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We consider systems of differential equations with a deviating argument of the form
(A) () O = at) xis(f), i=1,..n—2,
(Pa-1(t) %2-1(1))" = a—s(1) 9(x(z(1))) »
(Pult) x:(1)) = f(t, x4(x:(1))) »
where the following conditions are always assumed:
(@) 0 < py(r) e Cla; ), [*(ds[pfs)) = o0, i =1,...,n;

(b) 0 S aff)eCla; ), i =1,...,n — 1 and a;’s are not identically zero on any

subinterval of [a; 0);
[*afs)ds=o0, i=1,...,n—1;

(c) g(u)e C(—o0; ), |g(u)| < K|u|’ for 0 < B <1, 0 < K = const,;

(@) f(t,v)e C([a; ©) x (—o0; 0)) and |f(t,v)| < o(t, [v]) for (1, x)e[a; 0) x
x (—o0; ), where o(t, z) € C([a; o) x [0; o)) is nondecreasing in z;

(e) t(t) e C[a; o0),lim7(t) =0, i =1,n and 1,(t) < 1, v*(f) = max {7,(¢), ¢} for t > a.

t— o0 :

System (A) is called superlinear or sublinear according to whether (1, z)/z is
nondecreasing or nonincreasing in z for z > 0.

The objective of this paper is to study the asymptotic behavior of solutions of
system (A). We are particularly interested in obtaining an information about
a growth or a decay of oscillatory solutions as well as of nonoscillatory ones.
Hereafter the term “solution” will mean a solution (x4(t), ..., x,(t)) of (A) which
exists on some ray [T,; o) € [a; o) and satisfies

sup {lexi(t)| (12T} >0 forany T2 T,.

Such a solution is said to be oscillatory (weakly oscillatory) if each component
(at least one component) has arbitrarily large zeros. A solution is said to be non-
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oscillatory (weakly nonoscillatory) if each component (at least one component)
is eventually of constant sign.

Some aspects of the asymptotic behavior of solutions of two-dimensional dif-
ferential systems with deviating arguments are studied in papers Kitamura and

Kusano [1—3]. In the present paper we proceed further in this direction by extending
the theory developed in [1] to the systems of the form (A).

Let i,e{1,2,...,2n — 1}, 1 £ k £ 2n — 1 and t,s€[a; ©). We define
I, =1 Ik(t’S; YVigo ---’J’il) = j;)’ik(x)lk-x(x,s; Viays reoes y,-‘) dx.
Fora<s<t1<ign—-1,0Zj=n-—i-1 weintroduce the notation

Qo(t,5) = Pi(t,s) =1, Pi(t,s) =1, (t, $; L)

n,

. ' 1 1 1
P’2j+1(t9 S) = 12j+1 (t7 S35 Qi = Qit1r -0 Aitj—-1s —>9
p; Pi+1 DPi+j

1 1 1
i .
P3;ea(t, 5) =Izj+z(t,S, — Ay Q415+, —, Qi j ),

b; Pi+1 Di+j

; 1 1 1 \
P2(n—i)+ 1(ta S) = IZ(n—i) <t> S,y —, ai+1: ceey T an—l(Pl(Tn))ﬂ> >

D; Pi+1 Pn-1

1 1 1
in—z(t, S) = Izi—z(t, S, — Ap-2, IRER , a,,-;) ,

b
Pr-1 Dn-2 Pu-i+1

1 1 1
Q2:’—1(t9 S) =12i—-1(t=S; — dp-2, s erey Qpoiy _");
. Pn-1 Pn-2

Pn-i
Pi(t,a) = Pi(t), 1Si<n, 12k=2n—i)+1; Qfta)= 0,
1<k<2n—3; R(t) =Py i(t)/Prnor~1(t), 1Sk<2n—1.
Lemma 1. Let (a), (b) be valid. Then
1) lim Pj(f) = 0, i =1,...,n, k=1,...,2(n — i)+ 1;

100

lika(t) =0, k=1,...,2n — 3;

1= 0

2) im (P()[Pi(t)) =0, i=1,..,n k<j, k,j=1,..,2(n — i) + 1;
 Sad- ]

3) for t, > a there are constants ax; > O [Bi; > O] such that for t = to, 1 £ k <
<js2n-i)+1,i=1,...,n we have wyPi(t) < Pi(t) [for 1Sk <j<
< 2n — 3 we have By; Qut) < ()]

Proof of Lemma 1 may be found in [6].

Lemma 2. Let x() = (x,(f), ..., x,(t)) be solution of (A) on the interval [a; o).
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Then the following relations hold for a < s < ¢:
k—i-1 k—i-

O OIS Z, be PO+ 3 [praske) 550 0] Phyoa) +

j=

1 1 1
+ Lyg-iy| 8 85—, Qi ——, Qis g5 o 7ak—1|xk| >
p; Pi+1 Pr—-1
12igsn-2, i+15k=n-1;

—i-

1
. Ipi+j(s) x}+i(s)| Pj+ 1(‘) +

—-i—-1 . n
|xj4(5)] P2,(2) +
j=o i=

1 1 1 .
+ KIZ(,,_,.)(t,s; — Ay i g ,a,,_llx,,|”), 1fisn-1.

p; Disa n—1

@) )] <

Proof. Let us integrate the first (n — 1) equations of (A) from s Z a to t > s
and transform them to

®) [0 = [xi(s)] + [pds) *i(s)] PiCE) +
+J p.1(~—v—)Jwai(u) |xi41(u)| dudv, 1 <isn-2,
“) [xa-1()] = Pxu=s(9)] + [Pa-1(s) xua(s)] PIT(0) +

+K j ' p—l—(—) j " y-4(8) o)) s o,

which are the inequalities (1) (with 1 £ i< n —2, k =i+ 1) and (2) (with i =
= n — 1). Substituting successively for |x;.(f)| in (3) we have the inequalities
(1), (2).

