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A UNIFIED APPROACH TO SOME THEOREMS ON HOMOGENEOUS 
RIEMANNIAN AND AFFINE SPACES*) 

ROSA ANNA MARINOSCI, Lecce 

(Received September 16, 1985) 

0. Introduction. In this note we present a unified version of some theorems on 
homogeneous Riemannian and affine spaces. W. Ambrose and I. M. Singer proved 
([!]) that a connected, complete, simply connected Riemannian manifold (M, g) 
is homogeneous (i.e., its full group of isometrics I(M) acts transitively on M) if and 
only if there exists a skew-symmetric tensor field S on (M, g) such that VxR = Sx{R) 
and VxS = Sx{S) for any vector field Z on M (V is the Levi-Civita connection of 
(M, g) and R its curvature tensor). K. Sekigawa gave a characterization of homo­
geneous almost-Hermitian manifolds in a similar way ([7]). The affine case was 
investigated by B. Kostant in 1960; he proved in [3] that a connected and simply 
connected manifold M with an affine connection V is a reductive homogeneous space 
with respect to a connected Lie group G of V-affine transformations of M if and only 
if there exists a complete connection V on M such that VR = 0, VT = 0, VS = 0 
where R and f are the curvature and torsion tensors of V respectively and S is the 
difference tensor V — V. 

Here we give a very short proof of each of these theorems using essentially some 
concepts and theorems of the theory of generahzed symmetric spaces ([5]). 

In order to give a self-contained presentation of the results we recall, in section 1 
below, some notions on Riemannian and affine manifolds and in particular on affine 
reductive homogeneous spaces. We shall follow essentially the book "Generahzed 
symmetric spaces" by O. Kowalski ([5], [6]). The reader may see also [2] for more 
details on Propositions A 1, A 2, A 3, A 4, A 6, A 7. 

1. Proposition A 1. Let M and M' be connected and simply connected, complete 
analytic Riemannian manifolds. Then every isometry between connected open 
subsets of M and M' can be uniquely extended to an isometry between M and M'. 

Proposition A 2. Let M be a differentiable manifold with an affine connection V 
such that VT = 0 and VR = 0. With respect to any atlas consisting of normal 
coordinate systems, M is an analytic manifold and the connection V is also 
analytic. 

*) This research was partially supported by funds of M.P.I.. 
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Proposition A 3. Let M and M' be differentiable manifolds with the affine 
connections V and V respectively. Assume: VT = 0, VR = 0 and V T ' = 0, 
V'jR' = 0. If F is a linear isomorphism of T^J,M) onto TyJ^M') mapping the 
tensors T^^ and R^^ at XQ into the tensors Ty^ and Ry^ at jo respectively, then 
there is an affine isomorphism f of a normal neighborhood U^Q onto a normal 
neighborhood Vy^ such that f{x^ — y^ and {f)^XQ ~ P-

Proposition A 4. In Proposition КЪ let M and M' be connected, simply connected 
and complete. Then there exists a unique affine isomorphism f of M onto M ' 
such that f^Xo) = Уо and the differential of f at XQ coincides with F. 

Proposition A 5. Let V and V be affine connections on a differentiable manifold M 
such that the tensor field S defined by SxY = V;f7— VxY satisfies '^S = 0. Then 
for all X and Y vector fields on M we have 

(1) f(X, Y) = T(Z, Y) - SxY + SyX 

(2) R{X, Y) = R{X, Y) - [Sx, Sy] - S^^x,Y) 

Proof. The first equation follows immediately from the definition of Г and T, 
The relation ^S = 0 implies: 

^XSY - Sy^Y - SyVx = 0 , 
or equivalently 

Hence we get: 

(3) [V;,, V^] = [V;, + Sx. ^Y + SY] = 
= [Vx, V^] + [V;,, SY] + [Sx, %] + [Sx, Sy] =-
= [Ух, У Y] + ^VxF - ^vrx + [Sx, Sy] = 
= [Vzv Vy] + S^x,xi + ^nx,Y) + [Sx, Sy] . 

Since 

( V и^.Л ~ Ч^,г] + Six,Y2 
we obtain (2) subtracting (4) from (3). 

Now let G be a connected Lie group and let Я be one of its closed subgroups; 
let g and h be the Lie algebras of G and H respectively; we say that the homogeneous 
space GJH is reductive if there exists a subspace m of g such that g = h © m and 
ad(F) m Ç m. Let X^ be a tangent vector of the tangent space r^((j) at aeO; 
let p be a point of GjH; we define the tangent vector Xp as follows: 

Z * = (d/dO, = o ^exp..x(p) , 

where т is the natural action of G on GJH and exp^ = L^ ocxp o(Lfl-i)^; more 
geometrically X* is the tangent vector at p to the orbit t -^ Тр(ехрв tXa). If GjH is 
a reductive homogeneous space then the following is true: 

Proposition A 6. There exists a unique G-invariant affine connection V on GjH 
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such that: (Vx*Y)p^ = [Z*, Y~\p^ for each X e m and for each vector field Y 
on GJH (where PQ = n{e) and n is the canonical projection of G on GJH). 

