Ladislav Nebeský
Embedding m-quasistars into n-cubes

Persistent URL: http://dml.cz/dmlcz/102266

Terms of use:

© Institute of Mathematics AS CR, 1988

Institute of Mathematics of the Czech Academy of Sciences provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these Terms of use.
EMBEDDING m-QUASISTARS INTO n-CUBES

LADISLAV NEBESKÝ, Praha

(Received November 13, 1986)

In the present paper the letters \(i, j, k, m, n\) and \(p\) denote integers. By a graph we mean a graph in the sense of [1]; \(V(G)\) and \(E(G)\) denote the vertex set and the edge set of a graph \(G\), respectively. We shall say that graphs \(G_1\) and \(G_2\) are vertex-disjoint if \(V(G_1) \cap V(G_2) = \emptyset\).

A graph which is homeomorphic to the star \(K(1, m)\), where \(m \geq 3\), will be referred to as an \(m\)-quasistar. We say that an \(m\)-quasistar \(T\) of order \(p\) is balanced if \(p\) is even and there exists a 2-coloring of \(T\) with \(p/2\) blue vertices and \(p/2\) yellow ones. I. Havel [2] conjectured that

if \(3 \leq m \leq n\), then every balanced \(m\)-quasistar of order \(2^n\) can be embedded into the \(n\)-cube.

The conjecture has been proved for \(m = 3\) by Havel [2], for \(m = 4\) and \(5\) by the present author [4], and for \(m = 6\) by N. B. Limaye [3]. In the present paper the conjecture will be proved for every \(m \geq 5\).

Let \(P\) be a nontrivial path. Then \(P\) is a graph homeomorphic to \(K_2\). If \(u\) is a vertex of degree one in \(P\), then we say that \(P\) is a \(u\)-path. If \(P\) is a \(u\)-path, then the only vertex of degree one in \(P\) which is different from \(u\) will be denoted by \(e(P, u)\).

Let \(G\) be an \(n\)-cube, \(n \geq 1\). If \(u_1\) and \(u_2\) are adjacent vertices in \(G\), \(P_1\) and \(P_2\) are vertex-disjoint nontrivial paths in \(G\) such that \(P_1\) is a \(u_1\)-path and \(P_2\) is a \(u_2\)-path, then we denote by \(P_1 + u_1u_2 + P_2\) the path in \(G\) induced by \(E(P_1) \cup \{u_1u_2\} \cup E(P_2)\). Since \(G\) is an \(n\)-cube, where \(n \geq 1\), it is clear that there exist vertex-disjoint \((n - 1)\)-cubes \(G'\) and \(G''\) such that \(V(G') \cup V(G'') = V(G)\) and \(E(G') \cup E(G'') \subseteq E(G)\); the set \(\{G', G''\}\) will be referred to as a canonical partition of \(G\). If \(\{G', G''\}\) is a canonical partition of \(G\) and \(u \in V(G')\), then the only vertex of \(G''\) which is adjacent to \(u\) in \(G\) will be denoted by \(u/G''\).

The proof of Havel’s conjecture (for \(m \geq 5\)) will be divided into two lemmas and two theorems.

Lemma 1. Let \(m \geq 1\), let \(G\) be an \(m\)-cube, let \(u \in V(G)\), and let \(W \subseteq V(G)\) such that \(|W| \leq m - 1\). Then there exists a hamiltonian \(u\)-path \(P\) in \(G\) such that \(e(P, u) \notin W\).

Proof. Obviously, there exists a 2-coloring of \(G\) with \(2^{m-1}\) blue vertices and \(2^{m-1}\)
yellow ones. Without loss of generality, let u be blue. Havel [2] has shown that for each yellow vertex v of G, there exists a hamiltonian path P in G such that $e(P, u) = v$. Since $m - 1 < 2^{m - 1}$, the assertion of the lemma follows.

Lemma 2. Let $m \geq 2$, let G be an m-cube, let u, v_1, v_2 be distinct vertices of G such that $v_1 v_2 \in E(G)$, and let $W \subseteq V(G - v_1 - v_2)$ such that $|W| \leq m - 2$. Then there exists a hamiltonian u-path P in $G - v_1 - v_2$ such that $e(P, u) \notin W$.