Lemma 3. Suppose that either (A) is sublinear and

(5) |2 Pi(z*(1)) oo(t, cP3,—5(74(t)) dt < 00 forall ¢ >0,
or (A) is superlinear and
(6) {2 Pi(t) o(t, cP3,—4(zy(t))) dt < 00 forall ¢>0.

If (x4(2), ..., x,(2)) is a solution of (A) such that x(t) = o(Ph,_5:44()) as t - oo,
i=1,...,nthen x(t) = O(P},_,(t)) ast > 00, i=1,...,n

Proof. Let (x,(t), ..., x,(t)) be a solution of (A) defined on [a; 00) such that
x{(t) = o(P5,—2:+1(t)) as t—> o0, i=1,....,n, and let t, = a be such that
min (t4(t), 7,(¢), t) > a for t = t,. Because x,(t) = o(Pj(t)) and P}(r) > o as
t — oo, there exists a T 2 t, such that |x,(f)] < Pi(r), Pi(tf) 2 1 for t = T and
Pa(t) x,(t) = o(1) as t - oo. Now, the n-th equation of (A) implies

0 s P+ [ el @ s, iz T

T En

T

Combining (7), (2) (with i =n — 1, s = T)and (1) (withi =1,k =n — 1,5 = T)
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we get

®) (0] S 3 (T o) + 3 p() 5T Phes) +
J (s, |xy(zs(s))) dsdu, t=T,

+ KPY(T) Ph_s(t) + KPLr_»(i) J

or by Lemma 1

©) O < o4k PYS) ofs b)) ds + KPID) 7 s (o)) ds.

Pz;.—z(t) B

P,(u)

t=>T, ¢>0, aconstant.

Next, let us assume that (A) is sublinear and (5) holds. We shall show that x,(f) =
= O(P},-,(t)) as t > oo in this case. Suppose the conirary. We can choose Tj, Ty
suchthat T< T, < T, < T3, Ty = inf (min (t4(s), Tuls), 8)) = T,

(Tl 5y g Tl _ sup Ol >,

PZn Z(TO) - ToSs=t P2n Z(S) T2<sst Pln z(s)
T.
+K s, s))|) Pi(s)ds < x4(T)
¢ §72 (s, |x1(z1(s))]) Pi(s) ds < 2 P2n A(T3)
d i . 1
a“ J7, PHE(5) (s, Phaa(ma(9) ds <
Let us define
(10) o(t) = sup [x4(5) t2T,.

To<s<t Pé,,_z(s)’ -

Using (10) and the sublinearity of (A) we obtain from (9)
) ips [ AP el Pl o +

+ K [ v(ty(s)) @fs, P3p_a(ts(s)))ds, t=T,.
Foreach t = T, let T}, J, denote the sets
(12) I, ={se[Ty; o), 1,(s) 1}, J,={se[Ty; 0); ts(s) >1}.
Since o(t,(s)) < o(t) for sel,, v(ty(s))/Pi(z:(s)) < sup v(0)/Pi(6) for seJ, the
right-hand side of (11) is bounded from above by ~ °=*

UI(:)(I§ [Srentrasn Pi(s) (s, P3 *20-2(71(5))) 45 + [t s, P-2(7a(8)) ds] +

# K sup DL o Bnotron P PIGS) s Phaas() s +

# Dt P e, Pl o(e(9) 85 5 ’j,,f’((‘)) 12, PH) 006, Pho-s(sis) ds +
4 (o o 1 < pop 28 120
+ K sup ) sz Pi(t4(s)) oo(s, P3,—5(t4(s))) ds < P'l'(s) 2 50 , t2Ts.
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We conclude that 0 < sup (v(s)[Pi(s)) = % sup (v(s)/Pi(s)), which is a contradiction.
So x4(f) = (Pz,, z(t)) as t — oo and (5) 1mphes that

(13) j e j £, 3,(e,(w) du ds| < j 1(5) s, P, (ry(5) ds.

Therefore, (7) implies that x,(f) = O(1) as ¢ — oo and then there exist a Ty =2 T
and a positive constant L, such that x,(t) £ L, x,(t,(t)) < L,for t = T;. Substituting
this inequality in (2) (with s = Ty, 1 £i < n — 1) we show, by Lemma 1, that
x{t) = O(Ps,_,ft)) ast > o0, i=1,....,n — 1.

