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1. INTRODUCTION

We consider nonlinear differential equations of the form

(1) y® 4+ f(t,y) =0, nxz2,

where f:[0, 00) x R — (0, 00) is continuous and nondecreasing in the second
variable. In some of the results presented below the following condition will be
needed:

(2) limf(t,y) =0 foreach te[0, ).

y> -

A prototype of such equations is

(3) Y@+ pit)exp (|y1y) = 0,
where y > 0 is a constant and p: [0, w0) — (0, o) is a continuous function.

We are concerned with the asymptotic behavior of solutions of equation (1).
We begin by observing that all solutions of (1) can be continued indefinitely to the
right; more precisely, for any a = 0 and (7o, 71, ..., ,—1) € R", the solution y()

" of (1) satisfying the initial conditions

(4) ya)=mn;, i=01,...,n—1,
exists throughout the interval [a, o). In fact, let [a, T) be the maximal interval of

existence of y(f) and suppose that T < oo. Since y™(t) = —f(t, y(t)) < 0, y®"~ 1))

is decreasing and lim y®~")(t) = —oo. It follows that lim y(¢) exists in R U {— o0},
t=>T~ t>T~—

and so there are constants ¢ and t, € (a, T) such that y(t) < ¢ for t € [ty, T). In-
tegrating (1) and using this inequality, we have

YO (to) = yO7() = [i, £(s, ¥(5)) ds < [, £(5, ¢) ds
which in the limit as t - T— gives

o = [ff(s,c)ds < .

498



This contradiction shows that T must be oo, that is, y(f) exists on the entire interval
[a, o).

Let a > 0 be fixed and let S denote the set of all solutions of (1) existing on [a, o).
To classify S according to orders of increase or decrease of its members as t — oo
we introduce the following notation:

(i) S ={yeS:y® o) = lim y®~ () > 0},
t—=
S ={yeS:y" () < 0},
Sgt = {yeS: y" o) = 0};

(i) for k=1,2,..,n -2,

S ={yeS:y" o) = ... = y**(w) = 0, y¥(0) > 0},
St ={yeS:y" N w) = ... = y** ) =0, y¥(a0) < 0},
Se = {yeS:y" N w) = ... =y Now) = y®(0) = 0};

(iii) for k=1,2,....,n— 1,
Sty = {yesh:y®(w) < 0}, 5%, ={yeSh:y®(w)= o},
Sty ={yest:y®(w) > —oo}, S5, ={yeS:y®(ow0) = —w0}.
If yeS, then y® 1(1) is decreasing, so that y“~"(o0) exists in R U {—oo}. It
may happen that ye S, ye Sa™! or ye S"7*, that is, we have a decomposition

(5) S=s7'usTtusy,
where
(6) Syl =800, STl =8 ustt.

Let y e S5~". Then, y"" (1) > 0 on [a, ), and so y® (t) is increasing and
¥ (o) exists in R U {o0}. Therefore,

(7) SpTt=8TrusTrus
where
(8) S =8P us, ST =S

From (5) and (7) it follows that
S=(Sy'usyHu(sTusThu sy,
where S%7" and S%? satisfy (6) and (8). Next we express Sp~ > as the union of

S%72,8"73 and S§3, and then analyse S§~>. Continuing in this manner, we arrive
at a decomposition

) S=(Sy'usy?Pu.uSh)u(ST usTPuLuSt)u sy,
where

(10) St =58%, St =58,08, for n#%k(mod2),
(11) St =84, usy,, St =58, for n=k(mod2).

Finally, noting that in case n is even [resp. odd] y e Sg satisfies y'(t) > O [resp.

499



y'(t) < 0] for all large t, we can decompose Sg as follows:

(12) Se =SyuSS for n even,
(13) So=SyuS® for n odd,
where

(14) 5% = 8%, = {yeSp: y(0) = w0},

S2 =8%, ={yeSy: y(0) = -0},
Sy ={yeSp: —o < y(w) < o} .

This leads us to a refinement of (9):

(15) S=(Sy'usSyPu..uSsiuS)usyu
(ST uST?u...uSLl) for n even,
(16) S=(ST'uSTru. USL)uSiu

u(STtuST?u...uStuSY) for noodd.

The objective of this paper is to establish criteria for the existence (or nonexistence)
of members of the subclasses of S appearing in (15) and (16), and then to obtain
detailed information about the structure of the solution set of equation (1). Our main
tool is the Schauder-Tychonoff fixed point theorem applied to a nonlinear integral
equation whose solution gives rise to a solution of (1) belonging to one of the sub-
classes under consideration. We present examples illustrating the main results, and
show that our theory is applicable to the qualitative study of certain semilinear
elliptic equations in exterior domains.

The qualitative behavior of equations of the form (1) generalizing the Emden-
Fowler equation

(17) yO + p(t) [y['sgny =0, nz=2,

with y > 0 and p: [0, o0) — (0, 00) continuous, has been investigated in great
detail by many authors; see, for example, the papers [1—3, 6—11]. However,
equation (1) in our setting seems to have been ignored in the literature, and the
present work was motivated by this observation. For the first attempt in this direction
we refer to the paper [5] dealing with the equation (p(t) y')’ + f(t, y, y') = 0.