The above connection is called the canonical connection of the reductive homo­
geneous space GJH. 

Some geometrical properties of the canonical connection are the following: 
a) For each X em the parallel displacement of the tangent vector at PQ along 

the curve t -> Трд(ехр tX) (0 ^ Г ^ s) coincides with the differential (т̂ хр sx)*po' 
b) For each X em the curve t -> Тр^(ехр tX) is a geodesic with respect to V; 

conversely each geodesic of V starting from PQ is of the form: t -^ т ,̂̂ (ехр tX^ for 
some Z of m. 

c) The connection V is complete. 

Proposition A 7. ([2]). Any G-invariant tensor field S on GJH is parallel with 
respect to the canonical connection V. 

As a consequence of this proposition we have that, in particular, the curvature 
tensor R and the torsion tensor Tof V are parallel tensor field. 

Now let (M, V) be a connected manifold with an affine connection. An affine 
transformation f: M -^ M is called a transvection of (M, V) if for each point pe M 
there is a piece-wise differentiable curve starting at p and ending at f(p) such that 
the tangent map (Д)^ coincides with the parallel displacement along this curve. 
It is obvious that the set Tr(M) of all transvections of (M, V) is a normal subgroup 
of the group A(M) of all affine transformations of M. The following proposition 
gives an intrinsic characterization of all manifolds with affine connection V which 
come from reductive homogeneous spaces. 

Proposition A 8. Let M be a connected manifold with an affine connection V; 
the following conditions are equivalent: 
(i) The transvection group Tr(M) acts transitively on each holonomy bundle P{u), 

where и e L{M) is a tangent frame. 
(ii) M can be expressed as the reductive homogeneous space GJH with respect to 

a decomposition g = h 0 m, where G is effective on M and V is the canonical 
connection of GJH. 

Moreover if (ii) is satisfied, then Tr(M) is a connected Lie group, namely, it is 
a normal subgroup of G and its Lie algebra is isomorphic to the ideal 1 = m + 
+ [m, m] of g (see [5] p. 37). 

The following definition (see [5], p. 41) is a consequence of the previous theorem: 

Definition 1.1. A connected manifold (M, V) with an affine connection is called 
an affine reductive space if the group Tr(M) acts transitively on each holonomy 
bundle P(w) c= L{M\ 

Proposition A 9. On an affine reductive space (M, V) a tensor field is parallel if 
it is invariant with respect to the transvection group Tr(M). 
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Proof. It is a consequence of Proposition A 7, Proposition A 8 and Definition 1.1. 

Proposition A 10. Let (M, V) be a connected and simply connected manifold 
with a complete affine connection such that VR = 0, Vf= 0. Then (M, V) is an 
affine reductive space (see [5], p. 44). 

2. We present now a unified version of theorems by Ambrose and Singer ([1]), 
by Sekigawa ([7]), and by Kostant ([3]) which follows naturally from the results 
given in section 1. We shall start with the following basic lemma. 

Basic lemma 2.1. 

A) Let (M, g^ be a homogeneous Riemannian manifold; then there exists a metric 
connection V such that: 
a^) VR = 0 and ^2) VS = 0, where 5 = V — V, V is the Levi-Civita connection 

of{M, g) and R is the curvature tensor ofV. 
B) Let (M, g) be a connected, simply connected and complete Riemannian manifold 

and suppose that there exists a metric connection V satisfying a-̂ ) and ^2); then 
{M, g) is homogeneous and (M, V) is an affine reductive space. 

P r o o f of p a r t A). Let M = GjH be a Riemannian homogeneous manifold; 
as well-known M is also reductive. Let V be its canonical connection, V is a G-
invariant connection; but also the Levi-Civita connection V is G-invariant, hence 
the difference tensor 5' = V — V is G-invariant. Now we apply V to the G-invariant 
tensors g, R, S and by Proposition A 7 we obtain Vg = 0, ^R = 0, VS = 0, so ^ is 
metric and satisfies — a^) and 3,2). 

P r o o f of p a r t B)^). We must prove that for any two points x, y e M there exists 
an isometry f of M such that f(x) = y. Because the torsion tensor T of the Levi-
Civita connection V is zero, the torsion tensor ? of V has, by formula (1) of Proposi­
tion A 5, the following expression: 

f ( Z , Y) = SyX - Sj,Y, 

so that by condition a2), we get Vf = 0. 
Now VR = 0 and V f = 0 imply (by Proposition A 2) that (M, V) is analytic; 

since V is metric, also (M, g) is analytic. 
For any X, y 6 M we consider the V-parallel displacement Щ'^ along any piece-wise 

differentiable curve у joining x to y. Because ^ ^ = 0, "^^ = 0 and Vg = 0, /i^'^maps 
the tensors R^, 7^, gx onto ^3,, Ту, gy respectively and hence, by Proposition A 3, 
there exists a local affine diffeomorphism/such that {f^)x == h^'^. Because (Д) (g^) = 
= gy and Vö̂  = 0 / is also a local isometry. Because (M, g) is connected, simply 
connected, complete and analytic, then by Proposition A l , / may be extended to 
a global isometry of (M, g). The fact that (M, V) is an affine reductive space follows 

^) This proof was suggested to us by a very short proof of the Ambrose-Singer's theorem 
in [6]. 
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from Proposition A 10 because the connection V is metric and hence also complete 
(see [5] p. 25-26) . 