Now we assume that (A) is superlinear and (6) holds. We shall show again that
x4(t) = O(P3,-»(t)) as t > o. Dividing (8) by P},_4(t) we obtain, by Lemma 1,

s P2a—s(t) J’ “

14 K—="=== Pi(s) o(s, |x(t(s)))ds, t=T
I e T s v | LSOO

where C is a positive constant. As x,(f) = o(P},_4(f)) as t - oo, we can choose
a Ty 2 T such that T, = inf (min (,(s), 7,(s),s) 2 T,
szTy

|%1(8)] £ P3a-i(t), Praci(t) 2 P3,_5(t) for t2 T,
and

© 1
§7. Pi(s) (s, P2,-1(zy(s))) ds < T
Now, we define
xa)l
u(t su t=2T,.
W= oy °
Using the superlinearity of (A) we can derive the following inequality from (14):
(15) i 2n- 12‘; u(t) £ D + K 3, u(ty(5)) PYs) (s, Phys(ra(s))) ds, 12 Ty
2n-2
where D = C + K [7* Pi(s) o(s, |x4(t4(s))|) ds. Since
1
P—-——f""(tl(s)) u(ty(s)) < sup ————(0) P2n-4(0) for
Pana(74(5)) Tosost P, 2(0)
u(ty(s)) < u(t) for sel,,

where I, and J, are defined in (12), the right-hand side of (15) is bounded from
above by

sel,,

sup 48) Pan=i(5) Phoa(®(2) L pt (o (0 ds
o KT"ésP;‘ Pin-2(8)  Jrorrss 1 Fie )P2n 1(74(2)) olz Par-a(n(z)) dz +

su M N 2n 2('51(2)) 7. Pl (2 .
’ KT°SSI;' P3,-(s) Im[t;oo)P( )PZn 1(74(2)) olz Pin-i(ri(2))) d2 +

+ K u(t) [5.00m0 Pi(z) (2, Paa-s(4(2)) d2 + K (1) [5,np0:0 Pi(2) 02, P2n-s(72(2))) d2 <
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1 o0
<D +K sup HOPail) (7 oy oo P12 (2) dz +
Tossst  Pj,_5(s) T,
P;n—l(t) ° rll
P;n—z(t) Ty

1
for t+>T,, where D, =D + } sup ﬂfM
TosssT:  P3,_5(s)

+ Ku(r) (2) oz, Pho-(e1(2)) d2 < Dy + 4 sup #(s) Pa-i(s)

issst P, _5(s)

It follows that
1
fl(t)l = sup _____*u(s)le,,_l(s) 2Dy, t2T,,
Py._5(t) missst P3,_o(5)
which means x,(f) = O(P},_,(f)) as t » o0 and according to (6) we have that the
left-hand side of (13) converges. Continuing as in the corresponding part of the proof
of Lemma 2 we get x,(t) = O(P,_,(t))ast - o0, i = 1, ..., n. The proof of Lemma
3 is complete.

Lemma 4. Let 1 £ k < 2n — 1. Suppose that (A) is sublinear and

(16) [ Qu=1(f) au-1(t) (feocey (5, P2nse—2(71(5))) Rew 1(74(5)) Pi(s) ds)? dt < o0 .
If (x4(2), ..., x,(t)) is a solution of (A) such that

(17) %) = o(Pon—s—s1(1))s X(1) = o(1) @s t> 0, 1 < i< n— [g] <j<n

then
(18) x(t) = O(Ph—2i-i(t)), x4(t) = O(1) as t— oo,

1§i§n—[k'2"1]<j§n.

Proof. Let (x,(t), ..., x,(f)) be a solution of (A) on [t,; o) satisfying (17). Take
~ a T 2 t, such that min (z,(¢), 7,(t), 1) = t, for t = T. Let us consider the two possible
cases.

a) k is even. Let m be such that k = 2m. Using the properties of the components
of the solution we easily see that p(t) x{(t) = o(1) as t > 0, i =n — m,...,n, and
from the last (n — m) equations of (A) we get for t = T

(19 xlf) = J' °° - is) j ® (s 34(ra(w))) du ds,

(20) $ooa(f) = I . f ¥ () g(xa(ea(w))) du ds,

Pn- 1(3)

(21)  x) = J‘w ;zsjwai(u) Xip(W)duds, n—-m+1=5i<n-1,
(22) Pn—'n(t) x,',_,,,(t) = - .ﬁn an-m(u) xn-m+1(“) du,
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which implies
(23) [xu(8)] = [ Pi(s) s, [x1(z4(s))]) ds
(24) PO < K §7 Qan-zi-1(u) an- () ooy (s, lxl(‘cl(s))l)P (s) ds)’ du ,
n—-m<i<n-—1,
(25) [n-m(®)] = xu-n(T)| +
+ K [F Qam-1(#) a5 1(u) (fir (s, [x1(z4(s))]) Pi(s) ds)’ du .
Substituting (25) in (1) (withi = 1, k = n — m, s = T) we have

6 il S DI P+ 5 p(T) ST Phoi() +
+ KP2 - 1)(t) T Qam-1(4) an-1(u) ([iry (5, [%1(74(5))]) Pils) ds)f du, t = T.
By Lemma 1 there exists a positive constant c,_,, such that (26) yields
(27) M SCiem +
Pyn-m-1x?)
+ K [T Qom-1(4) an-1(u) (Ji (s, [x1(74(s))]) Pi(s) ds) du, ¢t = T.