2. MAIN RESULTS

A. We start with the analysis of $%7 ' U S"™ .

Theorem 1. The class S"™* is always nonempty.

Proof. It is clear that any solution () of (1) satisfying (4) with n,_, < 0 is
a member of "1,
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Theorem 2. S5 + 0 if and only if
(18) [t~ 1) dt < o for some A>0.
Proof. Let ye S™,'. Since

lim i—ly(L—— = ... =lim y® (1) = const < 0,
oo " (n = 1)1 t=m

there exist constants 2 > 0 and t, > a such that

(19) yt)yz A"t for t=1,.

On the other hand, integration of (1) shows that

(20) [2f(t, (1)) dt < 0.

Combining (19) with (20) yields (18).
Conversely, suppose that (18) holds. Let n € R be fixed. Since [ f(t,n — ct"~ ') dt
is nonincreasing in ¢ for ¢ > A, a constant ¢ > A can be chosen so that
[2f(t,n — et N)dt < ¢/2.
Let Y denote the set
Y={yeCla,0)n = 2" " S yt)Sn—ct" ', 1t 2 a}

and define the mapping F: Y — C[a, o) by

n—1 ' (t - S)n“2 *
Fy(ty=n —2et" ' + | >———| f(r,¥(r))drds, t=a.
« (=20 J§
It is easily verified that F is continuous and maps Y into a compact subset of Y, and
so F has a fixed point y € Y by the Schauder-Tychonoff fixed point theorem. Dif-
ferentiation of the integral equation y(t) = Fy(t) n times shows that y(¢) is a solution
of (1) on [a, ). Since lim y*~ 1) = —2¢(n — 1)! < 0, y{t) is a member of S";".
t—= o

Theorem 3. S™,' + 0 if and only if

(21) 2 f(t, =2 1) dt = o0 forall 2>0.
Proof. Let y e S”'. Integrating (1), we get

(22) §2 £(t, y1)) di = oo

Since

for any given 1 > O there is t, > 0 such that

(23) y(1) £ —A""t for t=t,.

The relation (21) follows from (22) and (23).

Conversely, if (21) holds, then Theorem 2 implies that S”3' = 0, and hence
S™.' % 0 by Theorem 1.
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Theorem 4. Suppose that (2) holds. Then, S, + 0 if and only if
(24) [2f(t, A" Y)dt < o for some AL >0.

Proof. Let y € S"}'. Clearly, (20) holds. There are constants 4 > 0 and #, > a
such that
y(t) = "t for t =,

which, combined with (20), yields (24).
Suppose that (24) holds. In view of (2) and the Lebesgue dominated convergence
theorem we have lim [ f(z, 7 + A"~ ') dt = 0 and hence

n—+—o0
[/ + 2" dr < 32

for some # < 0. By means of the Schauder-Tychonoff theorem the mapping

Fy(t) = n + '“"2'1 + f t (En——S);)_zz' J ? f(r,y(r)drds, t=a,

is shown to have a fixed element y in the set

n—1
Y = {yec[a,oo):n + Atz Sy snp+arth ez a}.

This fixed element y is a member of S%3", since lim y®~1(t) = A(n — 1)!/2 > 0.

t—= o

B. We now turn to the study of S% U S® for 1 < k < n — 2. Suppose that
yeSttt for 1 < k < n — 2. Repeated integration of (1) over [, o) shows that

(25) f2 = 22f(1, y(r)) dt < o

and
n—k—2

(26) yEED(1) = (_1)n—k£° (ni—%—z)Tf(s’ ys)ds, t=a,

which implies
n—k—2

(27) y®(1) — y¥(a) = (=1p~* J ‘ "’(_nr %;)_%)' f(r, y(r)drds, t=a.

A direct consequence of (27) is that
: © m—k—1 k k
a > + -b>
(28) [21 f(t, y(t))dt < 0 for yeSh,ust,
(29) [e ek 1f(t, y(t))dt = o for yeSh, uSk,,

where S%, [resp. S*,] may have a member only if n = k (mod 2) [resp. n # k

(mod 2)] (see (10) and (11)).
The situations in which S"_b + 0 and S%, # 0 can be characterized without dif-

ficulty.
Theorem 5. Let 1 < k < n — 2. Then, S*,, % 0 if and only if
(30) Je ekt f(t, —M¥)dt < w0 for some 1> 0.
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Theorem 6. (i) Let 1 < k <n -2 and n =k (mod2). Then, S, + 0 if and

only if
(31) [Py k=1 f(t, A1) dt < oo for some A > 0.

(i) Letl <k <n—2andn % k (mod 2). Suppose that (2) holds. Then, S%, + 0
if and only if (31) is satisfied.

