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Let A(f) be a (real or complex) n x n matrix for ¢ € R, let A depend continuously
on ¢t and fulfil

(0.1) A(t) + A*(t) = 0‘ for teR

(i.e. A(?) is antisymmetric in the real case and iA(f) is Hermitian in the complex case,
te R). Let X4 be the matrix solution of

(0.2) %= A(t) x,

X 4(0) = I. Then X 4(t) is an orthonormal matrix in the real case and X ,() is a unitary
matrix in the complex case, t € R. Assume in addition that A4 is uniformly quasi-
periodic with at most r + 1 frequencies (see Chapter I, § 2). Then X , need not be
almost periodic (even in the case that n = 1, i.e. A(f) = io(r), o(t) € R).

Problem. Given A and n > 0, does there exists such a matrix-valued function C
that
(i) both C and X are uniformly quasiperiodic with at most r + 1 frequencies,
(i) [|A4() = Cc(@)]| £ n for teR?

An affirmative answer is given (see Theorem I.2.1) for such couples (n, r) that the
manifold SO(n) in the real case (SU(n) in the complex case) has the estimation pro-
perty of homotopies of order 1,2,...,7 (SO(n) is the manifold of orthonormal
n x n matrices with determinant equal to 1, SU(n) is the manifold of unitary n x n
matrices with determinant equal to 1).

A Riemannian manifold M is said to have the estimation property of homotopies
of order j — shortly M e EP(j), see Definition 1.2.1 — if such a ¢ = ¢(M,j) > 0
exists that the following holds:

Assume that me M, go, g:<0, 1) = M, go(x) = m for xe<(0,1), g(x) =m
for x €8(<0, 1)%), g is of class C) and is homotopic with g,. Then there exists
such a homotopy h: <0, 1) x <0, 1)/ - M that h(1, x) = g(x), h(0, x) = go(x) for

x €M and
6h” < {ah o%h )
—f = ¢, maxmax<{|-|, < cm 1 9 .
PY: iy ox, \aﬁ ox, } =¢ ax{ g 6x,~}
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However, in general it is not known for which couples (n, j) the relations SO(n) e
€ EP(j), SU(n) € EP(j) hold. It is proved in the Appendix in an elementary way
that SO(n) € EP(j), SU(n) € EP(j)forn = 1,2,3,...,j = 1, 2. The proof is based on
the very simple structure of the homotopy groups n,(SO(n)), 7,(SU(n)), n(SO(n)),
n,(SU(n)), n = 1,2,3,.... So far the conclusion can be drawn that the answer
to the problem is affirmative forn = 1,2,3,...,r =1, 2.

Theorem 1.2.1 is proved in Chapter I, § 5. However, its proof depends on Theorem
I.4.1, the proof of which is very lengthy and in fact extends through Chapters II
and III. A list of symbols can be found after Appendix.

CHAPTER I

1. Let R denote real numbers, C complex numbers, Z integers and N natural
numbers (excluding 0). The letters n, r, j are used for natural numbers only. K stands
for R or C and Matr (n) denotes the set of all n x n matrices with entries from K.
(Mostly we consider both the real and the complex case simultaneously.)

For A from Matr (n), A* is the adjoint matrix. I denotes the matrix with 1’s on
the main diagonal and 0’s everywhere else. 0 is the matrix with all entries equal to 0.
U(n) or O(n) denotes the set of all unitary or orthonormal n x n matrices, respectively
(i.e. matrices 4 from Matr (n) with complex or real entries satisfying 44* = I) and
SU(n) and SO(n) are respectively the sets of those matrices from U(n) and O(n)
with determinants equal to 1. When considering both the real and complex cases
we use Y(n) for U(n) or O(n) and SY(n) for SU(n) or SO(n).

To simplify the notation we define for A € Matr (n) and a vector x = (x4, ..., X,)
from K" that Ax is the product of A with the n x 1 matrix

X1

x’l

For x,ye K" (x,y) is the usual inner product and [x| = (x, x)/2. For
A eMatr (n), |4 = sup {|A4x|; xe K" and |x]| = 1} and for a function f with
values in K™ or Matr (n) let || f|| denote sup { | f(x)|: x € dom (f)}.

We introduce the following notation: if J = R is an interval containing 0 and
C: J - Matr (n) a continuous function, then the function X¢: J — Matr (n) is the
matrix solution of the system x = C(f) x satisfying X(0) = I.

If Aisasetand C: J x A — Matr (n)is a function continuous in the first variable,
then X: J x A — Matr (n) is the function such that for each z € 4, X(t, z) as the
function of ¢ is the matrix solution of X = C(t, z) x satifying X¢(0, z) = 1.

We shall investigate the system of ordinary differential equations

(1.1) %= A(t)x,
where 4: R — Matr (n) is a uniformly almost periodic function satisfying
(1.2) At) + A*(t) =0 for teR.
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First, let us clarify the meaning of the condition (1.2) for the solutions of the system
(1.1).

Lemma 1.1. The condition (1.2) and each of the following properties are equi-
valent:
(1.3) Let x: R —> Matr (n) be a solution of the system (1.1). Then ||x(t)|| does not

depend on t.

(1.9) X,()eY(n) for teR.

Proof. Assuming (1.2) we have

d/de (X75(0) X 4(1)) = X5(0) (A(r) + A*(1)) X,(r) = 0.

Since moreover X ,(0) = I we see that for each ¢, X(t) X ,(t) = I. Therefore (1.2)
implies (1.4).

Let us assume (1.4) and let x(f) be a solution of (1.1). There is a ¢ in K" such that
x(t) = X 4(1) ¢ for each t. For this ¢ we have

(O = (X4(t) ¢, Xu(t) ¢) = (XU X () c, ) = ||c|?,
so (1.4) implies (1.3).
Finally, let us assume (1.3). Let s € R. For any c € K" there exists a solution x(f)
of the system (1.1) such that x(s) = c.
By (1.3), ||x(#)]|* does not depend on ¢ and so
0 = dfdt (||x(1)])* = ((A(t) + A*()) x(1), x(z)) for teR.
In particular, ((4(s) + A*(s)) ¢, ¢) = 0. Substituting for c the vectors e, ¢, + e,
e, + ie; with k,je{l,...,n}, k + j, where ey, ..., e, is the usual basis of K", we
get that A(s) + A*(s) = 0; therefore (1.3) implies (1.2).
The facts that a function A satisfies (1.2) and is uniformly almost periodic, are
not sufficient for the solution X ,(f) to be uniformly almost periodic. Let us introduce
the following notation: AP(n) is the set of all uniformly almost periodic functions
A: R — Matr (n) satisfying (1.2) and
AP,,(n) is the set of all functions A4 from AP(n) such that X , is a uniformly almost
periodic function.
We shall investigate the problem whether AP,,(n) is dense in AP(n) in the uniform
topology.

We shall use the following results from the theory of real uniformly almost periodic
functions:

Lemma 1.2. Let a: R —» R be a uniformly almost periodic function and ¢ > 0.
Then there is a trigonometric polynomial T: R — R that |a — T|| < e.

Lemma 1.3. Let T: R — R be a trigonometric polynomial. Then the functions T,
iT, exp ([§ T(s) ds) and exp (ifg T(s) ds) are uniformly almost periodic.
Let us consider the smallest values of n. In the real case AP(1) is trivial, since it

426



contains only the function which is identically 0. In the complex case AP(1) is the
set of all uniformly almost periodic functions A: R — C with purely imaginary
values. By Lemma 1.2, to any such function 4 and any & > 0 it is possible to find
a real trigonometric polynomial T such that |4 — iT|| < e. Since

X,(t1) =exp(if6 T(s)ds) for teR,
by Lemma 1.3 the function iT belongs to AP, (1). Therefore AP, (1) is dense in
AP(1).
AP(2) is in the real case equal to the set of functions A such that

0=(00")

where a: R — R is a uniformly almost periodic function. For any such function A
and any ¢ > 0 it is possible to find a function

P0=(_700"):

where T is a real trigonometric polynomial, such that |4 — P| < &. As matrices

0 x
-x 0
(x € R) commute, we have

_ 0 exp (f6 T(s) ds)
Xp(t) = (exp(—j{, T(s) ds) 0 for teR.
By Lemma 1.3, X, is an element of AP,(2); so in the real case AP, (2) is dense
in AP(2).

Because of these facts we shall further assume that n > 1 in the complex case
and n > 2 in the real case.

2. We shall mostly work with quasiperiodic functions.

Let B(so, 5y, ..., S) be a function, ke N, dom (B) < R**! and p # 0 a real
number. We say that B is periodic with period p in each variable, B € PP(p), if the
following holds: if (s, 5y, ..., s;) € dom (B), them also (so,...,8; * p,...,s)€
edom B and B(s, ..., Sj .., S) = B(sg, ..., 8; & p, ..., ) for je{0,1,..., k}.

A function A: R — Matr (n) is called quasiperiodic with at most r + 1 frequencies
if there exist real numbers 4; > 0, ..., 4, > 0 and a continuous function B: R"*! —
— Matr (n) from PP(1) such that A(f) = B(At, ..., A,t) for t € R. Here obviously we
could replace the condition B € PP(1) by the fo]lowmg one: there exists real p + 0
such that B e PP(p).

Any quasiperiodic function with at most » + 1 frequencnes is uniformly almost
periodic. Examples of quasiperiodic functions with at most r + 1 frequencies are

trigonometric polynomials: Z(ak sin (4,f) + b, cos (4,f)) in the real case and

Z ¢i €xp (iA,?) in the complex case.
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The following, more precise form of Lemma 1.2 for quasiperiodic functions will
be useful.

Lemma 2.1. Let B: R"*' — R be a continuous function from PP(1) qnd A, ..., 4,
non-negative real numbers. Let A: R — R be the quasiperiodic function with at
most r + 1 frequencies defined by A(t) = B(4ot, ..., A4,t) and let ¢ > 0. Then there
is a trigonometric polynomial T: R — R of the formT(t) = Y {b, exp 2mit(koAo +

k) k= (kos..s k), |[ko| S m, ..., || < m} (m is a natural number) such
that |A — T| < .

By QP(n, r) we shall denote the set of all quasiperiodic function 4: R — Matr (n)
with at most r + 1 frequencies which satisfy (1.2) and by QP,,(n, r) the set of all 4
from QP(n, r), such that X , is a quasiperiodic function with at most r + 1 frequencies

For each r e N the inclusions QP(n, r) & AP(n) and QP (n, r) € AP,,(n) hold.
By Lemma 1.2 we see that the set U{ QP(n, r); r € N} is dense in AP(n). The problem
whether AP,,(n) is dense in AP(n) would be therefore solved if we could show that
QP,(n, r) is dense in QP(n, r) for each r € N. To this end we introduce the following
concept.

Definition 2.1. Let M be a connected Riemannian manifold and j e N. We say
that M has the homotopy estimation property of the order j, M eEP(j), if there
is a constant ¢ = ¢(M, j) > 0 such that the following holds:

Let me M, g,:<0,1) —» M a function identically equal to m, L= 1 and g:
{0, 1)) — M a function of the class C® such that

g(x) = m for all x e 8(<0, 1))),

g is homotopic with g, and
g

sL for i=1,...,j.

0x;

Then there is a homotopy h(B, x) of functions g and g, of the class C*® satisfying
0*h

fori=1,..
c,
s o

(By a homotopy of functions g; and g,: <0, 1)/ - M (in this order), where g,(x) =
= g,(x) = m for each xe€d(<0, 1)), we understand a continuous function
h: <0, 1> x <0, 1 — M satisfying

h(1, x) = g4(x) and h(0, x) = g,(x) for xe<(0,1)/,
h(B,x) =m for xed(<0,1)’) and Be0,1).

6h

Xi

< cL and l

The main result of this paper is the following theorem:

Theorem 2.1. Let r, ne N. If SY(n) has the homotopy estimation properties of
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orders 1 up to r, then QP (n, r) is dense in QP(n, r). In the Appendix we show, that
for all n in question (n > 1 in the complex case and n > 2 in the real case) SY(n)
have the estimation properties of orders 1 and 2.

3. In this paragraph we shall state several useful lemmas.

Lemma 3.1. QP (n, 1) is dense in QP(n, r) iff the following condition holds:
Let D: R"*! — Matr (n) be a function of the class C'® belonging to PP(1) and
satisfying
(3.1 D(s) + D*(s) =0 for seR*1,
®y, ..., W, non-negative numbers such- that 1, w,,...,w, are independent over
rational numbers and C: R — Matr (n) the function

(3.2) C(t) = D(t, w4t, ..., w,t) for teR.
Then C belongs to the closure of QP,,(n, r).

Proof. Assume the above condition holds. Let B: R"*! - R be a continuous
function from PP(1) and A, ..., 4, non-negative real numbers. We must show that
the function 4: R — Matr (n), A(t) = B(4ot, ..., A,f) for t e R, belongs to the closure
of QP (n,r).

To B we can find an arbitrarily close function which is from PP(1) and of the
class C®, Hence we can assume that B is of the class C®, Further, without loss of
generality we can assume that B(s) + B*(s) = 0 for each se R"*?, Ay # 0, and
Ags ..., 4 are independent over rational numbers for some ke{0,...,r}, while
Ax+1s ---» 4, are their rational combinations,

k
li=zajlj for ie{k"'l,-..,r}.
j=o0
For s, ..., S € R let us define
k k
Dl(SO’ ceey sk) = B(SOy ceey sk’jzoa'j‘+lsj, ceey z a;-sj) .
= j=0

Since B belongs to PP(1) and all a} are rational, there is g € N such that D, belongs
to PP(g). Let
D(sos - - 8;) = Dy(qSos ---» q5%) for so,...,s,€R,

®y = A4fAgs ..., @y = XAy and let @y, -.., @, be non-negative real numbers such
that 1, @,, ..., @, are independent over rational numbers. Then D is of the class C*?),
belongs to PP(1) and satisfies (3.1). Because of our assumption the function C defined
by (3.2) belongs to the closure of QPy(n, r). We have .

c(ﬁ t) - D("_ot, Mgty a,,‘ﬂt,...,a,,z) =
q q q q

= Dy(Aot, ..., X42) = B(Aot, ..., A1) = A(t) for teR.
It is easily verified that for each real f and each function F from the closure of
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QP (n, r) also the function F(ft) belongs there. Therefore A4 is an element of the
closure of QP,,(n, r).