Now we shall show that x(f) = O(P}(,—m-1)(t)) as t = co. Suppose the contrary.
The proof is an easy modification of that of Lemma 3 when (A) is sublinear. We
choose Ty, T, Ty such that T < Ty < T, < Ts, Ty = inf (min (t4(s), 7,(s), 5)) =
2 T, |x4(To)| Z Paa-m-1\(To), seTz

sup |x 1(S)I sup l 1(3)]

To<s<t Pz(,, m— 1)(8) T,Ss<t PZ\,, m— 1)(s)

v + K T2 Qo s(8) @01 (8) (200 005 Phen—m—(es())) PIs) s < — B

4P3(n-m-2)(T5)
and

(28) 7, Qam-1() an-1() (Jiiwy (5, P2n-m-1)(71(5))) Roms 1(71(5))Pi(s) ds)? du < é
Let us define

|x4(s)]
v(t) = su , t=T,.
(1) ToSspStPZ(n —m=1)(8) °

Using the properties of the function v(f) and the sublinearity of (A) we obtain
from (27)

(1) < 30() K [T, Qzm- 1(“) ay—1() (Ji2w 0(71(5)) @5, Pria—m- 1)(‘”1(5)))
.Pys)ds)fdu, t=Ts,

Integrating the last inequality over the sets (12) and using the properties of the
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function v(t) and (28) we have

%vﬁ(t) < i(sup o(s) )ﬂ

szt Ropmy 1(3)

or -

< () =3 G rnte) =itz me) =7

which is a contradiction. Therefore, we must have x;(t) = O(P3g—m-1y(f) as t = o0
By virtue of this fact and (16), the right-hand sides of (23)—(25) are bounded from
above and so x(t) = O(1) as t - o0, n — m < i < n. Since x,_,(t) is a bounded
function, we see by (1) (with k = n — m, s = T,) that x,(t) = O(P-m-s(t)) as
t—> 0,1 Zi<n-—m.

b) kis odd. Let m be such that k = 2m + 1. Taking into account the properties
(17) of the components of the solution and the last (n — m) equations of (A) we
get the inequalities (23), (24) and

29 Pa-n(®] £ K Qanes(w) aums(w) (f1200 (s: [x1(54($)]) Pi(s) ds)f du,

t=>T.
Combining (29) and (1) (with i = 1, k = n — m, s = T) we obtain
n—m—1 n—-m—1
(30) x:(0)] = X 1) Pai(t) + L 1pAT) ¥(T)| Paiza()) +

+ KPyam-3(1) [ Qam() an-1() (Jioy (s, |x1(vs(s))]) Pi(s) ds)f du, 12 T,
and by Lemma 1

;M(—t) < D+ K [ Qo) e o(w) (20 (s, [ra(ea(s)]) P 4P dut, 12T,

where D is a positive constant.
Defining o) = sup — |x4(s)|
ToSsst P2n—2m—-3(s)
and applying the same type of argument that was used to prove the case a), we con-
clude from the last inequality that x,(t) = O(P},_,,_3(t)) as t > co. By virtue of
this fact and (16) the right-hand sides of (23), (24), (29) are bounded and hence
x{(t) = 0(1)as t > oo, n — m — 1 < i £ n. Further, using (19), (20), (21) we have
from (n — m — 1)st equation of (A)
lpn—m—l(t) x:l—m—l(t)l é [pn—m—l(T) x;l—m—l(T)I +
+ 7 Qan(®) an-1(w) (Jorw (s, [x1(za(s))]) Pi(s) ds)f du ,

which implies, by (16), that p,_,-(¢) x,_,_4(f) = O(1) as ¢ —> co. But then
Xp-m-1(f) = O(P1™™'(t)) as t > oo, which means that there exist a T; = T and
a positive constant L such that |x,_,,-(f)] £ LP;™™ (¢) for t = T,. By this fact and
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Lemma 1 we get from (1) (with s = Ty, k= n — m — 1) that x,(t) = O(P}(,_ -1 -41(£))
ast—> 00,1 <i=<n-—m— 1. The proof is complete.

Lemma 5. Let 1 < k < 2n — 1. Suppose that (A) is superlinear and

(31) 12 Qu=1(2) an=1(2) (J20e) (5, Pl 1(71(s5))) PY(s) ds)f dt < 0.
If (x4(2), ..., (1)) is a solution of (A) satisfying (17) then (18) holds.

Proof. Let (x,(t), ..., x,(t)) be a solution of (A) on [to; o) satisfying (17). Pick
a T Z t, such that min (t(t), 7,(t), t) = t, for t 2 T. Let us consider the following
two cases.

a) Let k be even, i.e. k = 2m. Proceeding in the same way as in the proof of
Lemma 4 we get the inequality (26) and this yields

(32) |x1(t)‘ é e + KP;H—Zm—Z(t).
P;n—lm—l(t) P;n—Zm—l(t)

ST Qam-1() @u-s() ([ (s, [%1(72(9))]) Pi(s) ds) du, £ 2 Ty

where T; is sufficiently large, c,, is a positive constant. We shall show that x,(f) =

= O(P}n-2m-2(t)) as t = 0. We know that x,(t) = o(P3,_,m_4(f)) as t - o and

(31) holds. We can choose a T, = T such that T = inf (min (t,(s), 7,(s), s)) = T},
s=Ty

|x1(t)l é Pén—Zm—l(t) s P;n—Zm—Z(t) é P;n—-2m—-1(t) fOI' t g TZ
and

[+ o] n, 1
§7, Qam-1(#) au-1(u) (oo (5, P2n-2m-1(v1(5))) Pi(s) ds)? du < ik
Now, we define

|x4(s)]
v(t) =sup —H— t=2T,.
( ) 5313 P;n—Zm—l(s) °

Using the superlinearity of (A) we can derive from (32) the inequality
1
(33) Pan-am=al) iy < g, +
Pon-2m-2(1)

+ K |7, Qam-1(u) au-1() (27 0(71(5))) @5, P2o-2m-1(74(5))) Pi(s) ds)f du,
tzT,,
where

Ay = + K [17 Qam-1(1) - 1(u) (oo (5. |x1(e4(s))]) Pi(s) ds)’ du .
Since

Pin-an=1(56) oo () < sup [IM v(g)], sel,

P;n—Zm—Z(Tl(s)) ToSost P;n—Zm—Z(a)

o(ty(s)) S o(r), sel,,
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where I,, J, are defined in (12), the right-hand side of (33) is bounded from above by