Proof. We proceed by induction on m. The case when $m = 2, 3$ is obvious. Let $m \geq 4$. Assume that the lemma is proved for $m - 1$. It is clear that there exists a canonical partition $\{G', G''\}$ of G such that

$$|W \cap V(G'')| \leq m - 3 \text{ and } v_1, v_2 \in V(G'').$$

We distinguish two cases.

1. Let $u \in V(G')$. Recall that $m - 1 \geq 3$. According to Lemma 1 there exists a hamiltonian u-path P' in G' such that $e(P', u) \notin \{v_1|G', v_2|G'\}$. Denote $u' = e(P', u)$ and $u'' = u'|G''$. According to the induction hypothesis, there exists a hamiltonian u''-path P'' in $G'' - v_1 - v_2$ such that $e(P'', u'') \notin W \cap V(G'')$. Clearly,

(1) $P' + u'u'' + P''$ is a hamiltonian u-path in $G - v_1 - v_2$ such that $e(P' + u'u'' + P'', u) \notin W$.

2. Let $u \in V(G'')$. According to the induction hypothesis, there exists a hamiltonian u-path P'' in $G'' - v_1 - v_2$. Denote $u'' = e(P'', u)$ and $u' = u''|G'$. According to Lemma 1, there exists a hamiltonian u'-path P' in G' such that $e(P', u') \notin W \cap V(G')$. Clearly, (1). Thus the proof is complete.

The following theorem is the main step in our proof of Havel's conjecture.

Theorem 1. Let k and m be integers such that

$$1 \leq k \leq m \text{ if } 1 \leq m \leq 3 \text{ and } 1 \leq k < m \text{ if } m \geq 4.$$

Then $Q(k, m)$, where $Q(k, m)$ is the statement as follows:

for any $G, u_1, \ldots, u_k, a_1, \ldots, a_k, W_1, \ldots, W_k$ such that

(2) G is an m-cube,

(3) u_1, \ldots, u_k are distinct vertices of G,

(4) a_1, \ldots, a_k are positive even integers with $a_1 + \ldots + a_k = 2^m$,

(5) W_1, \ldots, W_k are subsets of $V(G)$ fulfilling

$$|W_i| \leq m - k, \ldots, |W_k| \leq m - k,$$

there exist vertex-disjoint paths $P_{(1)}, \ldots, P_{(k)}$ in G such that

(6) $P_{(i)}$ is a u_i-path of order a_i such that $e(P_{(i)}, u_i) \notin W_i$, for each $i, 1 \leq i \leq k$.

Proof. It is easy to prove $Q(1, 1)$, $Q(2, 2)$ and $Q(3, 3)$ by an immediate inspection. Thus, we shall prove that if $m \geq 2$ then $Q(k, m)$, for each $k, 1 \leq k \leq m - 1$. We

706
proceed by induction on \(m \). The case \(m = 2 \) is obvious. Let \(m \geq 3 \). Assume that we have proved \(Q(k^*, m - 1) \) for each \(k^*, 1 \leq k^* \leq m - 2 \).

Let \(1 \leq k \leq m - 1 \). Consider \(G, u_1, \ldots, u_k, a_1, \ldots, a_k, W_1, \ldots, W_k \) such that (2)–(5). For any canonical partition \(\{G_1, G_2\} \) of \(G \) and any \(f \in \{1, 2\} \), we define

\[
I(G_f) = \{i; 1 \leq i \leq k \text{ and } u_i \in V(G_f)\},
\]

\[
k(G_f) = |I(G_f)|,
\]

\[
U(G_f) = \{u_i; i \in I(G_f)\}, \quad \text{and}
\]

\[
A(G_f) = \sum_{i \in I(G_f)} a_i.
\]

We distinguish several cases and subcases.

1. Assume that there exists a canonical partition \(\{G_1, G_2\} \) of \(G \) such that \(A(G_1) = A(G_2) \).

Consider \(f \in \{1, 2\} \). Obviously, \(A(G_f) = 2^{m-1} \) and \(1 \leq k(G_f) \leq k - 1 < m - 1 \).