Proof of Theorem 5. Let yeS*,. Then, we have lim y(f)/t* = const < 0,
which, combined with (28), implies (30). tw

Conversely, suppose that (30) holds. Let p(f) be an arbitrary polynomial of
degree < k — 1 and define the mapping F by

(32) F,V(t) = p(t) —ctf + (__1)n—k—1 Jt (t — S)"_l J‘

L= ), (n—k—1)

for t = a, where c is a constant. If n = k (mod 2), then let ¢ > A and define Y to be
the set of all y € C[a, o) satisfying

(33) plt) — et + (—1prt f U f (r — syt

s (k=10 ), (n—k—1)"
S(r p(r) — er)drds < y(t) < p(t) — e, ¢
and if n % k (mod 2), then let ¢ > 22 be such that

wt“"“l t 1) — S Vdr < €
J.. f( o) 2) =2

and define Y to be the set of all y e C[a, o0) satisfying

o (r _ S)nAk—l

: f(r, y(r)) drds

I

a,

p(t)—ct"gy(t)§p(t)——§t", t2a.

It is easily checked that in both cases F is a continuous mapping from Yinto a compact
subset of Y. Therefore, F has a fixed element y € Y. Differentiating the integral equa-
tion y(t) = Fy(r), we see that y(r) is a solution of (1) on [a, o) such that lim y®(z) =
= —ck! < 0. This establishes the existence of a member of S* . e

Proof of Theorem 6. In both (i) and (i) the “only if”” part follows from (28)
and the relation lim y(t)/t* = const > 0.

t— o0

Suppose now that n = k (mod 2) and (31) holds. We define F and Y, respectively,
by (32) and (33) with —c replaced by ¢ such that 0 < ¢ < A. Then, it is easy to see
that F has a fixed element in Y which gives a solution of (1) belonging to N

Suppose that n % k (mod 2) and (31) holds. Choose an 1 < 0 so that

(2 1 f(t,n + ) dt £ 44,
which is possible since lim [ ¢"7*~" f(t,n + A*) dt = 0 by (2)and (31). Applying

n——-w
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the Schauder-Tychonoff theorem, we see that the mapping

- A weie (=) (r = sy .
Gy(t) =n + >+ (=1 j. -1 L E— £(r, y(r)) dr d:

has a fixed point y in the set
At
Z = {yeC[a,oo):n +~2~ < (1) £ n + Ak t?__a}.

Obviously, y = y(t) satisfies (1) and lim y®(t) = 2k![2 > 0, implying that y € S%,.
t— o0
Theorems 7 and 8 below give necessary conditions and sufficient conditions for the

existence of members of S, and S%,, 1 £ k < n — 2. It would be of interest to

bridge the gap between necessary conditions and sufficient conditions in each of these
theorems.

Theorem 7. Let 1 < k < n — 2 and n % k (mod 2).
(i) If S, * 0, then

(34) [@ k=2 f(¢, —A** 1) dt < oo forall >0

and

(35) (2t f(t, —pt)dt = o0 forall p>0.
(i) S, + 0 if

(36) [ *=2f(t, —Af")dt < o0 for some A >0

and

(37) fe ek f(t, —pt** )y dt = o0 forall u>0.

Proof. (i) Let y € S* . Then, lim y(t)/**' = 0 and lim y(¢)/* = — oo, and hence,
t— o0 t—=

for any 2 > 0 and p > 0, there is t, > a such that
y(t) = =2 and  y(1) £ —pt* for 1=t

Combining these inequalities with (25) and (29), respectively, we have the desired
relations (34) and (35).

(ii) Suppose that (36) and (37) hold. Let p() be any polynomial of degree < k — 1
and define

Fy(t) = p(t) — et* + (—1)"7* Jr (t ;!s)k 'ro (r— 9" f(r, y(r))drds, tza

. o (n—k=2) =

and
Y= {yeCla, o) p(t) — c(t + 1) < y(t) < p(t) — ct*, t = a},

where ¢ > A is chosen large enough so that
f@ k=2 f(1, p(r) — ct*) dt

Such a choice of ¢ is possible because of (36) and the nondecreasing nature of f(t, y)

IIA

C.

-504



in y. Let y e Y. Since

(1 - 5)k (r - s) “k=2 , <
J k' ( 2)' — f(r, y(r))drds =

Sw <t >
Skt n—k -2t T =

we have
p(t) = e Z Fy(t) = pt) — et — o' 2 p(t) — ot + 1)1, t=a,

implying that Fy € Y. Thus F maps Y into itself. The continuity of F and the relative
compactness of F(Y) are easily verified, and so there exists a fixed point y of Fin Y.
It is obvious that y = y(r) gives a solution of (1) on [a, o). The inclusion y € S* ,
follows from the equations

(39) YEED () = f (S T f(s ¥(s) ds .

(39) Y1) = — ekt — f J Z:_;;"_Z; f(r. y(r)) drds.

In fact, (38) implies tlim y** (1) = 0. From (39) we have

yO() £ —ck! - rmapmt S(r, ¥(r) dr <

a(n~ k- 1)
< —ck! — L-;a&f K+ 1
= =k ! (r, p(r) = c(r + 1)**1) dr,

whence, noting that f(r, p(r) — <(r + )t I f(r —2cr**1) for sufficiently large r
and using (37), we conclude that lim y(ty

LA e}

Theorem 8. Let | S k <n —2qnd p »

‘ . k (mod 2).
(i) If S%, + 0, then

o m—k~2 f(t 7.k

(40) ‘[a ! f(”u)dtTOO forall 2>0
and

© n—k—lf t, Il-tk+1
(41) L ! ( )dt§°0 forall' nw>0.