We shall use the following notation. Let a = (ay,...,q,), b = (b, ..., b,) be
elements of R". Then a = b(mod 1) denotes that a; = b; (mod 1) for each i =
=1,..,r;a.b=7Y ab;ua = (uay,...,ua)forueR,anda + b = (a, + by, ...

i=1
...»a, + b,). Moreover, @ denotes (y, ..., ®,), p denotes (p;, ..., p,) and I denotes
(Iys -5 1)

Lemma 3.2. Let @y, ..., w, be real numbers such that 1, w,, ..., , are inde-
pendent over rational numbers. Then the set

{xeR": x = kw(mod 1); ke Z} is dense in R".
Proof can be found in [CA], ch. III, § 5.

Lemma 3.3. Let w,, ..., w, be irrational numbers and Q > 0. Then there are
integers py, ..., D», 4 such that q > Q and

(3.3) - B

Proof can again be found in [CA], ch. I, § 5.

@y Sq OO for k=1,...,r.

Lemma 34. Let w,, ..., w, be real numbers such that 1, @, ..., ®, are inde-
pendent over rational numbers, Q > 0 and ¢ > 0. Then there are integers py, ...
weos Pp @5 lys ..y I, and a real v x r-matrix S such that ¢ > Q, (3.3) holds, and if o,
is the vector equal to the k'® column of the matrix S, the following holds:

(3.4) o, = L (plg)(mod 1) for k=1,..,r,
(3.5) efd< o] £e for k=1,...,r,
(3.6) IS — (e[2)I]| < ¢[4.

Proof. By Lemma 3.2 we see that there is an integer k, such that the set {x eR":
x = kw (mod 1); ke Z and |k| £ ko} is an ¢/8r — net for <0, 1)". By Lemma 3.3
we can find integers p, ..., p,, g such that g = Q,

. (Srko \/r>”(’“’ ‘e, Jr P

s s — H
e q(l +1/r) 8k°r
and such that (3.3) holds. For each k € Z, |k| < k, we have
< Nk _ ¢

q(1+1/r) = 8r :

kco—kg
q

Therefore the set {x € R": x = k(p/q) (mod 1); k€ Z and |k| < ko} is an &/4r — net
for (0, 1)". Consequently, it is possible to find vectors 6, € R and integers I,

(3.7)

o —Ce
| il
2

_S_—f— for k=1,..,r
4r
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(eys - .., €, is the usual coordinate system in R"). We can estimate

IA

< ol = +

e
2 4 2
for k = 1, ..., r; therefore (3.5) holds.

Let xe R, x| = 1 and x = (xy, ..., x,). Since Se, = g, for every k, (3.7) yields

T g
X O, — — €
z( 2k)

Lemma 3.5. 4 real matrix S satisfying (3.4) and (3.6) is regular and its entries
are rational numbers from (0, 1) reducible to the common denominator q. Since
Det S can be written in the form h|q" with he Z, |h| < r!(q — 1), the entries of
the matrix S™1 are also rational numbers reducible to the common denominator h.
Moreover,

(3.8) IS~ < 4fe.

We leave the proof to the reader.

o —Ze
T Sk
2

P
Ok = 7 &
2

se
~ &
2

<

&
7

Sx—fx
2

Therefore also (3.6) holds.

Lemma 3.6. Suppose a real matrix S and integers py, ..., by, 4, 1y, ..., I, satisfy
(3-4) (o, is again the k™ column of the matrix S). Let E: R"*' — Matr (n) be
a function from PP(1). Then the function F: R"*' —» Matr (n), F(t, a) =
= E(t,(p[q) t + S«) for te R and « € R" satisfies

F(t + g, @) = F(t, ) for teR and «acR",
F(t,a + ) =F(t+1.B,0) for teR, aecR and PeZ .

Proof. The first equality is obvious. Let § = (B, ..., B,) € Z". By (3.4), Sp =
=kzlﬂk0'k Ek; Bui(p/q) (mod 1), so that F(t,« + B) = E(t,(p[q) t + S + SB) =
= E(t + Y B, (plg) (¢t + ¥ 1.B:) + Sa) = F(t + 1. B, &), which proves the second

k=1
equality.

4. Let functions D(so, ..., 5,), C(f) and numbers ,, ..., w, be the same as in
Lemma 3.1 and 0 < < 1. We want to show that there is a function 4 € QP,,(n, r)
such that [|C — 4| < n.

It will be useful to consider separately the trace Tr (C(z)) of the function C, and

the function C; whose trace identically vanishes and which is defined by the following
relations: '

(4.1) Dy(s) = D(s) — (1/n) Te(D(s)) I ,
(4.2) Ci(t) = Dy(t, t) for teR.

Since D satisfies (3.1), the function Tr (D(s)) in the real case identically vanishes,
i.e. D equals D, and C equals C,. In the complex case, Tr (D(s)) is a function with
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purely imaginary values. We have Tr (C(t)) = Tr (D(t, wt)). By Lemma 2.1 there
exists a trigonometric polynomial T: R — R such that
“3) I~ Te(©) = 7] 5 1
and
(44) T(t) = Y{b.exp (2nit(ko + kyoy + ... + k@,)); k= (ko, ..., k)
and |ko| S m,...,|k| < m} for teR.
We shall shortly write that we take the sum over |k| < m.

In both the real and complex cases the function D,: R"*' — Matr (n) is of the
class C®, belongs to PP(1) and

4.5) C(t) = C4(t) + (1/n) Tr (C())I for teR,

(4.6) Xc(t) = exp (1/n [§ Tr C(0) do) X (f) for teR,

(4.7) Dy(s) + Di(s) =0 for seR*1,
(4.8) Tr Dy(s) = 0 for seR*t,
(4.9) |oDyfos,| = 2M for k=1,...,r.

Later we shall apply to D, the coordinate transformation mentioned in Lemma 3.6.
Thus we shall work with functions which have the properties introduced in the fol-
lowing definition.

Definition 4.1. Let I, ..., ,, g be integers. We shall denote by P(n, r, I, q) the set
of all functions f with values in Matr (n) such that Dom (f) = R x G, where G
satisfies the condition

if geG and BeZ" thenalso g + feG,

(4.10) f(t, %) + f*(1,x) =0 for (t,x)eDom(f).
(4.11) Tr (f(t,x)) = 0 for (t,x)eDom/(f),
(4.12) f(t + g, x) = f(t, x) for (t,x)eDom/(f),

(4.13) fit,x+ B =f(t+1.B,x) for (t,x)eDom(f), BeZ .

We shall state several lemmas making the meaning of the conditions (4.10)—(4.13)
more transparent.

Lemma 4.1. Let J < R be an interval containing 0 and p: J — Matr (n) a con-
tinuous function. Then p(t) + p*(tf) = 0 and Tr (p(t)) = O for each te J iff X, () e
€ SY(n) for each te J.

Proof. As in Lemma 1.1 we can show that p(f) + p*(f) = 0 for each te R iff
X () € Y(n) for each t € J. The rest of our assertion follows from the fact that for
teJ

Det (X (1)) = Det (X,(0)) exp (f5 Tr (p(z)) dz) = exp [§ Tr (p(z)) dz,
and from the continuity of the function Tr (p).
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Lemma 4.2. Let Iy, ..., 1, q be integers and f a continuous function from
P(n, 1,1, q). Then f belongs to PP(q), the values of X, are from SY(n) and

(4.14) Xt + q,x) X[(q, x) = Xt,x) for (t,x)eDom(f),

(415) X (t+1.B,x)X7(I.B, %) =X,(t,x + B) for (t,x)eDom(f),
BeZ .

Lemma 4.3. Let |, ..., 1,, q be integers, f a continuous function from P(n, r, 1, q)
and E < R", R x E < Dom (f).

Let E be such that for each g€ E and BeZ also g + PeE. If X,(q,x) =1
for all x € E then the function XjIRxE belongs to PP(q).

Proofs of these lemmas are easy and we omit them.

Now we shall need a theorem whose proof is rather lengthy. Therefore we shall
only present the result here and postpone its proof to Chapters II and III.

Theorem 4.1. If SY(n) € EP(1) N ... n EP(r) then there are numbers W(n, r) > 1
and V(n,r) > 1 depending only on n and r such that the following holds:

Let 1,,...,1,,q be integers, &(t, xy, ..., x,): R"** — Matr (n) a function of the
class C® belonging to P(n,r, 1, q), and L > 0 a real number such that

%l <t
0x;
for k =1,...,r. Then there is a function g(t, X,, ..., x,): R"** — Matr (n) of the
class C® belonging to P(n, r, 1, q) and satisfying

_ || 20
lo- ¢l = winn, |2

1
> V(n,r)~ and
q ()L

< W(n,r)L for k=1,...,r and

X, (¢, x) =1 forall xeR .

5. Let us return to the functions D, and C, defined by (4.1) and (4.2). Let us pick

Q > 0 and ¢ > 0 so that
(51) _n >¢ Q> V_(n,_r_) and Q><MM)'
' 6Wn,r)Mr 2Mer n

For these Q and ¢ and for our @y, ..., w, there are, by Lemma 3.4, integers p;, ...
vees Dr» @5 115 ..o, I, and a real matrix S € Matr (r) such that ¢ > Q and (3.3)—(3.6)
hold. Let the function D,(t, x,, ..., x,): R"** — Matr (n) be defined as follows:

(5.2) Dy(t,x) = D, (t, L Sx) for teR and xeR".
q .

Then D, is of the class C®; by (4.7), (4.8) and Lemma 3.6, D, belongs to P(n, r, 1, q)
and by (4.9), (3.5) and the equality Sx = )" x,0) We have

k=1
(5.3) 9D,

§T2M8 for k=1’-”:r-
0x;
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Notice that

(54  Cy(t) = Dy(t, i) = D, (t, s ((w - E) t)) for teR.

q

Further, by (5.1) and ¢ 2 Q we have g = V(n, r)[2Mer.
By Theorem 4.1 there is a function B(t, x): R"** — Matr (n) of the class C®
belonging to P(n, r, 1, g) and such that

(5.5) |D2 — B| < 2Mer W(n,r),

(5.6) Iili < 2Mer W(n,r) for k=1,...,r,
0x;,

(5.7) Xp(g,x) =1 for xeR".

By Lemmas 4.2 and 4.3 the functions B and X belong to PP(q). Therefore also
the functions 0X/0x, for k = 1, ..., k belong to PP(q). The periodicty of these
functions in ¢ and (5.6) imply

(5.8) 19?‘_’;

Xk
Let us define the function A;: R — Matr (n) by which we want to approximate
the function C,, as follows:

(5.9) X4,(f) = Xz (t, st ((a) - s) t)) for teRm,
(5.10) A,() = [% XAl(t)] X% (1) for teR.

Denoting y = (¥4, ..., ;) = S™ @ — p/q) we can rewrite (5.10) as

< 2Mer W(n,r)q for k=1,...,r.

(5.11)  A,(t) = B(t, yt) + _iy,‘ [ai X4(t, yt)] X3(t,yt) for teR.

Xk

Let us define in the real case 4 = A, and in the complex case 4 = A, + iTI,
where T'is a real trigonometric polynomil with the properties (4.3) and (4.4). In the
real case we have X, = X, and in the complex case

X 4(t) = exp (i [ T(r) d7) X .,(t) =

—exp( T b, exp (2nit(ko + w.ky + ... + 0k,)) — 1 Xs(t, y1).
K| Em 2n(ky + wiky + ... + w,k,)

We want to show that 4 belongs to QP (n, r)and |4 — C|| < 1.

Since B belongs to P(n,r, |, g), by Lemma 4.2 the values of the function Xj
are from SY(n). By (5.9) also the values of the function X 4, are from SY(n); therefore
by Lemma 4.1 A,(f) + A%(f) = 0 for each te R. Considering moreover that the
values of T are real we see that 4 satisfies (1.2) in both the real and complex cases.
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Define functions F,, F,, F3, F,: R"™*! — Matr (n) as follows:

rn=afis(--2)-
Eplin e (Dl ()

Fy(t,x) = ( Y, ib, exp (2mi(kot + kyxy + ... + kx))I,
k| =m

Fyt, %) = Xy (z, st (x - f t))

Fy(t,x) =exp( ¥ b 2P (2miCkot + kyxy + ... + kxy)) = 1)1
K| Em 2n(ky + kyoy + ... + k,)

for te R and x = (x,,...,x,) € R".

The functions B, Xy and (0/0x;) X belong to PP(q). By Lemma 3.5 the matrix
hS~! has integer entries; therefore the functions F; and F; are periodic with the
period g% in X, ..., x, and with the period  in ¢. The functions F, and F, obviously
belong to PP(1). Therefore all the functions Fy, F3, F; + F, and F;F, belong to
PP(h). Moreover, they are continuous. In the real case we have A(f) = (¢, wt) and
X 4(t) = F(t, o) and in the complex case A(t) = Fy(t, wt) + F(t, ot) and X ,(t) =
= F5(t, ot) F,(t, wt) for te R.

Consequently, 4 and X , are quasiperiodic functions with at most r + 1 frequencies,
i.e. A€ QP (n, 7).