Denote

\[
I_f = I(G_f),
\]

\[
u_{if} = u_i, \quad a_{if} = a_i \quad \text{and} \quad W_{if} = W_i \cap V(G_f) \quad \text{for each} \quad i \in I_f.
\]

It is clear that

\[
(7)_f \quad u_{if} \ (i \in I_f) \text{ are distinct vertices of } G_f,
\]

and

\[
(8)_f \quad a_{if} \ (i \in I_f) \text{ are even positive integers such that } \sum_{i \in I_f} a_{if} = 2^{m-1}.
\]

Obviously, \(|W_{if}| \leq |W_i| \leq m - k \) for \(i \in I_f \). Since \(m - k \leq (m - 1) - |I_f| \),

\[
(9)_f \quad |W_{if}| \leq (m - 1) - |I_f|, \quad \text{for each} \quad i \in I_f.
\]

According to \(Q(k(G_f), m - 1) \), there exists a set of \(|I_f| \) vertex-disjoint paths \(P_{if} \ (i \in I_f) \) in \(G_f \) such that

\[
(10)_f \quad P_{if} \text{ is a } u_{if}-\text{path of order } a_{if} \text{ with the property that } d(P_{if}, u_{if}) \notin W_{if} \text{ for each } i \in I_f.
\]

Denote

\[
P_{(i)} = P_{i1} \text{ if } i \in I_1, \quad \text{and} \quad P_{(i)} = P_{i2} \text{ if } i \in I_2.
\]

Clearly, \(P_{(1)}, \ldots, P_{(k)} \) are vertex-disjoint paths in \(G \) such that (6).

2. Assume that \(A(G^*) \neq A(G^{**}) \) for any canonical partition \(\{G^*, G^{**}\} \) of \(G \).

2.1. Let \(k = 1 \). Then \(a_1 = 2^m \). Lemma 1 implies that there exists a path \(P_{(1)} \) in \(G \) such that (6).

2.2. Let \(k = 2 \). Clearly, \(a_1 \neq a_2 \). Without loss of generality we assume that \(a_1 > a_2 \).

2.2.1. Let \(a_2 = 2 \). Since \(|W_2| \leq m - 2 \), there exists \(u_2^* \in V(G) - (\{u_1\} \cup W_2) \) such that \(u_2u_2^* \in E(G) \). We denote by \(P_{(2)} \) the path in \(G \) induced by \(\{u_2u_2^*\} \). Since \(|W_1| \leq m - 2 \), it follows from Lemma 2 that there exists a hamiltonian \(u_1 \)-path \(P_{(1)} \)
in $G - u_2 - u_2^*$ such that $e(P_{(1)}, u_1) \notin W_1$. Hence, $P_{(1)}$ and $P_{(2)}$ are vertex-disjoint paths in G such that (6).

2.2.2. Let $a_2 \geq 4$. Since $a_1 > a_2$, $m \geq 4$. Clearly, there exists a canonical partition $\{G_1, G_2\}$ of G such that

\[
|W_1 \cap V(G_f)| \leq m - 3 \quad \text{for} \quad f = 1 \quad \text{and} \quad 2.
\]

Without loss of generality we assume that $u_1 \in V(G_1)$.

2.2.2.1. Let $u_2 \in V(G_1)$ and $W_2 \cap V(G_1) = \emptyset$. Denote

\[
I_1 = \{1, 2\}, \quad u_{11} = u_1, \quad u_{21} = u_2, \quad a_{11} = 2^{m-1} - a_2, \\
\quad a_{21} = a_2, \quad W_{11} = \emptyset = W_{21}.
\]

It is clear that $(7)_1 -(9)_1$. According to Q(2, $m - 1$), there exist vertex-disjoint paths P_{11} and P_{21} in G_1 such that (10)$_1$. Denote $v = e(P_{11}, u_{11})$ and $u_{12} = v \mid G_2$. As follows from (11) and Lemma 1, there exists a hamiltonian u_{12}-path P_{12} in G_2 such that $e(P_{12}, u_{12}) \notin W_1 \cap V(G_2)$. Define $P_{(1)} = P_{11} + v_{12} + P_{12}$ and $P_{(2)} = P_{21}$. Obviously, $P_{(1)}$ and $P_{(2)}$ are vertex-disjoint paths in G such that (6).