1 s
dy, +K[ sup f—z—"—‘z""—l(s)v(s)] .
T

oSsst P;n'Zm—-Z(s)
Nreottzier Qam-1(#) an-1(#) ([ (s, Pl 2m-1(1(5))) Pi(s) ds)’ du +
+ Ko()’ [5,nir250) Qam-1(t) @n-1() (fi2y (5, P2n-2m—1(1(5))) Pi(s) ds)? du <

1 B 1 B
<d + l[ sup Pin—lm—l(s) v(s):| + l[v(t) Pin—Zm—l(t)] <
Tossst P2n—2m-—2(s) 4 P2n—2m—2(t)

1 B
édm+£[ sup Pi_"‘z.'l:}(_s)v(s)jl , 12T,
Tossst Py, op-5(5)

and also

1 1 8
sup Pfu-—Zm—l(s} v(s) < d: + sup fM.(i) U(S) , t=2T,
ToSsst 'P2"_2m_2(s) TosSsst P;n—Zm-‘Z(s)

where
1
dt=d,+ sup [P—z"—i":‘-—(i) t(s):l.

Toss=T> P;n—Zm—Z(S)
It follows that -

0] . [M v(s):l <L, t2T,,

P;n—Zm—Z(t) =T°§"§‘ P;n—lm—z(s

Lis a positive constant, which means x,(f) = O(P3,_2,-2(t)) as t > oo. Proceeding
further as in the case a) of the proof of Lemma 4 we arrive at the conclusion that

(%4(2), ..., x,(t)) satisfies (18).
b) Let kbe odd,i.e. k = 2m + 1. Similarly as in the case b) of the proof of Lemma
4 we get (30), which by Lemma 1 yields

X! Pln- m— ! © @ n
"M—‘ =D+K —f‘z_i(*) §7 Qan(t) au-1() (Jir (s, |x1(71(s))]) Pi(s) ds) du,
Piu2m-2(t) P 2m-2(t)

: t=T,
where D is a positive constant. We have x,(t) = o(P},- 2m-2(t)) as t = co.
Defining
[x1(s)|
v(t) = sup——+—, t 2T,
( ) S; P;n-—Zm—Z(s) °
and arguing as in the proof of the case a) we can show that x,(f) = O(P3,- 2m-3())
as t —» oo. Then continuing as in the corresponding part of the proof of Lemma 4

we conclude that (xy(?), ..., x,(2)) satisfies (18). This completes the proof of the lemma.
The main result of this paper is the following theorem which describes the behavior

of all solutions of (A).
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Theorem 1. Suppose that either (A) is sublinear and
(34)  [* PYzy*(t)) @, Py, 4(74(1))) dt < 0 forall ¢>0, k=0,1,
(35) 17 Qu-a(t) an-a(t) ([ (s, P2ai—1(74(5))) Ry(z4(s)) Pi(s) ds)f dt < o0,
forall ¢>0, 25k<2n—-1,

or (A) is superlinear and

(36) §° Pi(t) o(t, cP3,_1(74(1))) dt < 00 forall ¢ >0,

(37 § Qeat) au-1(1) (f22cy (s, €P2a-i(71(5))) Pi(s) ds)f dt < oo
forall ¢>0, 2=2k<2n—-1.

If (x4(2), . .. x (1)) is a solution of (A) then exactly one of the following cases occurs:

() limsup l ()] =, i=1,...,n,

t+o on—2i+1(2)

(I) there exists a nonzero number «, such that

lim@:ao, lim sup l (t)l i=1,..,.n—-1;
t— o0 Pl(t) t—> o0 P2n 2,+1(t)

(IOI) there exists a nonzero number o, such that

lim x,(t) = oy, lim x() =g(a), i=1,..,n—1;

t— 00 t—=> o0 PZH 2,()

(IV) there exist an integer k, 2 < k < 2n — 1 and a nonzero o such that
lun———L-—ak, Iimxj(t)=0, 1§i§n—[ﬁ]<j§n;
t~w0 Pop_ai k+1(t) t=w 2

(V) limx(t)=0,i=1,...,n
t— o0

Proof. Let (x,(?), ..., x,(t)) be a solution of (A) on [t,; oo) and let T = ¢, be such
that min (t,(t), 7,(t)) = t, for t = T,. We shall show:

If hmsup '1()l = oo then limsup—lﬂ—~=oo for j=2,...,n
t— o 2n 1() t> o P2n—2j+1(t)

Suppose the contrary. Then there exists an integer j, 2 < j < n — 1 such that

Jim sup — Ol
tv0 Pl 2,+1(‘)

which means there exist a positive constant L and a t; = T such that |x,(t)] <
< LPj,_ 2,+1(t) for t = t,. From (1) (withi = 1, k = j, s = #,) we have

lxl(t)l = ingi(tl)l P;i~z(t) + ;xlpi(tl) x,i(tl)l P;i—l(t) + LP;n—l(t) >
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which implies, by Lemma 1, that

lim sup s I () i
t— o0 2" l(t)
a contradiction. Now, let j = n, i.e.

lim sup l——“
t— o0 l( )

Then there exist a positive constant L; and a t; = T such that |x.(f)| < L, P}(t),
[%a(z(t))] < LyPi(z,(t)) for ¢ = T,. Using this fact in (2) (with i = 1, s = 1,) we get

n—-1 n—1
|x1(t)| = lexi(tl)l Péi—z(t) + ZJPi(H) x;(tx)l Py_4() + KIf P;n—l(t) , t=ty.
From this relation we have

lim sup |—1(~)J—- <
t—>0 2n 1()

again, a contradiction. Hence Case (I) occurs.

lim sup ! i )|
Lindl 2n 1()

Suppose now

ie. there exist a positive constant M and a T; = T such that |x,(7,())] <
S MPj,_(ty(t)) for t = Ty.