By (3.3) and (3.8) we have |y,| < |y S4e'r'/2q"C* D for y = S™Y(w — plq),
where k = 1, ..., r. The norm of the function X is bounded by 1 since its values
belong to SY(n). By (5.4), (5.11) and (5.8) we can estimate |C, — A4,| < ||D, — B +
+ 8r%2M W(n, r) ¢~ ", therefore by (5.5),(5.1) and g > Q we have [|C; —4,| < %n.
In the real case, this means |4 — C|| £ 41 < 7. In the complex case we can conclude
|4 — €| £ n by considering, moreover, (4.3) and (4.5).

CHAPTER 11

1. Now we shall describe a method for extending functions defined on certain
subsets of R" and with values in Matr (n) to functions defined on the whole R,
where the bounds of norms of derivatives of the original function are preserved
except for multiplying by a constant. We shall need this method for the proof of
Theorem 1.4.1.

We shall use the following notation:

#u is the number of elements of the set u,
2(r) denotes the set of all subsets of {1, ..., r},
2 (r) is the set of all subsets of {1, ..., r} which have j elements,
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2, j(r) is the set of all subsets of {1, ..., r} which have at least j elements; § denotes
the empty set,
{x} and [x] denote the fractional and the integer part of x € R, i.e. [x] € Z and
0= {x} <1; for x = (xq,..., x) € Rx] = ([x4], ... [x]) and {x} = ({x4},...
v {x)); x = [x] + {x}.

For x = (X4, ...,x,) a set U = R" is called an x;-neighbourhood of x iff there
is &, > O such that

U={(xg,.c0rX; + & ...,%); —& <&<E&.

In the natural way we define also the right and left x;-neighbourhoods of x.

Let us define z: R" x R" x ﬂ(r) — R" to be the function such that for x =
= (x4, ...,x,) and y = (4, ..., y,) the i"® coordinate of z(x, y, a), i.e. z{(x, y, a),
equals y; if i € a and equals x; otherwise. Fixing y and a, z(x, y, a) as a function of x
is defined on R', is of the class C'™ and the derivative 0z;/0x, is either identically
equal to 0if i 3+ k or i = k€ a, or identically equal to 1 for i = k ¢ a.

Further, let us define a: B — 2(r) to be the function such that a(x) = {i; x; € Z}
for x = (xy, ..., x,). For a natural number j < r let S} = {xeR"; a(x) = j} and
S;.1 = 0; (i.e. Sjis the set of all x € R" with at least j integer coordinates).

Throughout the whole chapter ¢: R — <0, 1) will be an even function with a con-

tinuous second derivative, non-increasing on <0, oo), and F = 1 a constant such that
(see Fig. 1)

(1.1) o(t)+ o(1 — 1) =1 for te0,1),

(1.2) p()=1 for |t| < and o(t) =0 for [f|=3,
do

1.3 —I| £ F,

(13) dr|| —

and f: R" x Z" —» R will be the function
(1.4) flx, @) = U1¢(ai - x;)

for x=(x;,....,x,)eR and o= (a,...,%)eZ .
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Lemma 1.1. Let xe R" and a€ Z". Then f(o, o) = 1. If f(x, @) % O then «; = x;
for iea(x) and o, € {[x;], [x;] + 1} for i ¢ a(x).

Proof. f(«, @) = 1 because ¢(0) = 1. Suppose there is an i either in a(x) and such
that o; + x, or in the complement of a(x) and such that «; ¢ {[x;], [x;] + 1}. Then
for this i we have |o; — x;| = 1, therefore ¢(; — x;) = 0 and f(x, @) = 0.

Lemma 1.2. Let x € R and «, B € Z". Then f(x, a) = f(x — B, @ — P). This lemma
is obvious.

2. We can extend a function b: Z" — Matr (n) to the whole R" putting b(x) =

=Y f(x, &) b(x). Lemma 1.1 guarantees that the sum always has at most 2" non-zero
aeZ"

summands and that for x € Z", b(x) = b(x).

We shall generalize this method in order to be able to extend functions with
domains Sj for each je{1,...,r}. First we define for a function b: S; — Matr (n)
(2.1) b(x) =Y f(x,@) Y b(z(x,x a) for xeR".

aeZr ac?(r)
By Lemma 1.1 we have again finitely many non-zero summands. Obviously, b is
continuous if b is continuous and b is identically 0 if b is such.

Let us present some examples. For r = j we have S} = Z" and the definition of b
coincides with the above definition of b. Therefore in this case b is ab extension of b.
Let b: 87 — Matr (n). S} is the set (R x Z) U (Z x R)and for each x = (x,, x,) € R*
we have

b(x) = o({x1}) o({x2}) (b([x1], x2) + b(x1, [x.])) +
+ o({x:}) o(1 = {x2}) (b([x,], x2) + blxy, [x;] + 1)) +
+ (1 = {x1}) @({x2}) (b([x:] + 1, x2) + b(xy, [x2])) +
+ (1 = {x1}) o(1 — {x2}) (b([*] + 1, x2) + b(xy, [x,] + 1)).
Suppose moreover that b is equal to 0 on Z2 Let x € S?, say x, € Z. Then
o(1 = {x:}) = @(1) = 0, o({x,}) = 9(0) = 1 and b(x;, [x,]) = b(x, [x;] + 1) =
= 0; therefore using the property (1.1) of the function ¢ we get b(x) = (¢({x,}) +
+ @(1 — {x2})) b([x1], x2) = b(x). In this case b is again an extension of b.
Theorem 2.1. Let b: S} —» Matr (n), je{l,...,r], L>0, K >0 and me{1,2}.
a) If b is equal to 0 on S}, ; then b extends b, b = b.

b) If b has continuous m™ derivatives w.r.t. its domain and ||b| < L, |0b/ox,| <K
fori=1,...,r, then b is of the class C™ and

22) 16] < (:) L

b
0x;

For the proof of this theorem we need the following lemma:

(23)

< 2’(;>(K +LF) for i=1,...r.
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Lemma 2.1. For each xe R"

(2.4) Y f(x o) = 1.

aeZ"
Proof. If r = 1 then the left hand side of (2.4) equals @({x;}) + @(1 — {*1})
which, by (1.1), equals 1. Assume that r > 1 and (2.4) holds for r — 1. We can
rewrite the left hand side of (2.4) as

(o(x) + ot = () F, (TTofa - ).

By (1.1) again and the induction hypothesis this equals 1.

Proof of Theorem 2.1. a) Assume b is equal to 0 on S7, ;. Let x € S}. If x belongs
to S}, , then for each ae 2#(r) and ae Z" the vector z(x, , a) belongs to Sj.1,
therefore b(z(x, @, a)) = 0 and b(x) = 0 = b(x). If x is not an element of S},
then a(x) € 2,(r) and for every o€ Z"

5 bzl 0)) = bz(x, 2 a(x)
aeP(r)
since for a + a(x), z(x, «, a) belongs to S}, and thus b(z(x, @, a)) = 0. If a is such
that there is i € a(x) with ; # x; then |a; — x;| = 1 and @(a; — x;) = 0. If there

is no i no a(x) with a; * x; then z(x, «, a(x)) = x. Thus b(x) = ¥ ([T (e — x,)) .
. b(x). By (2.4) this equals b(x). We proved the assertion a. ~ *%" i=1

b) Let a € Z", a € P(r). Let us consider b(z(x, o, a)) as a function of x. Let x € R".
If i ¢ a then z(x, «, a) belongs to S and some x;-neighbourhood of x is included
in S7; therefore z(x, «, @) belongs to the domain of db/dx;. We easily see that

b7} ab
o Belefosa)] = 22 (e ).

For i € a the function z(, @, a) is constant on some x;-neighbourhood of x; therefore
(0fax) [b(z(x. 2. a))] = 0.

Similarly we can see that in the case m = 2, (0%/dx; 0x,) [b(z(x, a, a))] equals
either (9%b/0x; 0x,) (z(x, @, a)) if i, k are not elements of a, or 0if i or k is an element
of a. Since the function fis of the class C®, we see from (2.1) that b is of the class C™,

From the estimates of norms of b and its derivatives we have

(2.5) I ¥ bzx, o a)] < (r) L for xeR, weZ,
acPy(r) J
(2.6) 9 Y b(z(x, o, @)l < (r)K for xeR, aeZ and i=1,...,r.
6xi acPi(r) J
The next two estimates follow from (1.2), (1.4) and |¢| < 1.
(2.7 |f(x,)) £1 for xeR, aeZ,
(2.8) |:—f(x,a) <F for xeR', a€Z and i=1,..,r.
Xi
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Let xe R, U = {yeR"; |x — y| < 15} For yeU the sum (2.1) defining 5(y)
may contain on]y such summands f(y, @) Y. b(z(y, @, a)) different from 0, for which

acPy(r)
= [x;] or oy = [x;] + 1foreachk = 1, , r (otherwise |y, — & = |x — o] —
- [xk — %] 2 &5 for some k, ie. f(y,®) = 0. Therefore when estimating [[b(x)]
and |(8b/0x;) (x)], i = 1, ..., r, we can consider only these summands. There are 2"
of them. Thus we get from (2.1), (2.5) and (2.7) the estimate (2.2) and from (2.1),
(2.5)—(2.8) using the product rule the estimate (2.3).

3. Now we shall construct extensions of functions b defined on S} and not neces-
sarily equalto O on S}, , (j = 1, ..., ). Let b: S; > Matr (n). We define by induction
functions b;: S} > Matr(n) forj S i < r:

(3.1) and b; = bls, — (¥ b)ls
k=i+1

We shall show by induction that the function 5; extends b;, b; = b; and

(3.2) (kg.gk)k‘r =

For i = r this follows from Theorem 2.1 a). Suppose that for some i, r 2 i 2 j,
b; 2 b; holds. Then b5, = b; and (3.2) follows from (3.1). Moreover, if i > j we have

by (3.2) and the definition of b;_y (b;—; = bls,_,» — (. by)]s,.,-) that b;_ is equal
k=i

s for r>izj.

to 0 on S%, and therefore by Theorem 2.1 a, b;_; = b;_,.
We proved our claim.

Define b = Y b, where b,, ..., b; are defined by (3.1).

K=j
Lemma 3.1. If b is equal t0.0 on S}, , then b = b.

Proof. From (3.1) we see that for j < i < r the functions b, are identically 0,
therefore b = b; = b.
Let us define by induction constants K(r, j) for j =r,...,0:

(3.3 K(r,r)=2,
K(r,j) =K(r.,j+ 1) + 2'(;)(1 + K(r,j+ 1)) for r>j>0,
K(r,0)=0.
Theorem 3.1. Let b: S} — Matr(n), j=1,...,r, L>0, K >0 and me{1,2}.
Then the above defined function b is an extension of b. If b has continuous m™

derivatives w.r.t. S and ||b| £ L, |0b/ox;| < K for i = 1,...,7 hold, then b is of
class C™ and the following holds:

(34) 18] = K(r,J) L,
(3.5) t :f

SK(rj)(K+(r—j+1)LF) for i=1,..,r.
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Proof. The fact that b is an extension of b follows from (3.2) for i = j. The rest
will be proved by induction. The case when j = r is solved by Theorem 2.1 since by
Lemma 3.1 b = b when j = r. Let 1 £ j < r and assume that the theorem holds
for j + 1. Define ¢ = blsm'- Then ¢ has continuous m™ derivatives w.r.t. Siv1s
lel £ L and ||oc/ox;| £ K for i =1,...,r. Let cj4y,...,c, be defined by (3.1).

Obviously, ¢; =b; for j +1 < i < r,andso & = Y, b,. By the induction hypo-
k=j+1

thesis ¢ is of the class C™, |2 < K(r,j + 1) Land for i = 1,...,r, |0¢/dx;| <

<K(r,j+ 1) (K + (r — j)LF). By the definition of b;, b; = b — ¢|s,. Con-

sequently, b; has continuous m™ derivatives w.r.t. S} and

6] £ L(K(r,j + 1) + 1),

9, <K +K(rj+ 1)(K+(r~j)LF)§(K+(r~j)LF)(K(r,j + 1) + 1)

i
fori=1,...,r
By Theorem 2.1, b; is of the class C™ and

15, < (; (1 +K(r,j + 1) L,
s,
0x;

Since b = ¢ + b, we get (3.4) and (3.5). Since, moreover, both ¢ and b; are of the
class C™ also b is of the class C™.
The theorem is proved.

_§2’<;>(1 +K(r,j+1)(K+(r—j+1)LF) for i=1,...,r.

4. We shall often work with functions which have the properties described in the
following definition.

Definition 4.1. Let b be a function, Dom (b) < R’, and 0 < ¢ < 75. We say that b
is coordinatewise constant in the e-neighbourhood of integers, b € KZ(e), if for all
x = (xg,..s%), ¥ = (1 ..., y,) from the domain of b, which satisfy |x; — vi| e
for all i € a(x) and x; = y, for all i ¢ a(x), the equality b(x) = b(y) holds.

For example, let b be defined on R Then b belongs to KZ(5;) iff for all ay, a2 € Z

ﬂﬂllllll Sea= IHITIENRIRIRNEN] EHH T e T
09JLU[LIU R T T T IRERINIRERRIIRRN DRI 2RSS ARNNIRALIN
' S5 == SE
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Fig. 2




and x,, x, € R the following holds:

if |x; — ay| < 15 then b(xy, x,) = b(ey, x,) and symmetrically

if |x, — 0| < 75 then b(xy, x,) = b(xy, ay)-

Further, if both |x; — ;| and |x, — a,| are smaller than 75 then b(xy, x,) =
= b(ay, @,). (See Fig.2)

Lemma 4.1. Let b be a function, Dom (b) cSR,0Z¢e< —113 and b eKZ(s). If x
and y are vectors from the domain of b such that for each i either x; = y; or there
is an integer m; for which |x; — m;| < ¢ and |y; — m;| < &, then b(x) = b(y).

The proof is easy and we omit it.

Lemma 4.2. Let 0 < ¢ < {5 and 0 < j < r. Let b: S} — Matr (n) be a function
from KZ(&). Then also b (defined by (2.1)) belongs to KZ().