(ii) Suppose that (2) hold5~(Then, S’;“ ) if

@ tn-k*lf t, Atk+1
(42) I Jdr < Q  for some A >0
and
(43) J‘;zo tn—k/lf(t, 1) dy =

D forall p>0.
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Proof. (i) The desired conclusion follows readily from (25), (29) and &

. 3 e fact
that y € S, satisfies

lim y(1)/t* = oo and lim y(¢);**' = 0.
t— 00 t— o0
(ii) Suppose that (42) and (43) hold. Let ¢, 0 < ¢ < 4, be fixed. Since

lim [ "% 2 f(t,n + ct**1)dt = 0

in view of (2) and (42), there exists an n < 0 such that
[ 2ft,n + c(t + 1 HYdt S c.
Then it can be shown that the mapping
(= s [ (r _ s)n—k—Z
Ft=+ct"+—1""( ! r, y(r)) dr &%
0 = n et (e [ R [ 50
possesses a fixed point y in the set

Y={yeCla,0)in+ct* < y(t)Sn+c(t+ 1), t 24d}.

This fixed point y = y(r) is a solution of (1) on [a, ) such that lim y("*“”(l) —0.

Since 7
oy =kt + [ [TEZI ) dras 2
y e >
t (r _ a)n-kfl
2ck!' + | ———— f(r,n + ) dr
oz e
and f(r, n + cr*) = f(r, cr[2) for large r, using (43), we see that lim y®(1) = &

showing that y e S . 2

C. It remains to examine the classes S, S and S2 (see (14)). Note that (25)&(29)
also hold for k = 0; thus in particular

(44) J@ =2 f(t, y{1))dt < o for yeSy,

(45) fe et f(t, y(t)dt < o0 for yeS;

and

(46) fee=1f(t, y(t)dt = o0 for yeSS US.
Theorem 9. Sy =+ 0 if and only if

(47) Je =1 f(t, ) dt < oo for some LeR.

Proof. Let y € Sy. Then we have (45) which, in view of the boundedness of (1),
yields (47).
Suppose that (47) holds. Let n be even. Define

B = A +(_1)n+1r (_S(;:_E)%:f(s, Ws)ds, t2a
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and Y={yec[a,00)ik“r(?n——t)n)_lﬂs A)ds < y(t) < 4, t?_a}.

Then, there exists a fixed point of F in Y, which provides a bounded solution of (1)
on [a, o).

Let n be odd. We may suppose that 4 in (47) is negative. Choose a constant ¢ > 0
large enough so that —¢ < 1 and

fo=tf(t, —c)dt £ ¢,
and consider the mapping G defined by
Gy(t) = —2¢ + (-—1)"“J (z ) f(s, y(s))ds, t=a
. -

G has a fixed point y in the set

Z={yeCla, o) —2c < y(t) £ —c, t 2 a}
and this y(r) gives a bounded solution of (1).
Theorem 10. Let n be odd.
(i) If 82 =S%, + 0, then
(48) [@ 02 f(t, —at)dt < o forall %>0
and
(49) fom= ' f{t, —p)dt = o0 forall p>0.
(i) 8% + 0 if
(50) f@ =2 f(t, —2)dt < oo for some 2 >0
and
(51) f = f(t, —ut)dt = o0 for some p > 0.
Proof. (i) If ye S, then
lim y(f)/t =0 and limy(t) = —o0.
t—=

t—=> o0

The first of the above and (44) give (48), while the second and (46) imply (49).

(ii) Suppose that (50) and (51) are satisfied. Let n € R be fixed and take ¢ > 4
so that

[2m2f(t,n —c)dt < c.

Then, proceeding as in the proof of (ii) of Theorem 7, the desired solution of class S°
is obtained as a fixed element of the mapping

Fy(t) =n—-c+ (—1)".“

a

L (2 — S)) f(r,y(r)drds, t=a

Y={yeCla,0)n—ct+1)Syt)sn—c t=a}.

in the set
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Theorem 11. Let n be even.
(i) If S = S, + 0, then

(52) [@e=2f(t,2)dt < 0 forall 4>0

and

(53) (2=t f(t,pt)dt = o0 forall p>0.
(ii) Suppose that (2) holds. Then, SS. + 0 if

(54) [ =2 f(t, M) dt < 0 for some A >0

and

(55) [e =1 f(t,p)dt = o forall p>0.

Proof. It suffices to repeat the arguments of the proof of Theorem 8 by letting
k=0.

Remarks. 1) Forany k, 1 < k < n — 1, S%, = 0 implies S*, =+ 0.

2)If1 <k <n—1and n # k (mod 2), then members of S, and S*, cannot
coexist, and the same is true for Sy and S°,.

3) If S™,' # 0, then all the other classes are empty, so that S = S"7'.