According to (34) with k = 0 or (36) provided (A) is sublinear or superlinear,
respectively, we have f(t, x4(t4(t)))e L'[ Ty; o), and so the last equation of (A) yields

(38) 1) x0(1) = 09 — [ f(5, x4(74(s)))ds, t= Ty

where o = p,(Ty) x:(Ty) + [T f(5, x1(74(s))) ds.
So, we have hm p,,(t) x,(t) = o. Using this fact one can easily see that

hm (x ()/PY1)) = ozo and so there exist a positive constant ¢ and a T, = T; such

that |x(za(t)| £ cPi(z,(t)) for ¢t = T,. Now, from (2) (with s = T,) we have

|xi(1)] §'21|x,-(T2)l Pyj-o(t) + .ZIIPJ(TZ) X(To)| Paj-a(t) +
J= J=
+ K Py _piuy(t), t2T,, 1Sisn—1.

This implies, by Lemma 1, that Case (II) occurs.

Let ¢y = 0 and let either (34) with k = 1 or (36) hold provided A is sublinear
or superlinear, respectively. We show that Case (IIT) occurs. By virtue of Lemma 3
the components of a solution of (A) have the following properties: x(t) =
= O(Py,_2(1)) as t—> o0, i=1,...,n. Hence x,(t) = O(P3,_,(t)) as t— oo.
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Consequently, it is clear that
R |
J‘ T Pn(s)
Now (38) (with ay = 0) yields

(39) x(f) = + j

where

< .

j ® f(us a(r(w))) du ds

J' f (u xl(T 1(“))) duds, ¢t > T — sufficiently large ,

Pis)
# = x,(T) - J ) J(—) J P, xa(ra(u))) dus ds .

We see that lim x,(t) = a; and hm g(x,,(r (1)) = 9(e;). Then the (n — 1)st equation
of (A) yields *~®

$no1(l) = %oos(T) + Pa-s(T) xn-l(T)j ds

T Pn- 1(5)

t 1 s X
" J‘T Pu-1(5) J-T p-1(u) 9057 (w))) duds, t2= T,

which implies that lim (x,,_l(t)/P"” !(1)) = g(«;). Suppose that lim (x ()| Pon—2it)) =
= g(o,) holds for some integer i, 1 < i < n — 1. Then hrn (x, 1(t)/Pz,l 2i-2(1)) =

+

= g(a,), which follows from the (i — 1)st equation of (A) It ; = 0, a solution of
(A) belongs to Case (III). It remains to examine the case when a; = 0. We prove this
part by mathematical induction. We shall show that if o, = 0 for some integer k,
1 £ k < 2n — 1, i.e. the components of a solution of (A) satisfy

(40) x{(t) = o(Phn-2i-s+1(t)), x(t)=0(1) as t-o0, 1ZiZn ~|:l-§:|<j <n,

and either (35) (with k + 1) or (37) (with k + 1) holds, then the components of the
solution of (A) belong to Case (IV) with o4 = 0.

Let o, = 0 and let (35) or (37) (with k + 1) hold. By Lemma 4 and Lemma 5 we
know that the components x,(t) of the solutions of (A) satisfy (40). Let us consider
the following two cases.

a) Let k be even,i.e. k =2m. It is a matter of an easy computation to derive from
(19)—(22) the equations

1) x(i) = J Qi s(t 1) a_r(u) g (.[

@ Pa(v)
n—-m+1=5in—-1,

| Ao xme asao)au,

@
Pa-n(f) ¥u-nlt) = = J:o Qom—2(u,t)a,_,(u)g (-r

Tn(u) Pa)

s eEnasa)a.
t=T.
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Because x,(f) = O(P},_,m_2()) @ t > oo, there exist a positive constant ¢ and
a Ty 2 T such that |x,(t,(t))| = ¢P},_,,_5(1,(f)), t = T;. By Lemma 1 and the
properties of the functions f(t, u), g(v) we have

J Qnez1o s, 1) - ‘(")g(.[,,(u) 0 j 1G5, x4(4(s))) ds du) du

=M fn Q2m-—1(u) an-l(“) (It..(u) a)(s, CPzn-zm—z(Tl(s))) Pl(s) ds)ﬁ du < o0,
n—-m+1Zi<n—1, M>0, and

[ vt arei)s (j) [ asen)a <

< LT Qom—1(tt) ay— 1(t) ([ 2w @S5 cP3p o (71(5))) Pi(s) ds)f du < o0, L>0.
Hence limx(f) =0, n —m + 1 =i < n and

@)

Xoon(l) = toms1 + J O 1(1t, 1) l(u)g(j

t2T,

o BT 2. el s ).

where

which follows from (19) (20), (41), (42). Since the mtegral on the right-hand side of
(43) is convergent by the assumption (35) or (37) we see that hm 0 X, m(t) = Gpmeqe

Using this fact we successively obtain lim (x ,(t)/PZ,,_z,,,_z,(t)) =ty 1 Si <
t—o00