Proof. Let x, y be vectors from R" such that |x; — y;| < ¢ for all i€ a(x) and
x; = y, for all i ¢ a(x). We need to show that b(x) = b(y).

For any o€ 7" and a € 2(r) the vectors z(x, &, a) and z(y, «, a) belong to S} =
= Dom (b). Since b is in KZ(e), b(z(x, @, a)) = b(z(y, @, a)) holds.

Let o = (o, ..., ). For i¢a(x) obviously ¢(a; — x;) = ¢@(e; — y;) and for
i € a(x) either |o; — x,| = 1 and therefore |#; — y;| = 15, or @; = x; and therefore
| = »i| < 5. By (1.2) in both cases o(x; — x;) = ¢(x; — y;). Consequently,
16 = 10r ).

These two facts imply b(x) = b(y).

Let b, c be functions with values in Matr (n), Dom (b) < R, Dom (c) < R",
such that b and ¢ belong to KZ(e). Then also b + c (defined on the intersection of
the domains of b and c) and the functions which we get by restricting b or ¢ to any
subset of their domains, belong to KZ(g).

This observation and Lemma 4.2 imply

Theorem 4.1. Let 0 < ¢ < 75 and 0 < j < r. Let b: S} — Matr (n) be a function
which belongs to KZ(g). Then also the function b (defined at the beginning of § 3)
belongs to KZ(e).

5. Further, we shall need a different formula for b. For u e 2(r) let E(u) =
= {o = (oy,...,0,); a; = 0 for i e u and «; € {0, 1} for i ¢ u}.
Lemma 5.1. Let b: S; —» Matr (n), je{1,...,r}. Then
b= > ¥ f({x}, o) b(z(x, @ + [x], u)) -
acE(a(x)) ue?j(r)
Proof. Using (2.1) and Lemmas 1.2, 1.1 we get

bx)= 3 2S00 o) blalx o u)) =

acZ" ucP(r

=2 X f({x}, @) b(z(x, @ + [x], ) =

acZ™ ue?i(r)

= Y ¥ (s} o) bla(x @ + [x], u)) -

acE(a(x)) uePj(r)
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Lemma 5.2. There are functions d;: €0, 1)" x {0, 1}" x 2, (r) > Rforj=1,...,r
such that if b: S} — Matr (n), then the following holds for x € R":

(5.1) b(x) = Y Y df{x}, @ u) b(z(x, @ + [x], u)).
acE(a(x)) us?gj(r)

The proofis rather long and only technically difficult. We omit it.

Now we shall extend functions with parameters. Let b: R x S} — Matr (n), j =
=1,...,r. For te R let us denote by b,: S; — Matr (n) the function defined by
b(x) = b(t, x) for x € S}. Define
(5.2) b(t,x) = b(x) for teR and xeR .

By the previous lemma,

(5.3) b(t,x)= Y Y d({x}, o u)bt z(x,a + [x], u)).

acE(a(x)) uey;j(r)

Theorem 5.1. Let b(t,x): R x S;— Matr(n), L> 0, K> 0. The function b
defined by (5.2) is an extension of b. If b has continuous second derivatives w.r.t.
R x S} and |b| £ L, |0bjox,| < K for i =1,...,r, then b is of the class C®
and the following estimates hold:

co 161 5 K6 ) L.
(5.5) 2_)’%‘

Proof. From (5.3) we can see that there exists a continuous second derivative
of the function b w.r.t. ¢, and also that 85/t = (b/dt)". Theorem 5.1 follows from
Theorem 3.1 applied to the functions b, and for 9b/dt.

<K(rj)(K+(r—-j+1)LF) for i=1,..r.

Theorem 5.2. Let b(t,x): R x S} — Matr (n) and let l,...,1,q be integers.
If b belongs to P(n, r, 1, q) then also b belongs there.

Proof. (1.4.10), (L4.11) and (1.4.12) for b are easily verified by using (5.3) and the
corresponding properties of b.

Lette R,xe R and fe 7. Wehave a(x + B) = a(x),{x + B} = {x},[x + B] =
[x] + Band for each ue 2, (r), z(x + B, & + [x + B, u) = z(x, « + [x], u) + B.
Therefore, considering (5.3) and the property (1.4.13) of b we see that b(t, x + ) =
= Y ¥ d{x},ou)b(t, z(x,x + [x],u) + B) = b(t + B.1,x); i.e., b satis-

acE(a(x)) ue.f?é j(r)

fies (1.4.13), too.

CHAPTER III

We shall need the following combinatorial concept. Let M = M,, M,, ....M,,,
be a sequence of subsets of the set {1, ..., r}. We shall call M simple iff there is a per-
mutation p of the set {1, 2,... 2m} with the following properties:

(1.1 p(2i — 1) < p(2i) for i=1,...,m,
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(1.2) My;i-1y=Mpy;y for i=1,...,m,

(1.3) ifie{l,...,m} and ke{1,2,...,2m} are such that p(2i — 1) < k < p(2i),
then p~'(k) < 2i — 1.
Roughly speaking, M is simple iff we can get to the empty sequence as follows:
we find j such that M; = M;,, and cross out from M both M; and M;, . In the
resulting sequence we again find two identical adjacent sets, cross them out and so on.

The reason for introducing the permutation p is that first we cross out M1y, M,5),
and last M,5,— 1), Myom).

Let us give some examples for r = 2. We write p as p = (p(1), ..., p(2m)).
Lm=2M={1},{1,2),{L2}, {1}; p= (2,3, 1,4),
2.m=4M={2},{1,2},{1,2}, {1}, (2}, (2}, (1}, {2}; p = (2.3,5,6,4,7,1,8),
3.m=3M=0,{2,{1},{1},{2,0; p = (3,4,2,5,1,6).

Lemma 1.1. Let M = M, M,,...,M,, be a simple sequence and Qe 2(r).
Then also M; — Q, M, — Q, ..., M,,, — Q is simple.

The proof is easy and we omit it.

Lemma 1.2. For every natural number r and je{1,..., r} there exists a sequence
M = M,;, M,, ..., M,,, of subsets of the set {1, ..., r} satisfying
(1.4) M, ={1,..,r},
(1.5) M, <r—j for k=2,...,2m,

and such that for all Q = {1, ...,r} with j elements the seqeunce M; — Q, ...
..y M, — Qis simple.

Proof. Let s = (}) and let Q,,..., Q,; be a sequence consisting of all subsets
of {1, ..., r} with j elements.

By induction we define a sequence M: M, = {1, ...,r}, and if M,,..., M, are
the first 2* members of M (0 < k < s) then the next 2* members are obtained by

subtracting Q, from all My, ..., M, and putting them in the inverse order after
M1, ey M(zk), i.e.

(1.6) M(2k+¢+1) = M(zk_') - Qk for 0Zk< s, 0=5t< 2k,

It can be easily seen that if 0 < k < s and 0 < i < 2°7* then there is a set G <
< {1, ..., 7} such that either

My =M, — G for 1 st< 2 or Mpern = Mgk-ie1) = G
for 1 <t <2k :

M obviously satisfies (1.4) and (1.5). Let Q be a subset of {1, ..., r} with j elements.
There is ko, 0 < ko < s such that Q,, = Q. From (1.6) we get

(1.7) Manyiersy = Quo = Megyory — Qi for 0 1<2%.

This fact and the previous observation used for k = ko + 1 imply that for each
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0<i<26 ko Dando gt <2
(1.8) M(lz(k.+l)+2k.+r+1) - Qko = M(i2(“°+1)+2"¢—t) - Qko'
Let us define a permutation p as follows:
p(i2%*D 4+ 2t 4 1) = 20+ D 4 ko ¢
p(i2%* D 4 2t + 2) = 2%+  Jko 4 4 4 |

This permutation and the sequence M; — Q, ..., M5, — Q,, obviously satisfy
(1.1) and (1.3) and by (1.7) and (1.8) also (1.2). The lemma is proved.

for 0 < i< 2kl <t <2k,

2. Let Iy, ..., 1,, g be integers. We shall study homotopic properties of functions
X (g, x) for & from P(n, r, 1, q), which will be helpful in the proof of Theorem 1.4.1.
Let 0 denote the zero vector from R".

Theorem 2.1. Let &: R x R" — Matr (n) be a continuous function from P(n, r, 1, q)
and je{l,...,r}. Suppose

(2.1) X{q,x) =1 for xeSj.

Then there is a continuous function G: {0, 1) x R" — SY(n) such that
(22 G(1,x) = X7(q,x) for xeR",

(23) G(0,x) =1 for xeR",

(24) G(B,x) =1 for Be0,1) and xeSj.

Proof. For te R, x € R" and u € 2(r) let us define
(2.5)  T(t,x,u) = X[t + I.z(x,0, u), z(0, x, u)) X7(I. z(x, 0, u), (0, x, u)) .
By Lemma L.4.1 the values of X, are from SY(n), therefore

(2.6) T(0,x,u) =1 for xeR and ue?(r).
Denoting u; = {1, ..., } we have
2.7) T(q, x, u;) = X{q,x) for xeR".

If ue P(r), #u < r —j then z(0, x, u) € S} for each x € R". By (2.1) and Lemma
1.4.3 the function X,|g «s, belongs to PP(g), therefore

(2.8) T(g,x,u) =1 for xeR and ue?(r), #u<r—j.
Let u,ve #(r), u 2 v. Then for x e R"

(2.9) 2(0, x, u) = z(0, x, v) + z(0, x, u — v),

(2.10) 2(x,0, u) + 2(0, x, u — v) = z(x,0, v).

If, moreover, u — v < a(x) then z(0, x, ¥ — v)e Z* and, by Lemma 14.2, con-
sidering (2.9) we get

(211) Xt +1.2(0, x, u — v), z(0, x, ) X}(I . z(0, x, u — v), 2(0, x, v)) =
= X,(t,z(0, x,u)) for teR.
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Using (2.11) once with t + I. z(x, 0, u) and once with . z(x, 0, u) in place of ¢ and
considering (2.10) we get from (2.5)
(2.12) T(t,x,u) = T(t,x,v) for teR, xeR and u,ve?(r),
u20v, u—vca(x).
Let uy, ..., u,, be a simple sequence from Lemma 1.2. We shall show that the
function G: €0, 1) x R" — SY(n),
G(ﬂ’ x) = T*(qﬂa X, ul) T(Qﬁ, X, “2) oo T*(qﬁ’ X, u2m—- l) T(qﬂ» X, uZm)
(the odd members have the stars), has the properties stated in the theorem.
Obviously, G is continuous and its values are in SY(n) since the values of X, are
in SY(n). (2.6) implies (2.3), and (2.7), (2.8) imply (2.2).
Let x € S}. There is w < a(x) with j elements. By (2.12) we have for B e <0, 1):
G(ﬂ’ x) = T*(qﬂ, X, Uy — W) T(qﬂa X, Uy — W) s T(qﬂ’ Xy Upm — W) .
(2.4) follows from the simplicity of the sequence u; — W, ..., Uz, — W.
3. Later it will be useful to approximate various functions by functions which are
coordinatewise constant in some neighbourhood of integers (see Definition 1.4.1).

To do this, we shall need functions defined in the following way: for s =
=-1,0,1,2,...(le. s + 2e N) let
1

3.1 g = ————,
( ) € 10.2s+1

and let , be non-decreasing functions from <0, 1) to <0, 1) with continuous second
derivatives, and P, = 1 constants such that

dy, |2 a2y,
(3.2) Yo <r. |28 <
(3.3) Yx) =0 for x€<0,&041);
Yx) =1 for xedl —guy,1),
(3.9 Yx) =x for xede,1—¢.

In order to avoid the subscript —1 let us notice that ¢_; = % and denote Y, = ¥

and P_; = P.

Lemma 3.1. For each s and each x € <0, 1), |y(x) — x| < &,

Proof. Lemma follows from (3.3), (3.4) and the fact that ¥, are non-decreasing.

For a vector x = (Xy, ..., X,) let us denote by ¥,(x) the vector (y,(x,), ..., ¥s(%:)):
writing again ¥ instead of ¥_,. We identify ¥,, ¥ with ¥, ¥ provided r = 1.

Lemma 3.2. Let g be a function, Dom (g) € R" and s = —1,0, 1,2, .... Suppose
Dom (g) has the property that for xeDom (g) also [x] + P({x})e Dom (g).
Define h: h(x) = g([x] + ¥,({x})) for xeDom (g). Then h belongs to KZ(&,+1)
and if, moreover, g is an element of KZ(a,) then g = h.
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The proof is easy and we omit it.

Let us notice that examples of subsets of R" containing with each x also [x] +
+ ¥,({x}) are R", S, S <0, 1.

It will be useful to introduce the following notation: For u € 2(r) let D"(u) =
={x=(x1,...,x)€e(0,1)" x; =0 for ieu} and for j=0,1,...,r let D} =
= U{D'(u); u € 2(r)}. In particular, D] = {0} and D} = <0, 1)".

4. Let again I, ..., l,, g be integers. We shall further investigate the problem of
transforming functions X(g, x) into the function identically equal to I (where ¢
belongs to P(n, 1, I, q)).

In the rest of this chapter we assume SY(n) € EP(1) N ... n EP(r). Let us denote
¢;j = ¢(SY(n),j) for j = 1, ..., 7, and define ¢, = 3. If b is a function with domain
d x A, where d € R and A < R, then b, for t € d denotes the function with the
domain A: b(x) = b(t, x).

Lemma 4.1. Let je{0,1,...,r}. Let H(B, x): €0, 1> x D} — SY(n) be a function
satisfying

(4.1) HB,x) =1 for Be<0,1) and xeDjn S,
(4.2) H,eKZ(g,_;4,) for Bel0,1>.
Then

(43). H(B,x) =1 for Be<0,1) and xeDj, dist(x,S}s;) = &—j41-

Proof. Let xe D} and ye S}, |x — y| £ &—j+1. The vector z(x,y, a(y))
belongs to S7,; and to Dj since its i'® coordinate is equal to O for each i for which
x; = 0. Moreover, the distance of this vector from x is less or equal to the distance
of y and x. Therefore by (4.2) and (4.1), H(B, x) = H(B, z(x, y, a(y))) = I for
B € <0, 1), which proves (4.3).

