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IvaN KoLAR, Brno and Marco MobuGno, Firenze*)

(Received January 27, 1989)

We describe some algebraic properties of the jet prolongations of fibred manifolds.
In the first order it is well-known that the first jet prolongation J'Y of an arbitrary
fibred manifold Y — X is an affine bundle over Y, [3]. We develop two kinds of
algebraic models for the higher order case. The first concept of a graded affine map
reflects directly some algebraic aspects of the coordinate expressions of the jet pro-
longations of certain morphisms of fibred manifolds. The second concept of an
affine tower is somewhat more sophisticated, but it characterizes properly the geometric
aspects of our problem.

In the last two sections we present some applications of our algebraic models.
In the higher order variational calculus our theory enables us to distinguish some
special classes of Lagrangians. Furthermore, we deduce a geometrical characteriza-
tion of an interesting graded affine structure of the Euler morphism of an arbitrary
r-th order Lagrangian on any fibred manifold. In the theory of higher order con-
nections, [6], [8], we also determine some special classes of r-connections, which
are said to be of tower type. We give a direct description of such connections and for
r = 2 we discuss even their curvatures from our point of view.

We remark that similar algebraic models for the spaces of higher order velocities
are developed in [5]. Moreover, we remark that some algebraic models for the second
order jet spaces were constructed by J. Pradines, [9]. The main difference between
his approach and ours is that we intend to describe directly the algebraic properties
of the classical (i.e. holonomic) jet prolongations of fibred manifolds.

1. Jet prolongations of fibred manifolds. By a fibred manifold we mean a surjective
submersion p: Y— X. The fibre over xeX is denoted by E, = p~!(x). Given
another fibred manifold g: W— Z and a fibred manifold morphism f: Y — W over
a base map fo: X — Z, then f,: Y, = W, means the restriction of f to the fibres
over x and fo(x). We denote by #.# the category of fibred manifolds and all their

*) The second author has performed this work in the framework of the project ‘“‘Geometria
¢ fisica’ partially supported by Italian Ministero della Publica Istruzione.
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morphisms and by & .#, the subcategory in which morphisms are restricted by the
property that the underlying base map is a local diffeomorphism.

For any fibred manifold Y, J"Y denotes the space of r-jets of local sections of Y.
We shall consider J"Y as a fibre bundle J"Y — Y. For every morphism f e # .4 (Y, W)
with an underlying base map f, we define J'f: JY—J"W by J'f(jis) = j7(x)(fosofs '),
where f; ! is taken locally. Hence J" is a functor from .4, into & /.

For r = 1, every J'Y— Y is an affine bundle and every J'f: J'Y > J'W, fe
e FM(Y, W) is an affine bundle morphism, [3]. To discuss the algebraic structure
of the functor J', r = 2, we start from the coordinate expression of J'f. Let x*, y’ be
some local fibre coordinates on Y — X. The induced coordinates on J"Y are

i _ 0si(x) i 'si(x)
Vo= ——, .0, ¥ =
0x”* ox™t ... 0x™r

Fay...ar
which are symmetric in all subscripts. Let z* w? be some local fibre coordinates
on W— Z, dim Z = dim X, and let wj, ..., wf, . be the induced coordinates on
JW Let z* = f%(x"), w? = f?(x%, y') be the coordinate expression of a map fe
e FM (Y, W) and let x* = f*(z*) be the locally inverse diffeomorphism of its base
map f,. Write f?(z% y") = f%(f*(z%), y"). For r = 2 we find the map J.f: JJY >
— J}(x) Wby a direct evaluation in the form

1) wl = alyal + b}
where af = df?[oy’, af = of*[0z*, b = 8f?[0z*, and

~B1 ~B ~B1 ~
(2) w:Wz a; yﬂlﬂz ﬁ: >+ aulzyﬂxyl?z g: 4 +

bzazy;iiigl + bmlyﬂaaz + a; y;lﬂdfmz + bauag

where af; = 0*f?[oy™ dy™, b, = 0*ff|oz™ 0z%, b, = 0*f?[oy' 0z%, bI,, =
= 0%f?|oz* 02"

The fact that (1) is an affine map corresponds to the well-known situation in the
first order case. The typical feature of (2) is that it is a polynomial map of weighted
degree 2, provided y; are considered with weight 1 and y!, with weight 2. We
deduce that an analogous property holds in arbitrary order r, where we shall not
need the explicit formula for w?