4) None of the second parts of Theorems 7, 8, 10 and 11 is applicable to the
prototype (3), since the two conditions therein guaranteeing S%, & 0 or S*, + 0
are not consistent for f(t, y) = p(t)exp (|y|"~" y), y > 0. An example of equations
of the form (1) having a solution of class S% , or S* , is given in Section 4.

5) All the existence theorems developed above are ‘global’ existence theorems
in that the desired solutions are guaranteed to exist on the given interval [a, ).
In Theorems 4, 6, 8 and 11 condition (2) is required to ensure global existence of
eventually positive solutions of (1) which grow to infinity as t — co. We note that
condition (2) can be deleted if we are content with ‘local” existence of such solutions,
that is, those existing on an interval of the form [T, o), T > 0 being sufficiently
large. The same remark applies to Theorems 14 and 15 given in the next section.

3. STRUCTURE OF THE SOLUTION SET

A. The theorems presented in the preceding section can be used to obtain useful
information about the structure of the solution set of equation (1).
Consider first the conditions

(A [2 e 1 f(t, —A*)dt < 0 forsome A >0
(By) [e k=1 f(t, =A*)dt = 0 forall A>0.
Since for sufficiently large ¢

tn—-k—lf(t’ _ltk) > tn—k—lf(t’ _Mkﬂ) ,

(Ay) implies (A, 4), and (By.,) implies (B,). This fact together with Theorems 2, 5
and 9 yields the following result.
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Theorem 12. (i) The condition
(Ao) [V f(t, =2)dt < o0 for some A >0
ensures that Sy + 0, SL, +0,...,8"3" + 0.

(ii) The condition
(B.-1) §2 f(t, =21 dt = o0 forall 2> 0
ensures that S§ = SL, = ... = §";! = 0.

If we consider the conditions
(G J& " 2 f(t, =¥ ) dt = o0 forsome A >0,
(Dy) J@ A, =A%) de < o0 for some A >0,
then (C,) implies (Cy-,), and (D,) implies (D), so that Theorems 7 and 10 give
the following result.

Theorem 13. (i) The condition
(C,-3) [&tf(t, =A%) dt = o0 for some A >0
ensures that S, = 0 for all k, 0 < k < n — 2, with n % k (mod 2).

(ii) One of the conditions
(Dy) J2e2f(t, —2)dt < w0 for some A >0 andeven n,
(Do) [P 1 f(t, —2)dt < o0 for some . >0 andodd n,
ensures that S*, = 0 for all k,0 < k < n — 2, with n % k (mod 2).

We now introduce the definition: Equation (1) is said to be superlinear [resp.
sublinear] in y > 0 if, for each t =0, f(t, y)/y is nondecreasing [resp. non-
increasing] in y for y > 0.

Consider the conditions
(Ex) J2 k=1 f{1, a)dt < o for some A >0,

(Fy) [ =1 f(t, 2)dt = oo forall 2>0.
From the relation
ARG I | (s
tn—k*Zf(t’ ;I'tk+1) f(t, Mk+1)//1tk+1
it follows that (E,.;) implies (E,), and (F,) implies (F,,) if (1) is superlinear in
y > 0, and conversely if (1) is sublinear in y > 0. From.this fact and Theorems 4, 6
and 9 we obtain the following two theorems.

Theorem 14. Let (1) be superlinear in 'y > 0.
(i) Sy 0, Si, £0,...,8%," + 0 if (2) holds and
(Bu-1) (2 f(t, 2"~ ") dt < o0 for some 1 > 0.
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(i) Sty = ... =873"' =0 if

(Fy) (22 f(t, At)dt = 0 forall 2>0.
Theorem 15. Let (1) be sublinear in y > 0.
() Sy #0, Sky *+0,...,8%3" * 0 if (2) holds and

(Eo) [2r 1 f(t,A)dt < o for some A>0.
(i) Sty =... =83 =0 if
(F,-1) [2f(t, A"~ )dt = 0 forall A>0.
Finally let us consider the conditions
(Gy) [2 %2 f(t,A*)dt = o0 forsome A>0,
(Hy) Je e k=1 f(t, A+ ) dt < o0 forsome A >0.

Note that if (1) is superlinear in y > 0, then (G,) implies (Gy. ), and (H,, ,) implies
(H,), and that if (1) is sublinear in y > 0, then the converse implications hold for
(Gi), (G+2), (H,) and (H,,). This observation combined with Theorems 8 and 11
leads to the next results.

Theorem 16. (i) Let (1) be superlinear in y > 0. Then, S%, =0 for 0 < k <
< n — 2 with n = k (mod 2), provided

(Go) (2 =2f(t,2)dt = o0 for some A >0
in the case of even n, and
(Gy) [2 3 f(t, At)dt = o0 for some 1 >0

in the case of odd n.
(ii) Let (1) be sublinear in y > 0. Then, S5, =0 for 0 <k <n —2 with
n = k (mod 2), provided

(G,-») [ f(t, 2"~ 2)dt = 0 for some A >0.

Theorem 17. (i) Let (1) be superlinear in y > 0. Then, S, =0 for 0 < k <
< n — 2 with n = k (mod 2), provided
(H,-») [2tf(t, " ")dt < o for some A >0.