< n — m, by the first (n — m — 1) equations of (A).
b) Now let k be odd, i.e. kK = 2m + 1. As above, we know from Lemma 4 and
Lemma 5 that x,(t) = O(P},_,,—3(t)) as t > co.(35) or (37) implies that the integrals

J“” Qi(u, 1) a,—4(u) g (J'rn(u) (v J f(s, x4(z4(5))) ds dv) du, 0<is<om,
.f m L J(s, x1(74(s))) ds dv

are convergent. Hence from (19), (20), (41), (43) with dzm+1 = O we get that
limx(f)=0,n —m<i<n.
t—

Combining the (n — m — 1)st equation of (A) and (43) with «y,,,.; = 0 we find
pn—m—l(t) x:l —-m= 1(t) =

— gy — J’ °° Ol 1) an_l(u)g< f f £(s, x1(x:(6))) ds dv) du, 12T,

(1) Pn
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where
Xom+2 = Pn~m—1(T) X, _m_l(T) +

J' 0t T) a, - l(u)g(L(u) ") J' £(s, x4(z4(s))) ds dv) du,

which implies hm Pr—m—1(t) Xp - 1(f) = dps 2 and consequently

hm (x,, — 1(t)/P" ™ 1(1)) = dyps,. Using this fact we successively obtain that
hm(x {)|Phn-2m—2i+1) = %2ms2, 1 S i< n—m — 1 from the first (n — m — 2)

equatlons of (A). Hence Case (IV) can occur if o + 0,2 < k < 2n — 1.

If oy,_, = 0 a solution of (A) belongs to Case (V). The proof of Theorem 1 is
complete.

Corollary. Let all assumptions of Theorem 1 be fulfilled and let g(u) = |u|? sgn u.
Then (1), (II1), (VI), (V) of Theorem 1 and

(Ir) lim x(t) =ab, i=1,..,n—1
t+e P}, _ 2141(t)
hold.

Example. Consider the system
(AP = S (e (r2)H2
() = =52

As one can easily check, condition (34) with k = 1 is violated and the system has
a solution x,(t) = 2, x,(f) = t'/* which has the following properties:

m X1 _ . lim %) _0 but lim 11( ) _ , lim x,(f) = 0.
t— o P3(t) t= o0 P%(t) t— o ( ) t— o0
This example shows that the violation of the integral condition of Theorem 1 for some
integer ke {0,1,...,2n — 1} may give rise to solutions with different asymptotic
nature.

On the basis of Theorem 1 we want to determine some properties of all nonoscil-
latory solutions of (A) for which the following sign assumptions are given:

(44) f(t,v)v <0 for v+0, (t,v)e[a;0) x (-0, ),
gw)u>0 for u+0, ue(—o0;0), liminf|g(u) +0.
We remark that under these assumptions a solution of (A) is oscillatory [nonoscil-

latory] if and only if it is weakly oscillatory [weakly nonoscillatory]. We will need
a lemma.
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Lemma 6. Let (44) hold. Then for a nonoscillatory solution (x(t), ..., X.(t))
of (A) we kave:
1) there exists a ty = a such that x,(t) xi(t) > 0 fort 2 to, i = 1,...,n;

2) there exist an integer ke {1,...,n} and a ty, = a such that for t = t, we have
x,()x(t) >0, i =1,..,k; x,(t) x{t) <0, i=k+1,...,n

Theorem 2. Assume that (44) and the hypotheses of Theorem 1 are satisfied.
If (x4(2), ..., x,(t)) is a nonoscillatory solution of (A) then exactly one of Cases
(I1)—(XV) of Thoerem 1 occurs.

Proof. Let (x,(t), ..., x,(f)) be a nonoscillatory solution of (A) such that x,(t) # 0,
i=1,...,non [t; o). Take a T Z t, such that min (r,(t), 7,(t), 1) 2 to for t = T.
Without loss of generality we may assume that x,(tf) > O for ¢ = t,. Lemma 6
implies that x,(t) is increasing on [T; o0) and hence hm 1nf x4(t) > 0. Case (V) of
Theorem 1 is excluded.

Now, from the n-th equation of (A) we see that p,(t) x,(t) is decreasing and
(45) 0<pfi) X)) S pAT)X(T), 12T
Dividing (45) by p,(t) and then integrating from T'to t = T we obtain
0] < ()] + [pT) %(T)| Pi(e. T) S ePi(), 12 Ty 2T,

¢ a positive constant. Substituting this inequality in (1) (with i = 1, s = T) we find
n—1 n—1
EAG é.;ixi(n)i Pyi(1) + _lepi(Tl X(Ty)| Prioa(t) + K Pay_s(t), t 2 T

This shows that |x4()|/P3,-4(f) is bounded from above by a positive constant by

Lemma 1. Hence Case (I) of Theorem 1 is excluded. This completes the proof.
Now, we turn to an investigation of the behavior of oscillatory solutions of (A).

No sign conditions are introduced but the following conditions on 7,(t) are needed.

We use the notation
h*(t) = sup (max (t,(s), s), h«(f) = inf (min 7,(s), 5)) .
assst st

We say that condition (G*) [or (G,)] is satisfied if there exists a sequence {t,}:%,
such that t, > o0 as n —» o0 and h*(t,) = t, [hu(t,) = t,] for n = 1,2, ...

