let x^, ..., x„ be any sequencing 
of the elements in the union of the sets on the right hand side of equation 1 such 
that each element occurs once and only once in the sequence and such that Xj e 
e E{A \ C) and Xj e V(A \ C) impHes i < j \ x̂  e V{A \ C) and Xj e V(B \ C) implies 
i < j , and Xi G V{B \ C) and Xj e E[B \ C) imphes i < J. Define the sequence 
HQ, . . . , Я „ by HQ = A, and Hi_^ = H^ Axi for f = 1 , . . . , n where Л is — if Xf 6 
6 V{A \ C) u E(A \ C) and Л is + if x̂  e V{B \ C) u E{B \ C). Clearly, d,[Hi, Я^+1) -
= 1 for г = 0, ..., П — 1 and Я„ = В. Thus Я ^ , . . . , Я„ is a path of length d{A, B) 
connecting A and B. It follows that the graph of d^ is connected and that о^{А, В) g 
ud,{AB). . 

Propositions 8, 11, and 13 together with equation 1 imply that d^y{A, B) ^ 
^ ( i / ^ , Б)/2 = q — s where 5 is the size of the maximum common subgraph of A 
and B. Moreover, the lower bound is achieved for A and В in Figure 1. An achieved 
upper bound 2(q — s) ^ d^^ was established in [1]. 

Proposition 14. The restrictions of the subgraph metric to Г{р), Г(р, q) and 
Гс{р, q) are graphable. 

Proof. The proof that d^ \ Г(р) is graphable is a special case, where V(A) = V(B), 
of the preceding proof that d^ is graphable. 

Turning to ds I r{p, q) and J, | Г dp, q), recall from the proof of proposition 11 
that both metrics have unit 2. The connectedness and graphabihty of these metrics 
will both follow from the construction of paths of length ds{A, B)\2 for any A, В 
in r{p, q) and Гс{А, В), respectively. 

Let A, BeГ{р, q), and let [ci, e[),..., (e„, e'„) be any one-to-one correspondence 
between the elements of E{A\C) and E(B\C). Define the sequence HQ,...,HJ^ 
by HQ = A and H^ == Я^.^ — ê  + e\, for г = 1, ..., n. Clearly, Я„ = В. Since, 
Hi e r{p, q) and ^(Я,., Я^+i) = 2 for / = 0, ..., w - 1, we have Id^A, B) ^ 4 (Л, В) 
where ^' is the path metric of d^ \ Г(р, q). Thus, d^ \ Г{р, q) is graphable. 

Let A, В and С and HQ, ..., Я „ be as defined in the preceding proof except that 
A,Be Гс(р, q)- We shall show that there exists a sequential pairing (e,., e[), ..., (e,„ ^ )̂ 
of the elements of E{A \ C) and E(B \ C) such that the Я -̂ e T^d?, q) fori = 0, ..., n. 

By definition, HQG rj^p,q). Assume H^eFj^p^q) for i й k. To show H^+^e 
^ Гс{р, Q), note that this is certainly the case if Я^ — ^H-I is connected. If Я^ — e^+i 
is not connected, then it must have exactly two components, Я and Я ' . Since В is 
Connected and H^ = В for any sequential pairing (ci, e[), ..., {e„, e'„) of the elements 
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of E(A \ C) and E{B \ C), there exists an edge e' e E[B \ C) such that и e V{H) and 
V E V{H'). Clearly, ej = e' imphes j > î, for otherwise H and Я ' could not be com­
ponents of Hi — e,+ i. Put e[^i = e. Then, H^^^ is connected. It follows that 
2d'{A, B) S ds{A, B) where ô' is the path metric of d^ \ Гс{р, q). в 

Proposition 15. The restrictions of the induced subgraph and edge-rotation 
metrics to Гс[р, q) are connected, but not graphable for all p and q. 

Proof. The connectedness property for both di \ Fjj), q) and d^j. | Г^р, q) follows 
directly from propositions 7, 12 and 13. 

To show di I Гс(8, 7) is not graphable, let A = K(l, 7) and В = С KJ С where С 
and С are Х{1, 4) graphs with one edge in common. It is easy to show that di \ Fj^S, 7) 
has unit 1 and that di{A, B) = 2. We shall show that there does not exist a path 
joining A and В of length 2, i.e. there does not exist a connected graph G such that 
d(A,G) = d{G,B) = 1 . 

Assume G exist. Then there exist vertices w of G and v of A such that G ~ и ~ 
~ A — V. Assume v has degree 7, then G ~ и ~ Kj. Since G is connected, it follows 
that G = A, i.e. d{G, A) = 0. Thus v must have degree 1, i.e. G ~- и = К[1, 6), 
Since С is connected with 7 edges, it must have exactly one vertex w* of degree 6 or 
more, and all other vertices must have degree 2 or less. Since G — м* has less than 2 
edges and В — w has more than 2 edges for any w, G — w* is not isomorphic to 
В — w for any w. If w Ф w*, then G — и has a vertex of degree four or more. Thus 
G — и is not isomorphic to Б — w for any w. It follows that d(B, G) > 1 — a con­
tradiction. 

To show d^j. I Г J 63, 62) is not graphable, let graphs A and В be the trees defined 
by Figure 3 where all terminal vertices are suppressed in the diagram and where 
a, b, c, d, e and / denote vertices of degrees 4, 8,11,11,15 and 18 in A and degrees 
5, 7, 11, 11, 14, and 19 in Б. 

b с f b e f 
A ß 

Fig. 3. Two trees where only non terminal vertices are depicted. 

Let t^ = {d, e, a) and 2̂ = (c, b,f). Clearly, ^2(^(^)) = B- Thus dJ^A, B) g 2. 
Since an edge rotation changes the degree of 2 vertices and since A has 4 vertices 
with degrees not found in B, dJ^A, B) ^ 2. Thus d{A, B) = 2. 

We will show that t^, ?2 and t2, t^ are the only edge rotation sequences of length 2 
which transform A into B. The proof will then follow from the fact that neither 
t^A nor t2A is connected. Consider any sequence u, v of 2 edge rotations leading 
to a graph isomorphic to B. Then vuA must have a vertex in A corresponding to 
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vertex b in B, If uA is formed by adding an edge to a terminal vertex of A or by 
deleting an odgQ from any non terminal vertex of A other than b or e of A, then 
d^j.{uA, B) ^ 2 since и A would contain at least 3 vertices with degrees not found 
in B. Thus, и must contain an edge-rotation which deletes an edge adjacent to Ь or e 
and adds it to a non terminal vertex such that uA has only 2 vertices with degrees 
not present in B. But t^ and 2̂ ^^^ the only edge rotations satisfying these constraints. 
Since the unit of Ĵ r | ^^{56, 55) is 1, the proof is complete, î 
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