Afeanllp®
Proposition 1. If we consider J’il...ak with weight k, k =1,...,r, then w} __, is
a polynomial of weighted degree r.

Proof. Assume by induction that wa,l -, 15 a polynomial .of weighted degree
r — 1. By definition of J'f, we obtain w%, , from wg ., | in such a way that in
every monomial we apply consecutively to each of its terms one of the following
elementary changes, and leave the remaining terms unchanged. The elementary
changes mean that we replace yi. o BY Vayapplin % i, BY a,“ Ve, +
bfjl -ipar dfjl ke by “.u Xy and b‘.ix N ] by b'll el “’"'yﬂ 2t
b? This yields our assertion, QED.

Ejpeed j@ipee Qe
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2. Graded affine maps. We consider real vector and affine spaces of finite dimension
only. We denote by DA the derived vector space of an affine space 4 and by
Df: DA — DB the derived linear map of an affine map f: A - B. Every vector
space V has a canonical structure of an affine space with DV = V.

Taking into account Proposition 1 we introduce the following general concepts.
Given a multiindex 4 = (A4, ..., 4,) of range r, we define its weighted length by

4] = 14, + 24, + ... + r4,.

Let A4, ..., A,, B be affine spaces and let f: 4; x ... x A, > B be a smooth map.
Denote by D;f(a): DA; — DB its partial differential with respect to D; at ae
€A; x...x A, and by D,f(a): DA; x ... x DA, — DB its iterated partial
differential with respect to the multiindex A.

Definition 1. A smooth map f: 4; X ... x A, —» B is said to be of weighted
degree k, if D f(a) = O for all |4 > k and all a € A.

One sees easily that this definition is equivalent to the following coordinate charac-
terization of f.

Proposition 2. A map f: A; % ... X A, = B is of weighted degree k, if and only
if in any affine coordinates on Ay, ..., A,, B it is represented by polynomials of
weighted degree k, provided the variables from A; are considered with weight i,
i=1,...,r.

Indeed, if Df = 0 identically for all | 4| > k, then all partial derivatives of f of
non-weighted degree greater than k vanish identically. Hence f is a polynomial map
by the Taylor theorem and one deduces Proposition 2 by discussing each monomial
separately.

Let By, ..., B, be other affine spaces.

Definition 2. A map f:A4; X ... x A4, > B; x ... x B, f=(fy,...[o), f&
Ay X ... x A, > B; is called graded affine, if f; is of weighted degree i for all
i=1,...,s.

Proposition 3. The i-th component of a graded affine map f;: A; x ... x A, - B,
factorizes through A, x ... x A; — B; forall i < r.

Proof. The variables of weights higher than i cannot appear in a polynomial of

weighted degree i.
Let g:B; X ... x B;— C; x ... x C, be another graded affine map.

Proposition 4. The composition gofi:A; x ... x A, > C; x ... x C, is also
graded affine. ’
Proof. This follows directly from Proposition 2.

Proposition 4 implies that all graded affine maps form a category ¥</. An object
Ay x ... x A, of this category will be called an r-graded affine space. We underline
that this category cannot be characterized by its objects and that the product struc-
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ture A; X ... X A, on an r-graded affine space is not preserved under the iso-
morphisms in 4</. In other words, for a %&/-isomorphism A4; x ... X 4, -
— Ay X ... x A, there is generally no underlying map A; x ... x 4, —
= Ay % ..o x Ay, (iy, .. 0) * (1,..., k). (We shall overcome this disadvantage
by introducing the concept of an affine tower in the next section.) Nevertheless,
the r-graded affine spaces determine a full subcategory r4.«/ in 4.sZ, whose morphisms.
are said to be r-graded affine.

3. Affine towers. We first introduce two auxiliary concepts.

Definition 3. An admissible affine bundle is an affine bundle E — X such that the
derived vector spaces DE, of all fibres E,, x € X, are equal.