2.2.2.2. Let $u_2 \in V(G_1)$ and $W_2 \cap V(G_1) = \emptyset$. Hence,

\[
|W_2 \cap V(G_2)| \leq m - 3.
\]

Denote

\[
I_1 = \{1, 2\}, \quad u_{11} = u_1, \quad u_{21} = u_2, \quad a_{11} = 2^{m-1} - 2, \quad a_{21} = 2, \\
\quad W_{11} = \emptyset = W_{21}.
\]

It is clear that $(7)_1 -(9)_1$. According to Q(2, $m - 1$), there exist vertex-disjoint paths P_{11} and P_{21} in G_1 such that (10)$_1$. Denote

\[
I_2 = \{1, 2\}, \quad v_1 = e(P_{11}, u_{11}), \quad v_2 = e(P_{21}, u_{21}), \quad u_{12} = v_1 \mid G_2, \\
\quad u_{22} = v_2 \mid G_2, \quad a_{12} = a_1 + 2 - 2^{m-1}, \quad a_{22} = a_2 - 2, \\
\quad W_{12} = W_1 \cap V(G_2), \quad W_{22} = W_2 \cap V(G_2).
\]

It is clear that $(7)_2$ and $(8)_2$. It follows from (11) and (12) that $(9)_2$. According to Q(2, $m - 1$), there exist vertex-disjoint paths P_{12} and P_{22} in G_2 such that (10)$_2$. Define $P_{(1)} = P_{11} + v_{12}u_{12} + P_{12}$ and $P_{(2)} = P_{21} + v_{22}u_{22} + P_{21}$. Obviously, $P_{(1)}$ and $P_{(2)}$ are vertex-disjoint paths in G such that (6).

2.2.2.3. Let $u_2 \in V(G_2)$ and $W_2 \cap V(G_2) = \emptyset$. According to Lemma 1 there exists a hamiltonian u_1-path P_{11} in G_1 such that $e(P_{11}, u_1) + u_2 \mid G_1$. Denote

\[
v_1 = e(P_{11}, u_1), \quad I_2 = \{1, 2\}, \quad u_{12} = v_1 \mid G_2, \quad u_{22} = u_2, \\
\quad a_{12} = a_1 - 2^{m-1}, \quad a_{22} = a_2, \quad W_{12} = W_1 \cap V(G_2), \quad W_{22} = W_2 \cap V(G_2).
\]

It is clear that $(7)_2 -(9)_2$. According to Q(2, $m - 1$), there exist vertex-disjoint paths P_{12} and P_{22} in G_2 such that (10)$_2$. Define $P_{(1)} = P_{11} + v_{12}u_{12} + P_{12}$ and $P_{(2)} = P_{22}$. Obviously, $P_{(1)}$ and $P_{(2)}$ are vertex-disjoint paths in G such that (6).

2.2.2.4. Let $u_2 \in V(G_2)$ and $V(G_2) \cap W_2 = \emptyset$. Hence,

\[
|W_2 \cap V(G_1)| \leq m - 3.
\]
There exists $v_2 \in V(G_2 - u_2)$ such that v_2 is adjacent to u_2 in G_2 and $v_2 \neq u_1/G_2$. We denote by P_{22} the path in G_2 induced by $\{u_2v_2\}$. Denote
\begin{align*}
I_1 &= \{1, 2\}, & u_{11} = u_1, & u_{21} = v_2/G_1, & a_{11} = 2^{n-1} + 2 - a_2, \\
ap_{21} = a_2 - 2, & W_{11} = \{u_2/G_1\} & \text{and} & W_{21} = W_2 \cap V(G_1).
\end{align*}

It is clear that $(7)_1$ and $(8)_1$. Since $m - 1 \geq 3$, (13) implies that $(9)_1$. As follows from $Q(2, m - 1)$, there exist vertex-disjoint paths P_{11} and P_{21} such that $(10)_1$. Denote $v_1 = e(P_{11}, u_{11})$ and $u_{12} = v_1/G_2$. It is easy to see that $u_{12} \notin \{u_2, v_2\}$. It follows from Lemma 2 and (11) that there exists a Hamiltonian u_{12}-path P_{12} in $G_2 - u_2 - v_2$ such that $e(P_{12}, u_{12}) \notin W_1 \cap V(G_2)$. Define $P_{(1)} = P_{11} + v_1u_{12} + P_{12}$ and $P_{(2)} = P_{22} + v_2u_{21} + P_{21}$. Obviously, $P_{(1)}$ and $P_{(2)}$ are vertex-disjoint paths in G such that (6).