(ii) Let (1) be sublinear in y > 0. Then, S5, =0 for 0 < k < n —2 with
n = k (mod 2), provided

(Ho) [t f(t, at)dt < o for some A >0
in the case of even n, and
(H)) [2 12 f(t, A?)dt < oo for some 1 >0

in the case of odd n.

B. We show that a characterization for the absence of increasing solutions can
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be obtained for a class of equations of the form
(56) ¥y + o(t)g(y) = 0,n 22,

where ¢: [0, ) — (0, ) is continuous and g: R — (0, o) is continuous and
nondecreasing. Our method is an adaptation of the techniques which were used in
deriving standard oscillation criteria for Emden-Fowler type equations(see[1,2,7,8]).

Theorem 18. Suppose that

(57) j d—‘v<oo forany JdeR.
9(»)
Then. every solution y(t) of (56) has the property lim y(t) = — oo if and only if
t—+ o
(58) 2t o(t)dt = oo
Theorem 19. Suppose that g(y)|y is nonincreasing for all sufficiently large y > 0,
(59) h(z) = inf 9(xz) >0 for z>0
x>0 g(x
and
° dz
(60) —— < o forsome & >0.
o h(2)
Suppose moreover that lim g(y) = 0 when n is odd. Then, every solution y(t) of
)
(56) has the property lim y(t) = — oo if and only if
t— o
(61) 2 o(t)g(Ai"~Y)dt = o0 forall 2>0.

Definition. We define P, 1 < < n — 1, to be the set of all solutions y(¢) of (56)
on [a, ) such that

(62) yA1)>0, 12i=1l, and (=1)'yP) >0, I+1=<i<n
for all large ¢.
Proof of Theorem 18. It is easy to see that if n is even, then
(63) sttusvi=P,_,, SyPUSY4*=P,_;..,8 UuS: =P,
Y So = Py,
and if n is odd, then
(64) SV'USTr=P,oy, STPUST* =P, ;...5 U8, =P,.
It can be shown that if y € P;, then '
© vz T et e, 2T,

provided T is chosen large enough so that (62) holds for ¢t > T. In fact, putting
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z=y,i=1k=n—1in the equation

(66) z(1) =il(_1)f—i 29(s) (S(T_jt):—)—;, + (/1)k~i+1 f (E‘T—_t)lk) 2 D) dr

holding for i £ k, we have

1

00 =% (- E= D g 4 iy [ a2

(- (n—1-1)
S n—1-1
> [0 egyar. szez T
((n=1-=1)
Letting s — o in the above and noting that y™() = —¢(r) g(y(r)), we find
(67) y 1) = J (L qo(s) g(¥(s))ds, t=T.
 (n—=1-1)
If | = 2, then from (66) with z = y,s = T,i = 1, k = I — 1 it follows that
S =TP N )
68 t) = yO(T) + (—1)* yO(r)dr =
@ v -g T 0w ¢ (o [P
- T, (t=r)2 )1 ‘
=Yy *———2_ yi(T) + yO(r)dr =
PRSI L (EETRA
t (t RS £ (t r)l 2
> [U=n" o dr = YOt dr —
‘fra 2),w)r y<ﬂ L
Gl Vi

RS

Combining (67) with (68) yields (65). Clearly, (65) holds for I = 1. Since g(y(t))
is nondecreasing for t = T, we see from (65) that

> (t (S——f)n -1 o) ds -
y(1) 2 9(x(1)) - 1), J E—— o(s)ds, 12T,

which implies

‘ y() I(S_TIK—1 (r_s),.zl r)drds =
J‘Tg(}’(s)) :J.T ([__1)! (n_ _ (P()d d

(0% -TiSI’ = ds) s -

J (r* (p(r)dr 12 T.
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It follows because of (57) that

J' (r—T)"~1<P() J LI(S)—ds=[y(m)~di<cﬁ,

(n—1)! r 9(¥(s)) Jyery 9(u)
implying that

(69) ferto(r)dt < .

Note that (69) is a necessary condition for the existence of a member of Sy (see
Theorem 9). The above observation shows that condition (58) implies that

s sSt?2u...uSLUS =0 for n even,
STPUSYPUL. UuSLuS =0 for n odd,

or equivalently
S=8"t'usT?u...uSt for n even,

S=8"1us"?20...uSLUS® for n odd,

proving the “if”” part of Theorem 18.

The ““only if”” part follows from the fact that (69) guarantees that SO & 0 (see
Theorem 9), that is, (56) has a solution not tending to — o as t — 0.