In other words, the derived vector bundle DE of E is a product bundle X x |E],v
where lE] denotes the common value of the derived vector spaces DE,. Every smooth
section s: X — E of an admissible affine bundle p: E — X determines a trivialization
E~X x |E|, y—(p(y), y — s(p(»))). Such a trivialization of E will be called
admissible. Given an admissible trivializatior, we can reconstruct the defining section
as the section corresponding to the zero element of [E] In the sequel we shall consider
the admissible trivializations of E only.

Let F — Z be another admissible affine bundle.

Definition 4. An affine bundle morphism f: E — F over a smooth map f,: X > Z
is said to be admissible, if the derived linear maps Df,: |E| — |F| coincide for all
xeX.

In other words, the derived vector bundle morphism Df: DE — DF is a product
fo x |f|, where |f|: |E| - |F| denotes the common value of Df,. As a direct con-
sequence of Definition 4, we deduce that in any admissible trivializations of both
bundles f has the form

3) (fo: [f] + ¢): X x |[E| > Z x |F]|
where ¢ is an arbitrary smooth map X — l F |

We shall define the category r&/J of affine r-towers by induction. For r = 1
we identify 14/ with the category of affine spaces and affine maps. Assume by
induction we have defined the category &7 (r — 1) of affine at most (r — 1)-towers
with the following properties I —TII.

I. Every affine k-tower is an admissible affine bundle over an affine (k — 1)-tower
and its projection is an dﬂ—(r — 1)—morphism, 2=k=r-1.

Hence every affine k-tower E¥ — E*~! yields a sequence of the underlying affine
i-towers E' » E'71 i =2, ..., k.

II. For every affine k-tower E¥ — E*~! there exists a section o: E*~' — E* which
is an &7 (r — 1)-morphism, 2 < k < r — 1. ’

Such sections will be called the distinguished section of the affine k-tower E* —
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— E¥'. Every distinguished section ¢,: E*~! — E* determines a trivialization
Ef = E*! x |E"|, which will also be said to be distinguished. Hence every sequence
0, E' - E?, ..., 0,: E¥"1 — E* of distinguished sections of the underlying affine
towers determines a decomposition

4) E* = |E,| x ... x |E

called a distinguished total trivialization of E*, provided we write E; = |E'|
Let F' be another affine I-tower, [ < r — 1.

II. A map f:E*— F'is an &7 (r — 1)-morphism if and only if f1 E; x ...

. X E, > F, x...x F, is a 99-morphism in every distinguished total trivi-
alization.

By III, the change of two distinguished total trivializations of the same affine
k-tower, k < r — 1. is represented by a %.o/-isomorphism.

Definition 5. Let E* be an affine k-tower, k < r — 1, and let 4 be an affine space.
A map f: E* — A is said to be of weighted degree s, if f: E; x ... x E, -~ A is
a map of weighted degree s in a distinguished total trivialization of E*.

Using III and Proposition 2 we deduce that this concept does not depend on the
choice of a distinguished total trivialization. We denote by W*(E*, 4) the set of all
maps E* > A4 of weighted degree s. In particular, if we have a vector space V, the
WH(E*, V) is a vector space as well.

Definition 6. An affine r-tower is a pair (E", S), where E" — E"~! is an admissible
affine bundle over an affine (r — 1)-tower and S is a set of sections ¢: E"™' — E"
such that ¢ — 6 e W(E™™ 1, ]E’!) for every 0,6€S and o + d€ S for every g€ S
and every 6 € W(E"™', |E"|).

The sections of S will be called the distinguished sections and the corresponding
trivializations E" ~ E"~! x |E"| will also be said to be distinguished. Clearly, the
set S is determined by a single distinguished section o: E'~! — E" and the distin-
guished sections constitute an affine space. In every distinguished trivialization, the
distinguished sections coincide with the maps of W'(E’_ L IE’[).

Let (F", R) be another affine r-tower over an affine (r — 1)-tower F*™'.

Definition 7. A morphism of affine r-towers (E", S) — (F', R) is an admissible
affine bundle morphism f:E" — F" over a morphism of affine (r — 1)-towers
fo: E'™' — F'~! such that there are distinguished trivializations of E" and F' with
the property that f: E"~' x |E"| —» F'~! x |F"| is of the form

(3) f=(fo ]f! + @) with ¢@e W(E ™', |F).