2.3. Let $k \geq 3$. Then $m \geq 4$. Recall that $A(G^*) = A(G^{**})$ for any canonical partition $\{G^*, G^{**}\}$ of G. We first prove that

\begin{equation}
(14) \quad \text{there exists a canonical partition $\{G_1, G_2\}$ of G such that $A(G_1) > A(G_2)$ and $1 \leq k(G_2) \leq k - 2$.}
\end{equation}

To the contrary, let us assume that

\begin{equation}
(14) \quad \text{for any canonical partition $\{G^*, G^{**}\}$ of G, if $A(G^*) > A(G^{**})$ and $1 \leq k(G^{**})$, then $k(G^{**}) = k - 1$.}
\end{equation}

Since $k \geq 3$, there exists a canonical partition $\{G_{11}, G_{12}\}$ of G such that $A(G_{11}) > A(G_{12})$ and $k(G_{12}) \geq 1$. According to (14), $k(G_{12}) = k - 1$, and therefore $k(G_{11}) = 1$. Obviously, there exists i, $1 \leq i \leq k$, such that $U(G_{11}) = \{u_i\}$. Since $A(G_{11}) > A(G_{12})$, $u_i > 2^{n-1}$.

Since $k(G_{12}) = k - 1 \geq 2$, there exists a canonical partition $\{G_{21}, G_{22}\}$ of G such that

\[U(G_{12}) \cap V(G_{21}) \neq 0 \neq U(G_{12}) \cap V(G_{22}). \]

Without loss of generality we assume that $A(G_{21}) > A(G_{22})$. Since $U(G_{12}) \cap V(G_{22}) \neq 0$, $k(G_{22}) \geq 1$. According to (14), $k(G_{22}) = k - 1$, and therefore $k(G_{21}) = 1$. There exists j, $1 \leq j \leq k$, such that $U(G_{21}) = \{u_j\}$. Since $A(G_{21}) > A(G_{22})$, $a_j > 2^{n-1}$. Since $U(G_{12}) \cap V(G_{21}) \neq 0$ and $U(G_{21}) = \{u_j\}$, we can see that $u_j \in V(G_{12})$. Hence $i \neq j$. As follows from (4), $a_i + a_j < 2^n$, which is a contradiction. Thus, we have proved (14).

Denote
\[a = \min_{i \in I(G_1)} a_i. \]

We shall prove that

\begin{equation}
(15) \quad a \leq 2^{n-1} - 2(k(G_1) - 1).
\end{equation}

To the contrary, let

\[a > 2^{n-1} - 2(k(G_1) - 1). \]
Since a is even, we have that
\[a \geq 2^{m-1} - 2(k(G_1) - 2). \]
Since $k(G_2) \geq 1$, $A(G_2) \geq 2$. Hence,
\[a \leq \frac{2^m - 2}{k(G_1)}. \]
If $k(G_1) = 2$, then combining (15) and (16) we get that $2^{m-1} - 1 \geq 2^{m-1}$, which is a contradiction. Let $k(G_1) \geq 3$. Obviously, $m - 2 \geq k(G_1)$. Thus according to (15) and (16) we get that
\[\frac{2^m - 2}{3} \geq \frac{2^m - 2}{k(G_1)} \geq 2^{m-1} - 2(k(G_1) - 2) \geq 2^{m-1} - 2(m - 4). \]
Hence, $6m - 26 \geq 2^{m-1}$, which is a contradiction. Thus, we have proved (15).