Theorem 4.1. Let je{0,1,...,7}. Let &(t, x): R™*' — Matr (n) be a function of
the class C® from P(n, r, 1, q) such that

(4.9 ¢,€KZ(e,-;) for teR

and let M > 0 be a constant such that Mq = 1 and
(4.3) o

(4.6) Xdg,x)=1 for xe€8},,.

5x,-
Then there is a function H(B, x): 0,1y x D} — SY(n) with continuous second
derivatives w.r.t. its domain, which satisfies

(4.7) H(B,x) = X;(q,x) for Bell —&_;41,1)>, xeDj,
(4.8) HB,x)=1 for (0,e_;+1>, xeDj,

=M for i=1,..,r,
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and such that (4.1), (4.2) and the following estimates hold:

0H
(4.9) EE' gP'_er_.j,
(4.10) Z—f SP_jc,_jgM for i=1,..,r,
0’H
4.11 SP._ic,.qM for i=1,..,r.
(4.11) opax) = FriermiaM S

To prove this theorem we shall need a lemma about matrices from Y(n). For
o € R let us denote cos o sin o
2(a) ( . )
—sin o cos a

Lemma 4.2. Let Q be a matrix from Y(n). Then in the complex case there is
a matrix Ve SU(n) and numbers oy, ..., «, € {—7, ) so that E if is the diagonal
matrix

exp (i;) 0
E = N . .
0 exp (iot,)
then Q = VEV*, and in the real case there is a matrix Ve SO(n), integers k, s, t,
where 0 < k,s,t < n, and oy, ..., €{—m, n) so that if I, and I, are the unit
matrices of the orders s and t and
I 0
—I,
F = Z(ay)
then Q = VFV*. 0 .Z(oc,‘)

Proofs can be found in [MA], Chapter V, § 19.

Lemma 4.3. Let Q be a matrix from SY(n). Then there is a function g(B): €0, 1) —
— SY(n) with a continuous second derivative such that
(413) g(f)=Q for Bell —e, 1y and g(B) =1 for Be0,¢),

2

% 99| < 6p .
aB 2

Proof. Since Q€ ¥(n) and Det (Q) = 1, we can apply the previous lemma and
have, moreover, «; + ... + &, = 0 in the complex case and ¢ even in the real case —
then —1I, can be written as the matrix consisting of 4t matrices Z(r) diagonaly situated.
For f € <0, 1) we denote

(4.13) < 3P,n and

exp (i, %o(ﬂ)) 0

E(p) = :
0 €Xp (ian '//O(ﬁ))
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and
I 0

Zﬁ"‘/’o(ﬂ))

F() = Z(mpo(B))
Z(ay Ya(8)

0 Z(e ¥o(B))
Then obviously the values of the function E belong to SU(n) and the values of the
function F to SO(n). Define g(B) = VE(B) V* in the complex case and g(B) =
= VF(B) V* in the real case, for f € €0, 1). (3.2) and (3.3) imply that g has the desired
properties.

5. Now we shall prove Theorem 4.1. First lét r = j. By Lemma 1.4.2 the values
of X, are from SY(n), thus X,(g, 0) € SY(n). By Lemma 4.3 we can find a function
H:<0,1) x {0} = €0,1> x D] — SY(n) with continuous second derivative w.r.t. B,
such that |0H/0B| < 3P,r, H(B,0) = X(g,0) for fe {1 — &, 1) and H(B,0) =
for Be<0,¢;). H has all properties required in the theorem (the rest of them is
trivial since D} has only one element).

Let now j < r. Let us define the function Y: R" — S¥(n) by ¥(x) = X}(g, x) for
x € R". (4.5) implies

(5.1) l SgM for i=1,..,r
and (4.4) implies that
(5.2) YeKZ(e,.)).

Denote J = <0, 1)"77.

Let ue?y(r) and {1,...,r} —u = {iy,...,i,_;}, where i; <...<i_; Let
P D'(u) > J be defined by p,(x) = (xi, ..., x;_)) for x = (x,.. ,x)eD'(u)
Then p, is an isometric mapping of D"(#) onto J which maps D"(x) N S}, , onto 8J.

The function (Y(p,)™!): J - SY(n) is of the class C®; by (4.6) we have

(5.3 (Y(p)™ ) (y) =1 for yeas
and by (5.1),
-1
(54) “ ng;" ) <gM for i=1,..,r—j.

By Theorem 2.1 there exists a continuous function G: <0, 1) x R" - SY(n) such
that G(1, x) = Y(x) and G(0, x) = I for x € R and G(B, x) = I for B&<0,1) and
x €8, Let us define go: J > SY(n) by go(y) =1 for every ye J. It is easily
verified that the function G(B, (p,)™* (¥)): <0,1> x J - SY(n) is a homotopy of
the functions Y(p,)™! and g,.

Since by our assumption SY(n) has the property EP(r — j) and because of the
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estimates (5.4), there exists a homotopy h.(8, y):<0,1) x J > S ¥(n) of the func-
tions Y(p,)”* and g,, which is of the class C® and satisfies

(5:5) h(1,y) = (Y(p)™") (y) for yel,

(5-6) 1 0, y) = go(y) =1 for yel,

(5.7) h(B,y) =1 for Be<0,1> and yeady,

(5-8) ’%%‘ <c¢-; and HZ—;’: , %—;—‘ <c-qM for i=1, ..,r—j.
Let us define H,:<0, 1) x D"(u) - SY(n) by

(59) H(B, x) = h(¥r-(B), ¥r-/(P())) -

By (3.3) and (5.6) we have

(5.10) H(B,x) =1 for Bel0,6_;,;> and xeD'(u).

If x € D'(u) N S5, then p,(x) € 8J and therefore also ¥,_ (p.(x)) € 8J; consequently
by (5.7)

(5.11) H(B,x)=1 for Be0,1) and xeD(u)nSj, .

We shall show that ‘

(5.12) H/(B,x) = Y(x) for Bedl —¢_j+1, 1> and xeD(u).

By (5.9), (3.3) and (5.5) such f and x satisfy

Hu(ﬁ, X) = hu(l’ qu—j(pu(x))) = (Y(pu)_l) (qlf"j(pu(x))) N
and from the definition of p, we see that for x € D"(u)

(P) " (Pr-f(Pu¥)) = 2(¥,— (%), %, 1) -
(3.3) and (3.4) imply that for each ie{1,...,r} either ¥,_j(x;) = x; or 0 < x,,
Up-j(x)) S gp—j0or 1 —¢,_; < x;, Y, j(x;) < 1. Consequently, by (5.2) and Lemma
I 4.1, Y((p,)"* (¥,-(p(x)))) = Y(x) for x € D"(u). We proved (5.12).
(5.11) justifies the following definition of the function H(B, x): <0, 1) x Dj -
- S Y(n):
(5.13) H(B,x) = H,(8,x) for Be(0,1>, uePr) and xeD(u),

since if x is an element of both D"(u,), D'(u,) and u; # u,, then xe S}, and
H(B, x) = H, (B, x) = H, (B, x) = I for e <0, 1).

(5.12), (5.10) and (5.11) imply that H satisfies (4.7), (4.8) and (4.1). Let us verify
that H satisfies (4.2). Let f€ <0, 1) and x = (xg, ..., %)> ¥ = (V1, ..., »,) € D} such
that for i € a(x) the inequality |x; — y;| < ¢, ;+, holds and for i ¢ q(x), x; equals y;.
We need to show that H(B, x) = H(B, y). If u € 2,(r) is such that y € D"(u), then
also x € D"(u). For any i ¢ u either x; = y,or 0 = X;, Vi S &-jr10r 1l —g_; 1 =
< x;, y; < 1. By (3.3) and (3.4) we have Z,_,(p/¥)) = ¥r—(p,(¥)); by (5.9),
H,(B, x) = H,(B, y) and therefore H(B, x) = H(B, y)-
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It remains to show that H has continuous second derivatives and (4.9), (4.10)
and (4.11) hold. Let B€ <0, 1) and x € D}. If x e D'(u) — S}, for some u € Z(r)
then there is a neighbourhood U of (B, x) such that the function H equals the function
H,on U n (<0,1) x D}). In this case the continuity and the estimates of derivatives
of the function H in (B, x) follow from (5.9), from the continuity and estimates of
derivatives of the function h, (it is of the class C*®’ and satisfies (5.8)), and from the
fact that ¥, _; has a continuous second derivative and (3.2) holds. If x € Sj41 0 Dj
then by Lemma 4.1 there is a neighbourhood U of (B, x) such that the function H,
is on Un (<0, 1) x Dj) identically equal to I. All derivatives of H at this point
are therefore equal to 0. Theorem 4.1 is proved.

6. Let us define by induction the constants Q"(r,j) = 1 forj=r + 1,r,...,1,0.
Since n is fixed, we usually omit the upper index n. Let Q(r, 7 + 1) = P and for
j=r...,10,

0(r,j) = O(r.j + 1) (1 + K(rJ) (3 + 3Ps—yer; + (Po—yer ) -

(The constants c,_; are defined at the beginning of § 4, the constants P,_; and P at
the beginning of §3 and the constants K(r, j) in the second chapter by (IL.3.3).
Let us denote

P,_.c,_;Fr
Wn,r)= Q%(r,0) +r and V(n,r)= (max {#% ;7i=0,..., r}) +1
o'(r,j+1)
(F is the constant defined in § 1 of Chapter II).
We shall show that for these W(n, r) and V(n, r) Theorem 1.4.1 holds.
Let 1,,..., 1, g be integers, &(t, x4, ..., x,): R™** —> Matr (n) a function of the
class C® belonging to P(n, r, I, q), and L > 0 a constant such that
q 2 V(n,r)L
and

(6.1)

We shall construct by induction forj = r + 1, r, ..., 1, 0 functions éj(t, Xqseees x,):
R™*! — Matr (n) of the class C®, belonging to P(n, r, I, q) and satisfying

o

(9x,~

<L for i=1,..,r.

(62) I&; = ¢l = (QCrj) + ) L,

(6.3) Fﬁ <Q(rj)L for i=1,..,r,
0x;

(6.4) X (¢, x) =1 for xeSj,

(6.5) (¢;): € KZ(&r-j+,) for teR.

By doing this, we shall prove Theorem 1.4.1 since ¢ = &, has all desired properties.
First, let us define &4 (t, Xy, ..., X,): B™*1 - Matr (n) by &, (t, x) = &(t, [x] +
+ P({x})). It is easily verified that &.1 belongs to P(n, r, I, ). By Lemma 3.2 for
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each t € R the function (£,,,), is an element of KZ(g,). Further, &+1 is of the class
C™® and due to (6.1) and (3.2) satisfies for i = 1, ..., 7 o« 1/ox| < PL. Finally,
(6.1) and the inequality [x — [x] — ¥({x})| < r'/* imply S ¢ = rL.
Therefore &,.; meets all our requirements (6.4) is trivial because Sy, = 0).

Let us suppose now that we have constructed a function &;+1, 0 S j<r + 1,
of the class C®, which belongs to P(n, r, I, q) and satisfies

(6.:6) 1641 = €] = (Q(rj + 1) + r'*) L,

(6.7) IG%A SQ(rj+ 1)L for i=1,..,r,
X

(6.8) X, (g, x) =1 for xeSj,,,

(6.9) (6j+1):€KZ(¢,—;) for teR.

Lemma 1.4.1 implies that the values of the function X, ,, are from SY(n), and
from (6.9) and (6.7) we get

(6.10) (X,,, ) €KZ(e,-;) for teR,
610 | (]

xeR and i=1,...,r.

< 0(r,j+ 1)Lg for te<0,q),

The function ¢;,, satisfies the assumptions of Theorem 4.1 (where M =
= Q(r,j + 1) L so that Mq > 1 since Q(r,j + 1) = 1), hence there is a function
H(B, x): {0, 1) x D} — SY(n) with continuous second derivatives w.r.t. <0, 1) x
x Dj, satisfying (4.8), (4.1), (4.2), (4.9) and such that
(6.12) H(B,x) = XZ,,(q,x) for Bell —g_;1y,1> and xeDj,

a_H 0’H
ox;|| ||0B Ox;
Let us now define a function B using Xp first for ¢ € (0, ¢> and x € Dj:

(6.14) X5t x) = X, (6, x) H <’; , x>,

(6.13) S P_jc,_;q0(r,j + 1)L for i=1,..,r.

s

(6.15) B(1,x) = g; [Xa(t, x)] X3(t, %) .
Lemma 1.4.1 implies that (1.4.10) and (1.4.11) hold for B. Further,
(6.16) B(t, x) = &41(t. %) + = X, (1, %) 2 [H (5, x)] H* (5, x) Xzt x)
q ap q q

for te<0,g9> and xeDj.

The function B has continuous second derivatives w.r.t. its domain and (6.7), (6.11)
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and (6.13) yield for i <~ 1, ..., T

(6.17) "9’3. < 0(r.j + 1) L(1 + 3P,_jer—j + (Pr—jer)?) -
ox;| —
From (6.9), (6.10) and (4.2) we obtain for t € <0, 47
(6.18) B,e KZ(g,_;41) -
From (6.16) and (4.9) we get
(6.19) IB = &1l = (1q) Pr-jer-j>
and the assumption g = V(n, r)/Land the definition V(n, r) yield
(6:20) L TP %F*—l)i < 0o(r,j + 1) L.
q r

Now we shall extend Bto R x Dj. By (4.8) and (6.12) we have (9/d) [H(t/q, x)] =
= 0 for 1€ (0, g&,— ;11> U {q — g&,_;41, q)) and x € D}. Therefore (6.16) implies
that B(t, x) =¢ j+1(t, x) for such ¢ and x; consequently, we can extend B for te R
and x € D} by demanding that B is periodic in ¢ with the period g. Then B satisfies
(1.4.10) and (1.4.11) and the periodicity of the function &;., in ¢ with the period ¢
guarantees that the extended B is a continuous function with continuous second
derivatives w.r.t. R x DJ, satisfies (6.17), (6.19) and for each ¢ € R, (6.18) holds.