Theorem 3. Assume that (A) is sublinear and (G*) is satisfied. If (34), (35) hold
then every oscillatory solution (x4(t), ..., X,(t)) of (A) has the property lim x(t) = 0,
i=1,...,n e

Proof. Let (x,(¢), ..., x,(t)) be an oscillatory solution of (A) defined on [#,; o).
Choose a T 2 i, such that hy(T) = t,. Since the solution is oscillatory by hypotheses,
the Cases (II)—(IV) of Theorem 1 can never occur, so the solution must satisfy either
(T) or (V). Suppose that (I) is true. We can choose a T; = T such that Pj(t) = 1 for

574



t 2 T;. From the n-th equation of (A) we get
(0] 5 bl + Inmy s e + [ |
< PI(t) (|xu(To)| + [pu(T2) xu(To)| + [T, (s, [x4(z4(s))]) ds)

@) |)F S (PP + B, ol [x(m ) 9),
where ¢ = |x,(Ty)| + |pa(Ty) xu(Ty)|-

Substituting (46) in (2) (with i = 1, s = T,) for T, = T such that 7,(t) = T,
for t = T, we find

0] 5 T AT PEicol) + 3 [pAT5) )| Py () +

+ K Po,_ (1) + KB~ PL,_4(1) [T, (s, |x4(z4(s)))ds, t=T,.

By Lemma 1 there exists positive constant Lsuch that

ou, |xy(ey(w))]) du ds <

@y Ol <L o u(n@))ds, (2T, M= Kpet .
Pzn—1(t)
Let us put
u(t) = sup I 1(s)]
To<s=<t P2" 1( )

and choose Ty, Ty, Ts such that T, < Ty < Ty < Ts, Ty = ho(T3) 2 T, |x4(To)| >

> P2n 1(To)
sup | (6 _ sup lxl(s)l
Toss<t P3,_ l(s) Tassst Py, l(s)

0 1 < _1_
7, @(s, P, 4(t4(s))) ds < v

. <! 1 ix1(T5)I
L+ M [Tt s, |x1(ts(s))]) ds 2 PL,_(Ts)

Using the sublinearity of (A) and the fact that u(¢) is nondecreasing we derive from
(47)
u(t) < T u(t) + M [7, u(ty(s)) (s, P3,—1(14(s))) ds <
< Y u(t) + u(h*(t)) M [, oo(s, P3,_1(14(s))) ds,
which implies u(f)[u(h*(1)) < 4, t2= Ts.
Because of (G*) this is a contradiction and so the solution (x4(2), ..., x,(t)) belongs
to the case (V) of Theorem 1.

Theorem 4. Assume that (A) is superlinear, § = 1 and (G,) is satisfied. If (36), (37)
hold then every oscillatory solution (x4(%), ..., x,(t)) of (A) has the property from
Case (1) of Theorem 1.
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Proof. Let (x(?), ..., x,(t)) be an oscillatory solution of (A) defined on [#,; co).
Similarly as in the proof of Theorem 3 we can show that it must belong either to
Case (I) or to Case (V) of Theorem 1. Let Case (V) occur .We can choose a Ty = T
such that |x,(7,(t))| < 1, Pi(r4(t)) 2 1 for t 2 T;. Then (36) implies

|7,/ (s, x:(e1(5)) ds] = [7, Pi(s) (s, 1) ds = [F, Pi(s) (s, Pan-1(71(s))) ds < o0 ;

J 1 DS )j (s x5(z4(w)) du ds| < [7, Pi(s) (s, P3p-1(5:(5))) ds < oo .

Using the fact that x,(f), x,(t) are oscillatory we obtain from the last equation of (A)
P X0 = = J7 61 (ea(5)) ds
p(Ty) X(Ty) + J7, (s, %1(za(s))) ds = 0,

t 2 T, and consequently

0= [ [ i) e

because

(48) because

x(T,) L o f F(u x,(ra(w))) duds = 0,

t 2 Ty. Again, (37) (with k = 2,3,...,2n — 1) implies that

J, feese T s QUW) o), e ne) ) o <

S K (3 Ou-a() ay—1(u) (J2u (s, P1u-i(74(5))) Pi(s) ds du < oo .

Analogously as above, taking into account that the components x(t), xit), i =
=1,...,n — 1 are oscillatory we get

(49) x(t) = J‘ml—"—zs—)fwai(u) x;+1(u)duds, i=1,...,n-2,

(50)  xi(t) = f ” - _ll(s) f ¥ s (0) g duds, t2 Ty
Combining (48)—(50) we have

(1) = j Qo s(tts 1) a4 1<u>g(j ! J"“’f<s, xl(n(S)))dsdv)du

Tn(4) p,,( )

(51) |x4(9)| S K [ Qan-3(t) an-1(u) (J ) @(s, |x1(z4(s))]) Pi(s) ds) du, ¢ = T;.

Now we define o(t) = sup |x(s)|, t = T, and choose Ty, Ty such that T, < T, < T;,

hi(Ts) 2 Ty, |%4(2)] < 1 for t = T,. Using the superlinearity of (A) and the proper-
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ties of v(t) we find from (51)
(52) o(t) < o(ha(1)) §37 Qan-3(tt) an-1(u) (i) (s, 1) Pi(s) ds) du .

This is a contradiction because the right-hand side of (52) tends to zero as t — oo
while the left-hand side equals to 1 along a sequence diverging to infinity by (G,).
It follows that Case (V) of Theorem 1 is the only possibility.

Theorems 1—4 extend the results of Kitamura, Kusano [1]. If (A) is equivalent
to a differential equation of order 2n with deviating arguments the theorems yield
the results proved in [4].
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