Denote $I_1 = I(G_1)$. It follows from (15) that there exist disjoint nonempty subsets I^\sharp and I^\flat of I_1 and even positive integers a_{11} (for each $i \in I_1$) satisfying
\[
I_2 = I^\sharp \cup I^\flat, \\
a_{11} = a_i, \text{ if } i \in I^\sharp, \\
a_{11} \leq a_i - 2, \text{ if } i \in I^\flat, \text{ and} \\
\sum_{i \in I_1} a_{11} = 2^{m-1}.
\]
Denote
\[
u_{11} = u_i \text{ if } i \in I_1, \\
W_{j1} = W_j \cap V(G_1) \text{ if } j \in I^\sharp, \text{ and} \\
W_{j1} = \{ v; v \in G_2 \in I(G_2) \} \text{ if } j \in I^\flat.
\]
Since $k(G_2) = k - k(G_1) \leq (m - 1) - k(G_1)$, we can see that (9)_1. According to $Q(k(G_1), m - 1)$, there exists a set of $|I_1|$ vertex-disjoint paths P_{i1} ($i \in I_1$) in G_1 such that (10)_1. Denote
\[v_j = e(P_j, u_{j1}) \text{ for each } j \in I^\flat.
\]
Moreover, denote
\[
I_2 = I^\flat \cup I(G_2), \\
u_{12} = u_i \text{ if } i \in I(G_2), \text{ } u_{i1} = v_i | G_2 \text{ if } i \in I^\flat, \\
a_{12} = a_i \text{ if } i \in I(G_2), \\
a_{12} = a_i - a_{11} \text{ if } i \in I^\flat, \text{ and} \\
W_{j2} = W_j \cap V(G_2) \text{ if } j \in I_2.
\]
It is clear that $(7)_2 - (9)_2$. As follows from $Q(I_2, m - 1)$, there exists a set of $|I_2|$ vertex-disjoint paths P_{i2} ($i \in I_2$) such that (10)_2.

Define
\[
P_{(i)} = P_{i1} \text{ if } i \in I^\sharp, \\
P_{(i)} = P_{i1} + v_i u_{i2} + P_{i2} \text{ if } i \in I^\flat, \text{ and} \\
P_{(i)} = P_{i2} \text{ if } i \in I(G_2).
\]
It is obvious that $P_{(1)}, \ldots, P_{(k)}$ are vertex disjoint paths in G such that (6).

Thus, the proof of the theorem is complete.

Remark 1. Let $k \geq m \geq 4$. Consider $G, u_1, \ldots, u_k, a_1, \ldots, a_k, W_1, \ldots, W_k$ such that (2)–(5), $a_1 \geq 4, \ldots, a_k \geq 4$, and $u_1 u, \ldots, u_k u \in E(G)$, where u is a vertex of G. Then (6) holds for no set of k vertex-disjoint paths $P_{(1)}, \ldots, P_{(k)}$ of G. This means that for $k \geq m \geq 4$, $Q(k, m)$ does not hold. (It is also clear that $Q(k, m)$ does not hold for $m \leq 3$ and $k > m$.)

Remark 2. Let $2 \leq k < m$. Consider $G, u_1, \ldots, u_k, a_1, \ldots, a_k, W_1, \ldots, W_k$ such that (2)–(4), $a_1 = 2$, and

$$|W_1| \geq m - k + 1.$$

Let u_1, \ldots, u_k be chosen so that there exist $m - k + 1$ vertices of W_1, say vertices w_1, \ldots, w_{m-k+1}, such that $u_1 w_1, \ldots, u_1 w_{m-k+1} \in E(G), u_1 u_2, \ldots, u_1 u_k \in E(G)$, and

$$\{u_2, \ldots, u_k\} \cap \{w_1, \ldots, w_{m-k+1}\} = \emptyset.$$

Hence, no set of k vertex-disjoint paths $P_{(1)}, \ldots, P_{(k)}$ in G satisfies (6). Let $j \geq 1$. We can see that in Theorem 1 the inequalities

$$|W_1| \leq m - k, \ldots, |W_k| \leq m - k$$

cannot be replaced by the inequalities

$$|W_1| \leq m - k + j, \ldots, |W_k| \leq m - k + j.$$

We are now prepared to show that Havel’s conjecture is true.