Finally, let us extend B to R x S}. Lemma 4.1 implies that H satisfies (4.3). The
periodicity of the functions B and &;., in ¢ with the period g and (6.16) imply

(6.21) B(t,x) = &;.4(t, x)

for teR and xeDj, dist(x,S},,) =< ep-jiy-
We shall show that
(6.22) B(t,x) = B(t + 1.[x],{x}) for teR and xeDj.

Let x € Dj, [x] #+ 0. Then some coordinate of x must be equal to 1 and therefore x
and {x} are elements of S},, n Dj. Since &;4, belongs to P(n,r, I, q), we have by
(I.4.13)

(6.23) Eia(tx) = Epq(t + 1.[x],{x}) for teR and xeR".
This and (6.21) imply (6.22).

If x is an element of S then {x} is an element of Dj. Therefore we can define
B(t,x) = B(t + 1.[x], {x}) for te R and x € §]. It is easily verified that B belongs
to P(n, r, I, q) and that for all ¢, (6.18) holds. (6.23) and (6.19) imply that also this
extended B satisfies (6.19). From (6.21) and (6.23) we conclude

(6.24) B(t,x) = &.4(t, %)
for teR and xeS}, dist(x,S}.y) < p-jsny-

If x € S, then by (6.24) there exists a neighbourhood U of x such that on R x
x (U n S7) the function B equals &;, . If xe S} — S}, then there exists a neigh-
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bourhood U of x such that for ye Un S}, y — [x] € D} and therefore for te R
the equality B(¢, y) = B(t + 1. [x], y — [x]) holds. In both cases we see that B
is continuous, has continuous second derivatives w.r.t. its domain and the estimates
(6.17) hold.

By (6.14) and (6.12) the function Xy: R x S; - SY(n) satisfies Xy(q,x) =1
for x € D};. Lemma 1.4.2 implies that X satisfies (1.4.14) and (L.4.15). If x € S then
{x} € D} and therefore X(q, {x}) = I. Henceforth, considering (1.4.15) we see that
Xi(q, x) = Xg(g + 1. [x], {x}) X3(q, {x}) X3(I.[x], {x}). Since (1.4.14) holds,
Xu(qg + 1. [x], {x}) X5(q, {x}) = Xu(I . [x], {x}). We conclude that

(6.25) Xp(q,x) =1 for xeS;.
For j > 0 we define the function E:R x S} — Matr(n) by E =B — &;,,.

Then E belongs to P(n, r, I, q), is continuous and has continuous second derivatives
w.r.t. its domain. By (6.7) and (6.17) the following inequality holds for i = 1, ..., r:

a .
BEH SQ(rj+ L2+ 3P,_je,; + (Pojer—)?) -
Xi

(6.19) and (6.20) imply that |E| < Q(r,j + 1) L|rF, and (6.18) and (6.9) imply
that for each t € R the function E, is an element of KZ(e,— ;. 1).

Let E(t, x,, ..., x,): R"*' — Matr (n) be the extension of E as defined in Chapter
II. By Theorem I1.5.1, E is of the class C® and for i = 1, ..., r the inequalities

18] 5 K(rj) LBLE DL ang

I3
ﬁ-ll < K(r,J) Qi + 1) LB3 + 3Pr_jer; + (Projir-))?)
Xi

hold. By Theorem IL5.2, E belongs to P(n,r, 1, q), and by Theorem I1.4.1 for each
t € R the function E, is an element of KZ(e,_ ;). ‘

Let us define the function &(t, x4, ..., x,): R"*' > Matr (n) by & = E + &;,,.
Then ¢&; is obviously of the class C®, belongs to P(n, r, I, q) and satisfies (6.5).
Since E extends E, éjl,,x sy = B, therefore (6.25) implies (6.4).

By (6.6) and the estimate for ||E| we have
1€ = &l = B + &40 = & = Q0 J + D) L(K(r.j) + 1) + /2L,
hence we see, considering the definition of Q(r, j), that (6.2) holds. Finally we have
by (6.7) and the estimates for |0E/ox;:
9%;
Ox;

£ 0(rj + 1)L + K(r,j) (3 + 3P, je,—; + (Pr—je,-)?)

for i = 1: ..., r. Considering again the definition of Q(r, j), we see that (6.3) holds.
If j = 0, we define & = B. Then &,: R™*' — Matr (n) is of the class C®® and
belongs to P(n, r, I, g). From (6.25) and (6.18) respectively it follows that &, satisfies
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(6.4) and (6.5). Considering the definition of Q(r, 0) we see that (6.17) implies (6.3),
and (6.6), (6.19) and (6.20) imply (6.2).

We have found functions ¢; for j = r + 1, r, ..., 1, 0 with the desired properties.
Theorem 1.4.1 is proved.

APPENDIX

Let again n be a fixed natural number, n > 2 in the real case and n > 1 in the
complex case. We shall show that SY(n) has the homotopy estimation properties
(see Chapter 1, § 2) of orders 1 and 2.

1. Let r be a natural number. In this section we shall show that for any continuous
function from (0, 1) to SY(n) it is possible to find an arbitrarily close function of
the class C from <0, 1)" to SY(n) again.

We shall need some facts about Matr (n) and SY(n) which we shall not prove in
detail.

Observe that U™ ! exists, if U € Matr (n) and dist (U, Y(n))<1; the map U+ U™*
is analytic.

For U e Matr (n), |U - I < 1/3 put
(L) V=1+3U -1+ (2O -17+
We find easily that the series converges, |V — I| < 4, V? = U. Therefore we shall
write U'/? instead of V. U'/2 will be used only in case that |U — I|| < ; the map
U — U2 js analytic.

Lemma 1.1. Let U, We Matr (n), [U —I| £ 4, |W—1I| £ 1. Then

) U - W] < U - W,

b) (Ul/Z)* — (U*)”",

Lemma 1.2. Let U be an element of Matr (n) and dist (U, SY(n)) < 5. Then
|[vu* - I| < %, the matrix (UU*)Y2 (U*)~* belongs to Y(n) and
(1.2) [(wu*)2 (U*)~* — U|| < 6dist (U, SY(n)).

Proof. Let us denote d = dist (U, SY(n)). Let Se SY(n), |[U — S| = d. Ob-
viously S = (S*)7%, [|S*|] = |S|| = 1 and |U* — S*| = d. The inequalities ||S| —
= U -s] = |u] = v = |s| + | - 5] implythat1 — d < |U] = |U*] <
<1 + d. Since d < }, we have
(13 Juu* -1] = Juu* - ss*| < |u] Ju* - s*] + [U - | s+,

|[uu* —1I| (2 +d)d.

Hence |UU* — 1| < 4. Consequently, the matrix (UU*)'/? (U*)™! is well defined;
using Lemma 1.1 b) we see easily that this matrix belongs to Y(n). Further,

l*)™" = sl = 9™ = (97 = |9 Is* - v*[ (s9)7*] = df(1-4)-
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Hence U —(U*)!| £ |U -S| + |s — (U*)~!|| < d(2 — d)/(1 — d). Finally,
by Lemma 1.1 a) and (1.3) we have |I — (UU*)!2|| < (2 + d) d and [(UU*)"/?| <
<1 + (2 + d) d, therefore
A (0l (e e =
= |1 = (U] Ju] + (v Ju - u9)*] < 6d.
This proves (1.2).

Let D be a constant such that if U, V are elements of Matr (r) with |U[ < 2,
[V] = 2, then ]Det(U) Det (V)| < D|U - V|. Let 4 = {U; U € Matr (n) and
dist (U, SY(n)) < min (3, 133)}- Let U € A. By (1.2) we have
[Det ((UU*)"/* (U*)~") — Det (U)| £ D 6 dist (U, SY(n)). Hence
(1.4) |Det (UU*)Y2 (U*)™") — 1| £ 7D dist (U, SY(n)) < %.
Since (UU*)'/2 (U*)™! belongs to Y(n), |Det (UU*)"/2 (U*)™")| = 1. Let y be the
real number with the smallest absolute value satisfying Det((UU*)"/? (U*)™?) = €.
Due to (1.4), y belongs to {—3nr, 4n). Let us denote (Det (UU*)!/? (U*)~ 1))~ 1" =
= ¢"”". Obviously, |e™"" — 1| < |e"” — 1], and therefore we have by (1.4):
(1.5) |(Det (UU*)*2 (U*)~1))~ 1" — 1| < 7D dist (U, SY(n)) .

Let us define a function #: A — Matr (n) as follows.
(1.6) #(U) = (Det (UU*)Y/2 (U*)~Y))~ 1" (UU*)Y/2 (U*) .

Lemma 1.3. The values of # belong to SY(n) and for all Ue A
1.7) |U — #(U)| < 13 p dist (U, SY(n)).

(Of course, in the real case (1.6) reduces to #'(U) = (UU*)"/2 (U*)"1)

Proof. By the previous lemma, the matrix (UU*)'/? (U*)™! is an element of Y(n),
consequently #°(U) is an element of SY(n) and the norm of (UU*)"/2 (U*)~! equals
1. By (1.2) and (1.5) the following inequality holds:

[v-#»@) = v - @usz@)™] +
+ |(Det (U*)2 (U*)~ 1)~ — 1] |(UU*)* (U7 <
< 6dist (U, SY(n)) + 7D dist (U, SY(n)) ;
this implies (1.7) since D is greater or equal to 1.

Theorem 1.1. Let F:<0,1)" » SY(n) be a continuous function. For each n > 0
there exists a function H: 0, 1)" — SY(n) which is of the class C™ and satisfies
I — F| < n.

Proof. We can find a function Fy: <0, 1)" — Matr (n) which is of the class C

and satisfies
1 1
|F = Fo| < min T
9 14D 26D
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Let us define H = #'(F,). Then H has values in SY(n), it is of the class C(=) and for
each x e <0, 1)", by (1.7) we have

[H(x) — Fo(x)| < 13D dist (Fy(x), S¥(n)) .

Further, dist (Fo(x), SY(n)) < [|Fo(x) — F(x)| < 7/26D. Hence |H — F| <
S |H = Fo| + |Fo — F|| < n.

2. Let m be a natural number greater that 1. We shall prove some theorems about
extensions of functions, which are defined on 9<0, 1)™ and have values in SY(n),
to the whole <0, 1)™.

Let £ be a function and ¢ > 0 a constant, &£: <0, 1) x {U: U € Matr (n) and
|[U - I| £ 6} - Matr (n), such that for each U € Matr (n), |[U — I| < g,

(2.1) 2(1,U)=U and £(0,U)=1I;

for all Be 0, 1) the equality £(B,I) = I holds and whenever U is an element of
SY(n), also Z(B, U) is an element of SY(n); further, & is of the class C®,

Let S > 1 be a constant bounding the norms of the first and second differential
of the function % on Dom (£).
(For example, £(B, U) = #(I + B(U — I)) + B(U — #'(U)), ¢ = min (1/9, 1/14D).)

Theorem 2.1. Let {5 > & > 0. There exists a number Q = Q(e, m) (depending

on ¢ and m only), such that if L> 1 and F,: 9(<0, 1)™) —» SY(n), F,: <0, 1)™ —
— SY(n) are functions from KZ(g) with continuous second derivatives w.r.t. their
domains and such that

(2.2) HaF !
X

(23) [F1 = Falsco,1oml < @,

then there exists a function F:{0,1)™ — SY(n) from KZ(e) with continuous
second derivatives, extending F, and satisfying

<L for i=12 and j=1,...,m,

(2.4) oF SQL for j=1,...,m,
Ox;
2 2 2
(2.5) oF so(r*+ oF, | .Z°F- for i,j=1,...,m.
0x; 0x; 0x; 0x; Haxi Ox;

Proof. Let us denote 4 = {xe<0, 1)™; dist (x, 6(<0, 1>™)) < &}. Let g: 4 —
- <0, 1) be a function such that (see Fig. 3)

(2.6) g(x) =1 for xe4:dist(x,d(0, 1D™) £ ¢f2,
g(x) =0 for xe 4:dist(x, 8(<0, 1)™)) = 910,
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and g has continuous first and second derivatives on 4 bounded by a constant
G = G(e, m) (depending on & and m).

Fig. (m = 2): "
4 9 =1
P
2—
Fig. 3 <0’1> 4

We define a function Fy: 4 — SY(n) by
(27) FyeKZ(e) and F,(x) = F,(x) for xed(<0,1)™).
It is easily verified that F, is well defined, has continuous first and second derivatives
on 4, norms of the first derivatives are bounded by L, the second derivatives satisfy

25 2

29) °F, O°F,
0x; 0x; 0x; 0x;
and that the properties F;, F, € KZ(g) and (2.3) imply the inequality |F; — F,|,] =
= o.

The last inequality implies that for each x €4, |Fy(x) F3(x) — I| £ |Fy(x) —
— Fy(x)|| [F5(x)|] < o; thus we can define
(2.9 F(x) = Fy(x) for xe<0,1)™— 4,

ZL(9(x), Fy(x) F5(x)) Fo(x) for xed.

Then F is a function from <0, 1>™ to SY(n) and for x € <0, 1™, dist (x, (<0, 1>™)) <
< 4e we have by (2.6) and (2.1), F(x) = Z(1, F,(x) F5(x)) F5(x) = Fy(x). Consi-
dering (2.7) we see that F extends F; and belongs to KZ(3e).