Theorem 2.2 (By W. Ambrose and I. M. Singer) 
A') Let (M, g) be a homogeneous Riemannian manifold then there exists a skew-

symmetric tensor field S of type (1, 2) on M such that for any vector field X 
on M: a'l) VxR = ^х{Щ < "̂̂  ^2) ^x^ = ^x{^) y^here V and R denote the Levi-
Civita connection and the curvature tensor field of {M, g) respectively. 

B') Let (M, ^) be a connected, simply connected, complete Riemannian manifold 
of class ^°° and suppose that there is a skew-symmetric tensor field S of type 
(1, 2) satisfying the above conditions а[) and ^2). Then (M, g) is homogeneous. 

Proof. It is sufficient to prove the equivalence of the following conditions: 
(i) On a Riemannian manifold (М, g) there exists a metric connection V satisfying 

a^) and 3,2) of the Basic lemma 2.1. 
(ii) On a Riemannian manifold (M, g) there exists a skew-symmetic tensor field S 

of type (1, 2) satisfying the above conditions a^) аз). 

Proof of (i) => (ii): put S = W — V, where V is the Levi-Civita connection and R 
its curvature tensor. Because V and V are metric, we have S{g) = 0 i.e. S is skew-
symmetric. The conditions a^), 3,2) and formula (1) and (2) of Proposition A 5 give 
VxR = 0 (for any vector field X on M), hence YxR = ^xR + Sx{R) = Sx{R); 
a2) follows immediately from V + S = V and аз). 

Proof of (ii) =^ (i): Put V - V - S. Then Vi^ = 0, V5' = 0 and Vg = 0 according 
to ai) aQ. Now we use (1) and (2) of Proposition A 5 to get VR = 0. 

Lemma 2.3. 

A) Let (M, g, J) be a homogeneous almost Hermitian manifold; then there exists 
a metric connection V such that: 
a^) VR = 0; аз) VS = 0; аз) VJ = 0, where S = V - V, V is the Levi-Civita 

connection and R is the curvature ofV. 
B ) Let ( M , g, J) be a connected, simply connected and complete almost Hermitian 

manifold and suppose that there is a metric connection V satisfying a^) аз) аз); 
then (M, g, J) is a homogeneous almost Hermitian manifold. 

P r o o f of p a r t A). It is a consequence of part A of the Basic lemma 2.1 and 
Proposition A 7. 

Proof of p a r t B). Because a^) and etj) are satisfied we obtain from part В of the 
Basic lemma 2.1 that (M, g) is homogeneous and (M, V) is an affine reductive space. 
Because YJ = Vg = 0, the almost complex structure J and the metric g are in­
variant with respect to the transvection group G = Тг(М) of (M, V) (see Proposition 
A 9). Then G is a transvection group of holomorphic isometrics of (M, g, J) and 
this completes the proof. 

From Lemma 2.3 we obtain immediately the following theorem: 

155 



Theorem 2.4 (By К. Sekigawa). 
А') Let (M, g, J) be a homogeneous almost Hermitian manifold. Then there 

exists a skew-symmetric tensor field S of type (1,2) on M satisfying a^) 3.2) of 
Theorem 2.2 and, furthermore, а'з) Vj^J = Sx{J)' 

B') Let (M, g, J) be a connected, simply connected and complete almost Hermitian 
manifold and suppose that there exists a skew-symmetric tensor field S of 
type (1, 2) on M satisfying the above conditions а[) a2) and а з̂). Then (M, g, J) 
is a homogeneous almost Hermitian manifold. 

Theorem 2.5 (By B. Kostant). 
A) Let M = GjH be a reductive homogeneous space with a G-invariant connection 

V. Then there exists a complete G-invariant connection V such that a^) VT = 0, 
VR = 0 and аз) VS — 0 where S = V — V and f, R are the torsion and cur­
vature tensor ofV respectively. 

B) Let (M, V) be a connected, simply connected affine manifold with an affine 
connection and suppose that there is a complete connection V satisfying the 
above conditions a^) and аз). Then M is a reductive homogeneous space GjH 
and V, V are G-invariant connections. 

P r o o f of p a r t A). If M — GjH is a reductive homogeneous space, then its 
canonical connection V is complete and satisfies a^). Since V and V are G-invariant, 
the tensor 5 = V — V is also G-invariant, so by Proposition A 7 we obtain аз). 

P r o o f o f p a r t B ) . We apply Proposition A 10 and obtain that (M, V) is an affine 
reductive homogeneous space. Let G be the transvection group of (M, V); then v̂ e 
get a reductive homogeneous space (M = GJH, V) where V is the canonical con­
nection. 

The above condition аз) and Proposition A 9 imply that S is G-invariant. It 
follows that V = V + S is also G-invariant and this completes the proof. 
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