Theorem 2. If $3 \leq m \leq n$, then every balanced m-quasistar of order 2^n can be embedded into the n-cube.

Proof. We proceed by induction on m. In our proof we make use of the fact that the case $m = 3$ has been proved in [2] and the case $m = 4$ has been proved in [4]. Let $m \geq 5$. Assume that we have proved that for any $j, m - 1 \leq j$, every balanced $(m - 1)$-quasistar of order 2^j can be embedded into the j-cube.

Let T be a balanced m-quasistar of order 2^n. Then T contains exactly one vertex of degree m, say a vertex s, and exactly m vertices of degree one, say vertices t_1, \ldots, t_m. We denote by b_i the distance between s and t_i in T for each $i, 1 \leq i \leq m$. Without loss of generality we assume that $b_1 \geq \ldots \geq b_m$. Clearly, $b_1 + \ldots + b_m = 2^n - 1$. Since T is balanced, it is easy to see that there exists exactly one $h, 1 \leq h \leq m$, such that b_h is odd.

We shall first prove that

$$b_1 + \ldots + b_{m-2} \geq 2^{n-1} + 2(m - 4) + 1. \quad (17)$$

To the contrary, let

$$b_1 + \ldots + b_{m-2} \leq 2^{n-1} + 2(m - 4). \quad (17)$$

Since $b_1 + \ldots + b_m = 2^n - 1$ and $b_1 \geq \ldots \geq b_m$, it follows from (17) that

$$2 \cdot 2^{n-1} - 1 = 2^n - 1 \leq m(2^{n-1} + 2m - 8)/(m - 2),$$
and thus
\[2(m - 2) \cdot 2^n - 1 - (m - 2) \leq m 2^n - 1 + 2m^2 - 8m. \]
Since \(m \leq n \), we get that
\[(m - 4) 2^n - 1 \leq 2m^2 - 7m - 2. \]
Hence \(m \leq 4 \), which is a contradiction. Thus, we have proved (17).
This means that there exist \(I \subseteq \{1, \ldots, m - 2\} \), even positive integers \(a_i \) for each \(i \in I \), and exactly one \(f \in I \) such that
\[
\begin{align*}
a_f &= b_f, \\
a_i &< b_i \quad \text{for each} \quad i \in I - \{f\}, \quad \text{and} \\
\sum_{i \in I} a_i &= 2^n - 1.
\end{align*}
\]
For each \(i \in I \) we denote by \(v_i \) and \(w_i \) the vertices which belong to the path connecting \(s \) and \(t_i \) in \(T \) and such that the distance between \(s \) and \(v_i \) equals \(b_i - a_i \), and the distance between \(s \) and \(w_i \) equals \(b_i - a_i + 1 \). Obviously, the vertices \(v_i \) (\(i \in I \)) are mutually distinct, and \(v_f = s \). Denote
\[C = \{v_iw_i; i \in I\}. \]
Moreover, we denote by \(T' \) the component of \(T - C \) which contains the vertex \(s \). It is clear that \(T' \) is a balanced \((m - 1)\)-quasistarr of order \(2^{n-1} \).
Let \(G \) be an \(n \)-cube, and let \(\{G', G''\} \) be a canonical partition of \(G \). According to the induction hypothesis, \(T' \) can be embedded into \(G' \). Thus, we can assume that \(T' \) is a subgraph of \(G' \). Denote
\[u_i = v_i|G'' \quad \text{for} \quad i \in I. \]
It follows from Theorem 1 that there exists a set of \(|I| \) vertex-disjoint paths \(P_{(i)} \) (\(i \in I \)) in \(G'' \) such that \(P_{(i)} \) is a \(u_i \)-path of order \(a_i \), for each \(i \in I \). The subgraph of \(G \) induced by
\[E(T') \cup \{v_iu_i; i \in I\} \cup \bigcup_{i \in I} E(P_{(i)}) \]
is isomorphic to \(T \), which completes the proof of the theorem.

Acknowledgement. The author wishes to thank I. Havel and P. Liebl for their stimulating interest.

References

Author's address: 116 38 Praha 1, nám. Krasnoarmějců 2, Czechoslovakia (Filozofická fakulta Univerzity Karlovy).

712.