Obviously, the function F has continuous second derivatives at all points x which
satisfy dist (x, 8(<0, 1)™)) # &, since for such x the function F is defined on some
neighbourhood by only one of the equalities (2.9), and the functions F,, &, g and F,
have continuous second derivatives. If dist (x, (<0, 1>™)) = ¢, then we see by (2.6)
and (2.1) that on the set {y € 0, 1>™; ||x — y|| < &/10} the function F equals F,;
therefore F has continuous second derivatives everywhere.

for i,j=1,...,m,

Considering that the norms of the first and second differential of # are bounded
by S and the first and second derivatives of g by G, we get from (2.9):

QI—?— <L+ S.2L+SG for i=1,....m,
0x;
2 2
OF | < | F + SG* + SG(6L + 1) + 10SI? +
Ox; 0x; Ox; 0x;
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0F,
Ox; 0x;

52F?
axi 5xj

+s( )
fori,j=1,...,m.

Since the norms of the second derivatives of F; are bounded in the same way as
the norms of the corresponding second derivatives of F,, considering (2.8) and the

inequalities I? > L > 1 we see that (2.4) and (2.5) hold for Q = 10S + 7SG + SG* +
+ 1.

Theorem 2.2. Let 75 > ¢ > 0 and let Fy: 3(<0, 1)™) — SY(n) be a function from
KZ(g) which has continuous second derivatives w.r.t. its domain and such that it
is possible to extend F, to a continuous function defined on <0, 1)™ and with values
in SY(n). Then there is an extension F: 0, 1™ — SY(n) of the function F which
belongs to KZ(¢[8) and has continuous second derivatives on <0, 1)™.

Proof. Let E: 0, 1)™ — SY(n) be any continuous extension of F,. By Theorem 1.1
there is a function G: <0, 1)™ — SY(n) of the class C satisfying |E — G| £ 0.
Let s be the natural number such that &, < &¢ < 2e,. (Constants ¢ and functions ¥,
are defined in § 3 of Chapter IIL Let us recall that for x = (xy, ..., X,,) the symbol
¥(x) denotes (Y(x,), ..., Ys(xm)).) Let us define the function F,:<0, 1)™ — SY(n)
by F,(x) = G(¥(x)) for x€<0, 1)™. Lemma III.3.2 implies that F, belongs to
KZ(g,s ). We shall show that |F, — F,|,0.1ym| < o. The function F; belongs
to KZ(e), i.e. also to KZ(g,). Therefore by Lemma II1.3.2 again, F,(x) = F,(¥(x))
for all x € 8(<0, 1)™). Thus the inequality |E — G| < o yields

0 2 |[Elsco,15m) = Glao,1ymll = [F1 = Glaco,1yml =

= "Fx - G"”s!a«o,l)'")” = HF1 - F2|a(<o.1>"-)" <

Both functions F: (<0, 1>™) — SY(n) and F,: 0, 1>™ — SY(n) belong to KZ(e,+ ),
therefore to KZ(&/4), and have continuous second derivtives w.r.t. their domains.

Theorem 2.1 implies that there exists a function F: <0, 1)™ — SY(n) from KZ(g/8),
which extends F, and has continuous second derivatives.

Theorem 2.3. Let % > ¢ > 0 and L> 1. There exists a constant A = A(L, &, m)
(depending on L, ¢ and m), such that the following holds.
Let F:9(<0,1)™) - SY(n) be a continuous function from KZ(g) which can be

extended to a continuous function from <0, 1)™ to SY(n),and which has continuous
first and second derivatives w.r.t. 3(<0, 1)™) satisfying

(2.10) Flal for i=1,...m,
0x;
2
@.11) OF l<r for i=1t,..om.
0x, 0x;

Then there exists a function H: {0, 1>™ — SY(n) which extends F, belongs to
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KZ(¢/16) and has continuous first and second derivatives satisfying

(2.12) oH <A for i=1,....m,
0x;
2
(2.13) OH <A for i=1,...,m.
0x4 0x;

Proof. Let us assume that the theorem is false. Let F,: (<0, 1)™) - SY(n),
k e N, be a sequence of functions satisfying the conditions of the theorem and such
that there are no extensions of F, to functions from <0, 1>™ to SY(n) which belong
to KZ(¢/16) and have continuous first and second derivatives, while all the first
derivatives and the second derivatives by x; and x;, i = 1, ..., m, have norms bounded
by k.

Since all functions F, satisfy (2.10), we can select a Cauchy subsequence from
them. We shall assume that already {F,; k e N} is a Cauchy sequence. Let k, be
a natural number such that for each k = ko, |F; — Fy,| < 0. By the previous
theorem there is a function E: €0, 1)™ — SY(n) which belongs to KZ(g[8), extends
F,, and has continuous first and second derivatives. Let us denote by V' = L the
constant which bounds norms of all first and second derivatives of the function E.
Let Q = Q(¢/8, m) be the constant from Theorem 2.1. Let k > k,. Both functions
F;: 8(<0, 1>™) - SY(n) and E: <0, 1)™ — SY(n) belong to KZ(&/8), have continuous
second derivatives w.r.t. their domains and norms of their first derivatives are
bounded by V. Further,

0%F,

0x4 0x;

’E
0x, 0x;

(2.14) <V and <V for i=1,...,m.

Since E|yo,1ym = Fy,» the inequality |Fy — Elsco,1ym| < o holds.
By Theorem 2.1, for each k 2 k, there is a function H,: <0, 1)™ — SY(n) which
has continuous second derivatives, belongs to KZ(¢/16), extends F, and satisfies

(cf. (2.14))
oH,
ax;

0%*H,
0x, Ox;

< QV and SQ(V*+2v) for i=1,...,m.

i

This is a contradiction since for some k we have k > Q(V? + 2V), therefore H, is
an extension of F, with the properties we assumed it can not have.

3. Now we shall prove two lemmas about extensions of functions defined on
(0, 1)™) and with values in SY(n) to the whole <0, 1)™ for m = 2, 3. We shall use
the following facts about homotopy groups =, and 7, of manifolds SY(n) (see[ HUT):

n,(SO(n)) = Z, and =,(SU(n)) = n,(SU(n)) = n,(SO(n)) = 0.

(Recall that n > 2 in the real case and n > 1 in the complex case.)
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Let 71: <0, 1) — 9(<0, 1)?) be the function defined as follows (see Fig. 4):

n(x) =(3x,0  for xe<0,%), !
(1,3x — 1) for xe(} %, |
(3-=13x,1) for xe(31). n ;

I
{
Fig. 4 l--—-—-l..n...l...........; | 5,

The function y, is a continuous and bijective mapping of <0, 1) onto 9(<0, 1)%) —
- {(yl, ¥2); ¥1 =0, y,€(0,1)}. This is the domain of the inverse function y;*
which is also continuous.

Let y: <0, 132 — <0, 1)2 be defined as follows (see Fig. 5):

'}’(1, x) = yl(x) Xy %
for xe<0,1),

(0, x) = (0,§ + J—;)

e e e e o e e ]
H
/

for xe0,1), N
(B, x) = (1 = B) %(0, x) + \\
+ (1, x) R = Dy
2 . Yo
for B,xe<(0,1). Fig. 5

Then y and y~! are continuous bijective mappings of <0, 12 onto <0, 1)2.

Lemma 3.1. Let F:9(0,1)%) — SY(n) be a continuous function such that
F(0,y,) =1 for y,€<0,%> U {3, 1), and such that Fy, is homotopic with the
function F,: 0, 1y - SY(n), where F,(x) = F(0, (x + 1)/3) for xe€<0,1). Then
F can be extended to a continuous function with the domain {0, 1)% and with
values in SY(n).

Proof. Let H: €0, 1)*> - SY(n) be a homotopy of F,, and F,, i.e.
H(1,x) = F,(x) and H(0, x) = F,(x) = F(0, (x + 1)/3) for xe<0,1),
H(B,0) = H(p,1) =1 for Be<0,1).

Since 7! is continuous, Hy~! is a continuous extension of F.

Lemma 3.2. Let F:9(<0,1)%) —» SY(n) be a continuous function such that
F(0, 2, y3) = I for y;, y3 €0, 1). Then F can be extended to a continuous function
with the domain 0, 1> and with values in SY(n).

Proof. Since the proof is similar to that of the previous lemma, we shall only
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sketch it. We define mappings #, and # analogously to y, and 7; 7, is sketched in
Fig. 6

:

Ve
s

i

Vo
’

My

Fig. 6
and n: €0, 1>® - <0, 1)3 is defined as follows:
'I(l, X1s xz) = 'h(xu xz) for (xx, xz) e <0, 12,

'I(O’ X1, Xz) = (0’ xhl:—l > ﬂ%&) for (xb xz) €0, 1)%,

’l(ﬂ’ X1, xz) = (1 - ﬁ) 'I(O, X1 xz) + .371(1, X1s xz)
for Be(0,1)> and <{x,,x,)» €0, 1.

Then 5 and n~! are continuous bijective mappings of <0, 1)>3 onto <0, 1)3. Since
n,(SY(n)) is trivial, the function Fn, is homotopic with the function F,: €0, 1)% —
- SY(n),

Fz(xuxz):I:F(O, xl: 1,26%1).

Let H be a homotopy of Fn, and F,. The function Hn~! is the desired extension of F.

4. Now we shall prove that SY(r) belongs to EP(1). Let us denote by g,: <0, 1) —
— SY(n) the function such that go(x) =1I for each x € <0, 1>. Let g4:<0, 1) — SO(n)
be a function which satisfies g,(0) = g,(1) = I, is not homotopic with g,, belongs
to KZ(35) and has a continuous second derivative; let I' > 0 be such that

2
(4.1) ndﬂ 49,

§F5 5
dx

s=r.

dx?

By the above mentioned property of the group =, for SY(n) we see that every function
g: <0, 1) - SY(n), g(0) = g(1) = I, is in the complex case homotoppic with g,,
and in the real case homotopic either with g, or with g,. The next lemma follows
again from the fact that =,(SY(n)) is either 0 or Z,.

Lemma 4.1. a) Let g: <0, 1> - SY(n), g(0) = g(1) = I. If f is defined by f(x) =
= g(l — x) for each x € {0, 1), then f is homoropic with g.

b) Let g: <0, m) - SY(n)(me N) be a function such that g(k) =1 for each
ke {0, 1,..., m} Then the number of all k < m for which gl<,‘_k+ 1y is homotopic
with g, is even iff the function g(x|/m) is homotopic with g,.
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Let L2 1 and let g: €0, 1> — SY(n), g(0) = g(1) = I, be a function with a con-
tinuous second derivative, which is homotopic with g, and satismes [dg/dx| < L.
Let I be a natural number such that

(4.2) I-1<L<I.

Let us denote by 7: <0, I) - SY(n) the function defined by g(x) = g(x/l). Then g
has a continuous second derivative and

(43) 99

dx
We shall transform g in three steps to the function identically equal to I. First
we approximate g by a function which is coordinatewise constant in some neigh-
bourhood of integers (see Ch. II, § 4), using the function ¥; with a suitable j (see
Ch. III, § 3). Let j be a natural number such that

(4.4 g < of2.

<1.

(In this section we shall use only ¢; < o. (4.4) as it is will be needed in the proof
that SY(n) € EP(2).)
Let G: €0, 1> — SY(n) be defined as follows:
“3) 6 = a([<] + ¥,(x).
The function G has a continuous second derivative and due to (4.3) and (II1.3.2) the
following inequality holds:
de

(4.6) -

By Lemma II1.3.2 the function G belongs to KZ(g;. ). Moreover, G(0) = I = G(I).
Further, we have by (4.3) and (4.5) for each x € €0, I):

16(x) — Gl = 1%:({x}) = (=} -
therefore by (4.4) and Lemma II1.3.1
(4.7) [6—g]|<e<o.

éPj.

Hence we have ||g(x) G*(x) — I| < o for each x € {0, I). Therefore we can define
the function T;: <0, 1) x <0, I) - SY(n) by

(4.8) Ti(B, x) = L(¥(B). 3(x) G*(x)) G(x) -

For x € {0,1> we have

(4.9 Ty(1, x) = g(x) and Ty(0, x) = G(x)
and also

(4.10) T(,0) = Ty(B,)) =I for Be<0,1).
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The function T, has continuous second derivatives and the following estimates hold:

(4.11) 5

<SP, < 35%P2,

p < S(P; + 1) + P; < 35%P;,
X

e

ox 0B
Let xe R, { = min {g;,,, d/(2P;)}, @: R — <0, o) of class C®, supp ¢ =
= {=1/2,1/2), [ro(x)dx = 1, |do[dx| < x, |d%p[dx?| < x. Put G(x) =1 for
x < 0 and for x > [,

(4.12) Gy(x) = {7 [rG(Y) @(C(x — y))dy for xe0,1).

By the choice of {, (4.6) and (4.12) we have ||G,(x) — G(x)|| < ¢ for x &0, I).

Moreover, G,(0) = I = G,(I) and G, € KZ(g,, ,), since G € KZ(¢;,,) and { < ¢;,,.
From (4.12) we obtain

< P;S*(P; + 1) + P;SP; < 3S8%P; .

2
(4.13) ‘% <P, ‘_1(1_;2_ <272,
Put
(4.14) T8, %) = L(¥5+1(B), G(x) G3(x)) Ga(x) -
We have T; € KZ(g; ),

(4.15) Ty(1,x) = G(x), T,(0,x) = G,(x) for xe<0,1),

T,(8,0) =1 = T,(B,1) for Be<0,1),

oT.

(4.16) 3; < SP; < 38%P2,

< S(P; + 1) + P, < 35%P},

0x
o%T,
B ox

Next we shall transform G, to a function which is equal to I for each natural
number from <0, Iy. We shall define T;: <0, 1> x <0, I> - SY(n) (see Fig. 7):

“27_"2

< P;S¥(P; + 1) + P;SP; < 35°P} .