Proof of Theorem 19. The “only if”” part follows from Theorem 4: If (61)
is violated, then %' =+ 0 for (56), that is, (56) has a solution y(f) such that
lim y(¢)["~* = const > 0.

t— o0

Suppose that (61) holds. Let y € P, forsome I, 1 < [ < n — 1, with n % I (mod 2).
Since S%7" = S";' = 0 by Theorem 4, y must be in S~ ': lim y™~D(f) = 0. We
claim that e

(t _ r)n -1
(70) Yoy 2 U=t
(n—1-1)

provided T'is sufficiently large. In fact, (70) with [ = n — I is clear, because y™(t) <
<Ofort=za LetlZl<n—1Puttingz=y,t=r,s=ti=1Lk=n-2
in (66), we obtain

@ 0 =3 (100

CD), 1zrzT,

t Nn—2—1 t \—2-1
+ —1 n—1-1 (S - 7‘) (n-—l)’s dS é M(S - r} (n—1) dS >
(=9 j,(n—Z—l)!y Wds= | Ty e 2
t (g — ) 2-1 1y t — r\n—l—l -
([ Gzame)o - (T, e

From (66) with z = y, s = T, i = 0, k = | — 1 we have
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«f (t(l——rl)q yi(r)ydr, 12T,

which combined with (70) gives

¢ (0 N-1 (4 n—i-1
y(t) > (t r) (t 7‘) y(n—l)(t) dr =

T (l—])' (n—l—l)!
(t-Tyt Y1)

(n -1 - Hn—1-1)

Therefore, there are constants ¢ > 0 and T’ > T such that
)z ey ), 12T,

and hence in view of (59) we see that y(r) satisfies the differential inequality
(72) yO(t) + o(t) gle" ") h(y" " P(1)) 0, t2T.
Dividing (72) by h(y™~"(t)) and integrating on [T", t], we obtain

t t 0 Y= 1(T”)
j o(s) gles" ") ds < — j YO f dz
3

h(y®= 1)(5)) sy (2)

® YOI g,
J’ o(s) g(es" ) ds < J —— < o,
T’ 0 h(z)

which implies

a contradiction to (61).
Finally suppose that n is odd and y € S. Then,

(73) 2 te(r)dt <

by Theorem 9. Since g(y)/y is nonincreasing for sufficiently large y, say, y = y, > 0,
we have g(t"~ 1)/~ 1 < g(y,)[yo for all sufficiently large ¢, that is,

(74) g(t"q) Sct" ! (Co = g()’o)/}’o)
for all large t. From (73) and (74) we have
12 o(t)g(=")dt < 0,

which contradicts (61). Thus it follows that all solutions of (56) must tend to — o
as t - o0.

4. EXAMPLES AND APPLICATION

A. We present two examples which illustrate the results obtained in the preceding
sections.

Example 1. We now consider the equation

(75) y® + exp (ot°) exp (|y]'"'y) = 0,
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where ¢, 0 > 0 and y > 0 are constants, which is a special case of (1) and (56) with
f(t, ) = exp (et°) exp (|y]~'y),
o) = exp (et”) . g(y) = exp(|y]'"'y).
Note that (75) is superlinear in y sufficiently large, and g(y) satisfies condition (57).
(i) Let ¢ > 0 and o > (n — 1) 7. Then,
[2f(t, =2""")dt = 0 forall >0,
so that S"7,' #+ 0 by Theorem 3, and hence S = S".! by Remark 3 in Section 2.
(ii) Let ¢ < O and ¢ > (n — 1) y. Then,
(76) [o e f(1, a%)dt < o0 forallk, 0<k=<n-—1, and A€R

which, by Theorems 4, 5, 6, 9, guarantees the existence of members of Sf,’, S"_,,, S'.‘“,
for 1 £k <n — 1. From Theorems 3, 13 and 17 it follows that S"7!, %, S%,,
0 < k < n — 2, are empty. Therefore, we have

S=[S%'u...uSi,]uS,u[slu...uS,)
for the solutions of (75).
(iif) Let ¢ = 0. Then,
[2 1 o(t)dt = oo
so that Theorem 18 implies that
(77) - S=S8"'uU...uS. for n even,

S=8"tu...uStuS® for n odd.

)

Since
jee % f(t, —a*)dt < o0 forall k, 1<k<n-1. and 1>0,

we obtain S*, #+ 0 for 1 < k < n — 1 by Theorems 2 and 5, and this implies sk, =

=0Qfor1 < k <n — 1 (see Remark 2 at the end of Section 2). It follows that
S=S"3'u...uSL, for n even,
S=8"3'u...usSt,us%, for n odd.

However, it is not known whether the class S°, actually has a member.

Example 2. Let g: R — (0, o0) be defined by
(78) g(y) =1 + y)* for y20, g(y)=(01—y)" for y=0,

where o« and f are constants such that 0 <« <1 and 0 < f# < 1, and consider
the equation

(79) Y+ (t+ 1) g(y) =0,

where o is a real constant. Equation (79) is sublinear in y > 0, and g(y) satisfies the
hypothesis of Theorem 19 with h(z) taken to be

h(z) =z* for 0<z<1, hz)=1 for z=1.
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(i) If ¢ < —n, then (i) of Theorem 15 shows that S, +0,S%, #0,1 <k <
< n — 1, which implies that $*, +0, | <k <n— 1, and S*, _0 0<k<
< n — 1 (see Remarks 1 and 2 in Section 2). If 6 < — n — a with n even or ¢ <
< —n — 2z + 1 with n odd, then (ii) of Theorem 17 guarantees that S%, = 0
for0 < k<n-—2.