Let G" — G" ! be a third affine r-tower with a distinguished trivialization G"~' x
% |G'|. In general, if we have two maps of the form (5) (fo, |f| + @) E7! x
x |E"| = F~' x |F"| and (9o, |g] + ¥): F™' x |[F| > G"~! x |G"| with ¢e
e Wi(E™!, [F’i) and W'(F"~ 1, |G’|), then we evaluate directly that their composition

Fr
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has the form

(6) (go o fo, Ig

One verifies easily that

fl+1gle@ + ¥ofo).
glo@ + Vofoe WI(E,|G.

Proposition 5. Definition 7 does not depend on the choice of the distinguished
sections of S and R.

Proof. Assume we have used o €S and ¢€R in (5) and let Ge S and geR.
Then the maps (idg-1,idg; + & — 6) and (idg--1,idjpr + @ — @) Tepresent the
changes of trivializations. By (6}, in the new trivializations f is of the form
7 (fos [+ 1f] (G = 0) + @ + (e — @) o fo) -

This is an expression of the same type, QED.

Formula (6) now implies that affine r-towers and their morphisms form a category
rod T .

Write ]E’| = E,. If we combine a distinguished trivialization E" = E"~! x E,
of an affine r-tower with a total distinguished trivialization E' ™! = E; X ... x E,_,
of the underlying affine (r — 1)-tower, we obtain a decomposition

E"=E, x...x E,

o

called a distinguished total trivialization of E". By the induction hypothesis IIT and
by the definition of W'(E"™!, F,), we obtain easily

Proposition 6. An admissible affine bundle morphism f: E" — F" over an
AT (r — 1)-morphism is a morphism of affine r-towers if and only if f is repre-
sented by a 9s/-morphism E; X ... X E, - F, x ... x F, in every distinguished
total trivialization of E" and F'.

Now we can define, in a unified way, the concept of morphism between an affine
k-tower E* and an affine I-tower F', k, I < r.

Definition 8. An admissible affine bundle morphism f: E* — F! is said to be
a morphism of affine towers, if f is represented by a ¥«/-morphism E; X ... X E; —
— F; x ... x F, in some distinguished total trivializations of E* and F, k,1 < r.

Proposition 6 and the fact that 4./ is a category imply that Definition 8 does not
depend on the choice of the distinguished 'total trivializations. Hence we obtain
a category &7 r of affine at most r-towers.

Obviously, the bundle projection of an affine at most r-tower is an & r-morphism.
Further, in the category &/ r we can characterize the distinguished sections used
in the definition of an affine r-tower.

Proposition 7. A section o: E"~' — E" of an affine r-tower E" — E'"! is distin-
guished if and only if it is an LT r-morphism.

Proof. In a distinguished trivialization E" = E"~! x E,, o has the form (idg-1, ),
s: E'™! — E,. This is a 9s/-morphism in any distinguished total trivialization of E"~*
if an only if s € W/(E"™', E,), QED.
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Thus, we have justified that the induction properties I—III are fulfilled in the
category &7 r and our induction procedure is correct.

By construction, the full subcategory of affine at most (r — 1)-towers in T r
coincides with the original category /.7 (r — 1). Hence we can take the union of
all categories &/7 r, which defines the category /7 of all affine towers.

Having finished with the analytic aspects, we state three simple geometric properties
of affine towers.

Proposition 8. A morphism of affine r-towers f: E" — F" over fo: E'™' — F*~!
is an isomorphism if and only if both f, and [f|: E, — F, are isomorphisms.
Proof. This follows easily from (6).

Proposition 9. For every two distinguished sections ¢ and & of an affine r-tower
E" — E'™! there exists exactly one isomorphism f: E" — E" over idg.-. and id,
satisfying fo o0 = 6.

Proof. This follows easily from Proposition 6.