(4.17) Ty(1, x) = G,(x) for xe<0,1y,
(4.18) Ty(8,0) = Tz(B, 1) =1 for Be0,1),
(4.19) Ty(0,x) =1 for xe<k,k+4)u<k+3% k+1> and

ke{0,1,...,1 = 1.
For ke{1,....1 — 1} let T5(B, k): <0, 1) —» SY¥(n) be a function transforming G,(k)
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into I by Lemma IIL4.3, ie. T5(1, k) = G,(k) and T;(0, k) = I, and T(B, k) as
a continuous second derivative and the norm of the first and second derivatives are
bounded by 6Pjn* Finally, for xe <k + 4, k + %), where ke{0,1,....,1 — 1},
we define T3(0, x) according to the homotopy class of the function fi: <0, 1> -
= SY(n), fu(x) = Ts(ys(x) + (0, k)):
(4.20) T3(0, x) = I = go(3x — 1 — 3k), if f, is homotopic with g, ,

9:(3x — 1 — 3k), if f; is homotopic with g, .

T3(0, x) as a function of x belongs to KZ(55), has a continuous second derivative
and the norm of the first derivative is bounded by 3I" because of (4.1).

Up to now, we have defined T; for those points from <0, 1> x <0, I) which have
at least one integer coordinate. T; has continuous second derivatives w.r.t. this
domain, belongs to KZ(;+,) and the norms of its first and second derivatives are
bounded by the constant max {x2{ %, 3S2P}, 6P3n?, 3I'}. Due to (4.20), the function
T, can be extended, by Lemma 3.1, on each square (0, 1) x <k, k + 1), where
ke{0,1,...,1 — 1}. Therefore T; can be extended on each such square, by Theorem
2.3, so that the resulting function Tj:<0, 1) x <k, k + 1> - SY(n) belongs to
KZ((g;+2)/16), has continuous second derivatives and when denoting by A4, =
= A(max {%*{"2, 3P}, 6P3n?, 3T}, ¢;,,,2) the constant from Theorem 2.3, we
have
oT,
ap

The function T3, being an element of KZ((¢;.,)/16), does not depend on x in some
neighbourhoods of the points (B, k) (on the common boundaries of two squares).
Therefore T, has continuous second derivatives and satisfies (4.21) on the whole
domain <0, 15 x <0, I3.

Now we shall consider the function ?:<0, 1) — SY(n), #(x) = Ty(0, x). The
function #(x/l) is homotopic with g, (a homotopy between them can be obtained
using Ty, T, and the homotopy between g and g,), therefore by Lemma 4.1 b) the
number of intervals <k, k + 1), ke {0, 1, ..., I — 1}, such that #|, ., ;, is homotopic
with g;, is even. We shall use this property to construct a function T: <0, 1) x
x €0, 1) - SY(n), which will transform ¢ to the function identically equal to I.
The construction of T, is similar to that of T;. We define

o,

0x

0%T,
0B ox

> > éAO‘

(4.21)

(4.22) Ty(1, %) = t(x) for xe<0,1),

(4.23) T, (0,x) =1 for xe<0,1)

and for ke {0, 1,...,I} and Be<0, 1)

(4.24) T,(B, k) = I, if the number of m < k such that |, ., s

is homotopic with g, is even,
g1(B) otherwise.
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Due to the above mentioned property of the function ¢, we have

(4.25) T.(B,0) = T,(B,1) =1 for Bel0,1).

We have defined T, for those points from <0, 1) x <0, I) which have at least one
integer coordinate. T, has continuous second derivatives, belongs to KZ(ll—o) and the
norms of its first derivatives are bounded by 3I.

By (4.22) and (4.24) we see that for each ke {0, 1,...,1 — 1} the function h;:
0,1y - SY(n), h(x) = Ty(ys(x) + (0, k), is homotopic with g,. Similarly as
with T3, using Lemma 3.1 and Theorem 2.3, we get an extension Ty: <0, 1) x
x €0, Iy = SY(n), which belongs to KZ(;55), has continuous second derivatives,
and if 4, = A(3T, %, 2) is the constant from Theorem 2.3 then the following
estimates hold:
(4:20) ) ‘a_T:‘ IT,
aB ox op ox

Now we can define a homotopy H: <0, 1) x <0,1> —» SY(n) of the functions g
and g,:

<4

’ = 1-

H(B,x) = Ty(4B — 3,Ix) for Be<3 1),
T,(48 — 2, Ix) for Be<l}, %,
T;(4 — 1,Ix) for Be<} b,
T.(4B, Ix) for Be0,%).
Then we have by (4.9) and (4.23):
H(1, x) = Ty(1, Ix) = g(Ix) = g(x) for x€e<0,1>,
H(0,x) = T,(0,Ix) = I = go(x)  for xe<0,1),
and by (4.10), (4.15), (4.18) and (4.25), H(B, 0) = H(B, 1) = I for each Be <0, 1).
The function T, belongs to KZ(g;,), T; belongs to KZ((¢;,)/16) and T, belongs
to KZ(%(;). Therefore these functions do not depend on B in some neighbourhoods
of points whose f-coordinate is either 0 or 1. From (4.8) and (IIL.3.3) we see that T,
has the same property. Hence H does not depend on f in some neighbourhoods of
points whose f-coordinate is % or § or 3. Consequently, the fact that Ty, T,, T3 and T,
have continuous second derivatives implies that also H has continuous second
derivatives.
Considering the definition of H and (4.11), (4.16), (4.21) and (4.26) we get the
following estimates:

Ha—P—I“ < 4 max {Ao, Ay, 3SZPJ?} R I.?_{I_" < Imax {4,, 4, 3SZPJZ}
op 0x .

and

0’H
op ox

By (4.2), 2L I. Let us denote ¢ = 8 max {4,, 4,, 3S?P}}. We have shown that
for any L > 1 and any function g: <0, 1> — S¥(n), g(0) = g(1) = I, which is homo-

I < 4l max {4,, 4, 3S*P;}} .
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topic with g,, has a continuous second derivative and the norm of the first derivative
bounded by L, there exists a homotopy H of functions g and g, of the class C(?),

satisfying
o0H
op

Therefore SY(n) has the property EP(1).

0*H
op ox

o0H
0x

<c¢ and < cL.

2

5. This section contains the proof that SY(n) belongs to EP(2). We shall only
sketch it since it is analogous to the proof that SY(n) belongs to EP(1).

Let us denote by Go: <0, 1)*> > SY(n) the function identically equal to I. Since
n,(SY(n)) = 0, each function g: <0, 1>* - SY(n), g(x) = I for x e 9(<0, 1)?), is
homotopic with G,.

Let L > 1 and let g: <0, 1>* - SY(n), g(x) = I for x € (<0, 1)?), be a function
of the class C® satisfying [|0g/0x;|| < Lfor i = 1,2. Let I be the natural number
such that
(5.1) l-1<LZI,

Recall that for x = (x4, X2), x/l = (x,/1, x,/I). Let us denote by g: <0, I)*> — SY(n)
the function defined by g(x) = g(x/l). Then 7 is again of the class C® and
(5.2) %

ox,
Given g, we define G: €0, [)?> - SY(n) by (4.5) and T: €0, 1) x <0, I)*> > SY(n)
by (4.8) (we have |G(x) — 7(x)| < o). These functions have continuous second
derivatives and satisfy

<1 for i=12.

(5.3 % SP; for i=1,2,
0x;
(5.4 Ty(1,x) = g(x) for xe<0,1)?,
(5.5 T,(0, x) = G(x) for xe<0,1)?,
(5.6) T,(8,x) =1 for xed(<0,1»?) and Be<0,1),
0 2
(5.7 oM o ,l—ai < 38%P} for i=1,2.
8| lox, | |28 ox,

Moreover, G € KZ(¢; ), G(x) = I for x € (€0, I)?). Therefore we may put G(x) = I
for x € R? — 0, I)2. Define

Gz(x) ={? _[xz G(.V) o(C (s — ¥1) (L (x2 = y2)) dy, dy, for xe<0,1)>.
Analogously as in the previous section we get
[G2(¥) — G(x)| < o for xe<0,1)?,
0G,
0x; 0x,

<P

(5.8) u@ <P, <7, i he{l,2}.

0x;
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Moreover, G, €KZ(t;,,). Define T, by (4.14). We have again T, e KZ(g;,,),
T,(1, x) = G(x), T»(0, x) = G,(x) for x e €0, I)?,

(5.9) T,(B,x) =1 for Be(0,1), xed(<0,?),
2
(5.10) T , T , T <38%P, i=1,2.
ap | lox; || ||op ox,

Let us recall that S? is the set of all x € R? such that at least one coordinate of x
is an integer (see § 1 in Chapter II). We shall define functions Ty and Tj:
0, 1> x (0, 1y* n S) = SY(n). First, let T; be defined as follows (see Fig. 7):

- o

..-......-:,a_-..__ ______
rd
v ’/‘ -
i - e
i i e
/:. . ~ P
,,” k1 T ,r"’k
0 k, I
Fig. 7
(5.11) Ti(1, x) = Gy(x), T5(0,x) =1 for xe<0,?,
(5.12) T5(B,x) =1 for xed(<0,1)?) and Be<0,1);

for k = (ky, k,), where ki, kye{1,...,1 — 1}, let T5(B, k) be the transformation
of G(k) to I from Lemma I11.4.3. For a fixed k, € {1,...,] — 1} we extend T3 on
0, 1) x {k;} x <0, 1) and for a fixed k, € {1, ..., ] — 1} we extend T; on €0, 1) x
x €0, Iy x {k,} inthe same way as we extended T, on €0, 1) x <0, I} in the previous
section.

Let ky, k, €{0,1, ..., I} and let 7: €0, k; + k> — SY(n) be the function defined as

©(x) = T3(0, x, k;) for xe<0,ky),
T3(0, kl’ kl + k2 - x) for xe <k1, k2> .

The function t(x/(k; + k,)) is homotopic with g, (we can find a homotopy of these
functions using T, T,, T; and a homotopy of g and g,). By Lemma 4.1 b), the number
of all m < k, + k, for which 1|<m,m+1> is homotopic with g,, is even. Define ¢, ¢,:
0, I> - SY(n), t,(x) = T5(0, k,, x) and t,(x) = T5(0, x, k,). By Lemma 4.1 a) we
see that the number of m < k, for which tzkm,m +1y is homotopic with g, is even, iff

the number of m < k, for which tll<,,,.,,, +1y is homotopic with g,, is even.
Hence we can define:

(5.13) Ty(1, x) = T4(0,x) for xe<0,1»*n S},
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(5.14) T,0,x) =1 for xe<0,[>*n 5%,
(5.15) TiB, x) =1 for xed(<0,1»?) and Be0,1),
and extend the function T, for a fixed k, €{1,...,1 — 1} on the whole 0, 1) x
x {k;} x 0,1, and for a fixed k, on the whole <0, 1> x <0, 1) x {k,} by the
same method by which we extended T} in the previous section on the whole <0, 1) x
x <0, I>.

The functions Ty and T, are defined on <0, 1) x (0, [>* n S?), have continuous
second derivatives w.r.t. their domains, belong to KZ((¢;+)/16) and satisfy:

6Tk aTk 62'1‘,‘
B 6ﬁ6
for k=2,3 and i=1,2.

Now we shall define the function T for those points from €0, 1> x <0, I>2, which
have at least one integer coordinate:

(5.17) T(1, x) = G(x) for xe€<0,1)*,
T5(0,x) =1 for xe<0, )2,

Ts(B,x) = T;(2p — 1,x) for Be<}, 1) and xe<0,1)*n 8%,

T4(28, x) for fe<0,4> and xe<0,1)2n S2.

T, is a continuous function, belongs to KZ(e;,,/(2 . 16)), has continuous second
derivatives w.r.t. its domain and by (5.16) and (5.3) the following estimates hold for
i=1,2:

(5.16) < max (4o, 4,)

2
(5.18) aTS 0T < 2 max {4, 4},
6[3 0x; )
2
oTs < max {4,, 4,, P;}, ITs < 2.
0x; 0x; 0x,

By Lemma 3.2 we can extend the function T for each ky,k,€{0,1,...,1 — 1}
on the whole <0, 1> x <k, k; + 1) x (k,, k, + 1). Using Theorem 2.3 we can
get an extension Ts: €0, 1) x <0, I>* » SY(n), which belongs to KZ(g;.,/(2.16.16)),
has continuous second derivatives and if we put 4, = 4(2 max {Aq, Ay, P, xZC‘z},
(¢;4+2)/(2 . 16), 3), the following estimates hold:

'8T5 oTs| | 2°Ts

(5.19) <A, for i=1,2.

ap " |68 ox;

Now we can define a homotopy of g and G,. Let H: <0, 1) x <0,1)>? —» SY(n),
H(B,x) = T,(36 — 2.1x) for Be<3 1>, xe<0,1)?,

T,(38 — 1,Ix) for Bed3, 3>, xe<0,1)?,

Ts(3B, Ix) for Be<0,4), xe0,1>2.
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By (5.4), (5.10) and (5.17) we have
H(1,x) = Ty(1, Ix) = g(Ix) = g(x) for xe<0,1)?,

H(0, x) = T5(0, Ix) = I = Gy(x)

and by (5.17), (5.15), (5.12), (5.9) and (5.6),
H(,x) =1 for Be{0,1) and xed(<0,1)?).
By (5.19), (5.10) and (5.7) we can estimate

IIZTI;H < 3 max {35%P3, 4,},

0’H
op ox;

< 3l'max {35%P3}, 4,} for i

for xe<0,1>?,

gi{" < I'max {38?P% 4,} and
Xi

Since I < 2L, the constant ¢ = 6 max {3SP3, A,} is the desired constant c(SY(n), 2)
from Definition 1.2.3, therefore SY(n) € EP(2).
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