(i) If ¢ = B(n — 1) — 1, then we see that S”,' % @ by Theorem 3. and hence
we have S = S" 1.

(iii) Applying (ii) of Theorems 7, 8, 10 and 11, we obtain S*, + 0 for k, 0 < k <
< n — 2, such that n % k (mod 2) if

B—n+kl+p)<o<1l—n+k(l+§8),
and S%, # 0 for k, 0 < k < n — 2, such that n = k (mod 2) if
—-n+k(l—oaj<o< —n+(k+1)(1 —a).
(iv) We now apply Theorem 19 to conclude that if o > —a(n — 1) — 1, then the
set of solutions of (79) have the structure (77). Note that —n < —a(n — 1) — 1 <

< B(n — 1) — 1. Suppose in particular that —o{n — 1) — 1 <1 + f — n, ie.
n—1<(1+ B)J(1 — ), and let

—an—1)—1<o<1+p—n.
Then, S, £ 0, 1 < k<n—lbyTh\,01‘m5andsoS =0,1<k<n-1.
It follows that if in addmon n is even, then
S=s53'u...uSt,
for (79). Suppose that —ofn — 1) = 1 < f — n,ie.n — 1 < Bf{l — ), and let
f—n=<o<l—n.
If in addition n is odd,.then S%, =+ 0 (see (iii) above) and the solution set of (79)

has a decomposition
S=s53'u...ust,us?,.

B. The theory developed in Sections 2 and 3 can be applied to the elliptic partial
differential equation

(80) A"u + F(|x|,u) =0, xeQ, R, m=z2,

in an exterior domain @, = {x € B*: |x| 2 a}, a > 0, where A denotes the three-
dimensional Laplacian, and F: [0, ®) x R — (0, ) is continuous and non-
decreasing in the second variable.

We are interested in radially symmetric global solutions of (80) with various
asymptotic behavior as ]x] — 0. A radial function u(x) = y\],\] is a solutlon of
(80) in @, if and only if y(t) satisfies the ordinary differential equation

(ty)*™ +1tF(t,y)=0, tZa,
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i.e., if and only if z(r) = t y(1) satisfies
(81) 2% 4+t Ft,t7'2) =0, 1>4.

Observe that a solution of (81) of class §*, or S%, yields a solution u(x) of (80)
such that

. ulx
(82) [1‘”“ I';l(—k:); = Const < 0
or
(83) lim u(x) = const > 0,

|x|—= o lek-l

and that a solution of (81) of class S* , or Sk gives rise to a solution of (80) such that

(84) lim ‘i@ —0. &im ) _ _
¥ =00 IXI |x]= o lekfl

or N

(85) lim ux) _ 0, lim ux) _ .
tri=eo [x[f Ixl=eo ]!

Criteria for the existence of these solutions of (80) are given below.
Theorem 20. (i) Equation (80) has a radial solution u(x) satisfying (82) for some k,
1=k =2m—1,if and only if
(o 2m K Fi, =27 1)dt < o for some ) > 0.
(i) Equation (80) has a radial solution u(x) satisfying (84) for some odd k,
0sk=2m-2,if
[Z 2k UV FG =AY dt < oo for some A >0
and
[ 2k F(t, —pt*)dt = oo forall pu>0.
Theorem 21. Suppose that
lim F(t,u) =0 for fixed t=0.

u—* — oo
(i) Equation (80) has a radial solution u(x) satisfying (83) if and only if
Jo 2R F(t, a7 ) di < o0 for some A > 0.
(ii) Equation (80) has a radial solution u(x) satisfying (85) for some even k,
O0sk=2m-2,if ‘

fo 2m k=L F(t, Ay dt < oo for some A >0
and
J‘w t2m*k F(t, ﬂtk_l) dt = o fOi‘ all n > 0.

We conclude with some remarks about the set of radial solutions of the elliptic
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equation

86 A™u + exp (o|x|*™)e* =0, xeQ, <R, m=2,
( P ;

where g is a constant.

(a) If ¢ > 0, then (86) has infinitely many radial solutions u(x) satisfying

(87) lim

Jx| = IXIZm—Z
and all radial solutions of (86) have the same asymptotic behavior (87).

(b) If ¢ = 0, then, for every k, 2 < k < 2m — 1, (86) has infinitely many radial
solutions u(x) satisfying (82), and every radial solution u(x) of (86) has asymptotic
behavior (82) for some k, 2 < k < 2m — 1, or (84) with k = 1:

(88) lim u(x) =0, lim u(x)= —o0.

|| (X |x]=
It is difficult to construct a solution of (86) having the property (88).

(c) If ¢ <0, then, for every k, 1 < k < 2m — 1, there exist infinitely many
radial solutions u(x) of (86) satisfying (82) as well as those satisfying (83), Moreover,
(86) possesses infinitely many radial solutions u(x) such that

(89) lim ]x| u(x) = conste R .

|x]=2
Every radial solution u(x) of (86) satisfies either (89) or one of (82) and (83) for some
k,1<k<2m— 1.
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