Proposition 10. If f: E" —» F" is an admissible affine bundle morphism over

a morphism of affine (r — 1)-towers fo: E'™' — F'~! and there exist 6 €S and
0 € R such that
(8) fo g =9 ofo

then f is a morphism of affine towers (E", S) — (F", R).
Proof. By (3), the trivialized form of an admissible affine bundle morphism is
(fo, lfl + <p) with a smooth map ¢. In the distinguished trivializations, (8) means

9) [fleo+o=0cfo
with ¢ € W(E"™', E,) and ¢ € W'(F"~', F,). This implies ¢ € W(E"™', F,), QED.

Remark 1. Consider the inverse problem: given ¢ € W(E"™!, F,), a morphism
for E'™1 — Fr~1 of affine (r — 1)-towers, and a linear map [f‘: E, - F,, do there
exist 6 € W(E'™', E,) and ¢ € W(F' "', F,) such that (9) holds? This is true if both f,
and ‘ f | are isomorphisms (and in some other interesting cases), but a direct discus-
sion of the case r = 2 shows that this is not true in general. Hence we cannot use
condition (8) for an equivalent definition of the morphisms of affine r-towers.

4. Affine tower bundles. We first recall the basic facts from the theory of structured
bundles by A. Cabras, D. Canarutto and the second author, [1]. Given two categories
% and 2, a functor @: ¥ — Z is said to be faithful, if for every A, B € Ob ¥ the restric-
ted map @: ¢(4, B) > 2(PA, PB) is injective. Let .# denote the category of all
smooth manifolds and all smooth maps.

Definition 9. A category & over manifolds is a faithful functor p: & — .
An &-structure on a manifold .# means an element 4 € Ob & such that ud = M.
By the injective property of u, for every smooth map f: u4 — uB there exists either
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one &-morphism g € (A, B) satisfying jig = f or none. In the first case it is usual
to say that f is an &-morphism of A4 into B.
Let p: E - X be a fibred manifold.

Definition 10. An &-bundle s a pair (E, o), where 6: X — Ob & is a map satisfying
po(x) = E, and the following condition of local triviality: for every x € X there
exists a neighbourhood U, a trivialization ¢: p"(U) ~ U x F,and an &-structure
on F, such that every map ¢,: E, — F, is an &-isomorphism.

Let g: D — Z be another fibred manifold and (D, ¢) another &-bundle.

Definition 11. A fibred manifold morphism f: E — D over f,: X — Z is said
to be a morphism of S -bundles, if every f: E; — D .y is an &-morphism from
a(x) into o(fo(x))-

We denote by &% the category of all #-bundles and their morphisms.

In particular, since &7 is a category over manifolds in a canonical way, we obtain
in this way the category /7 # of affine tower bundles and its full subcategory
rod T B for every r. ‘

Consider the functor J" from Section 1. We shall show that there is a canonical
structure of r&/ 7 -bundle on every J"Y. By Definition 10 we have to determine a struc-
ture of an affine r-tower on every fibre J1Y, y € Y. Take a local fibre coordinates
x% y'on Y — X. The induced coordinates y,, ..., Vq,. .. define a decomposition

' (10) JY = L(R", R") x I*(R" R") x ... x I'(R™, R")

where m = dim X, m + n = dim Y and L(R", R") means the set of all polynomial
homogeneous maps of degree i from R™into R". This trivialization defines a structure
of an affine r-tower on J}Y. Obviously, the condition of local triviality from Definition
10 is fulfilled. Of course, we have to prove that the structure of an affine r-tower
on J}Y does not depend on the choice of the coordinate system. But this is a special
consequence of a more general result we deduce below.

Consider another fibred manifold W— Z, dimZ = m, dim W= m + k, and
F M -morphism f: Y — W and some lccal fibre coordinates z% w” on a neighbour-
hood of f(x). This defines a decomposition

(11) ToW = L(R™ R¥) x IX(R™, R¥) x ... x L(R™ RY).

By Proposition 1 J3,f: J}Y — J},Wis a graded affine map. In particular, if f is the
change of a coordinate system on Y, then both decompositions (10) and (11) are
related by an r%</-morphism, so that they determine the same structure of an
affine r-tower. Hence we have proved

Proposition 11. J" is a functor F M — rA T AB.

Since every J"Y is an affine r-tower bundle, we have specified some geometrically
interesting morphisms between the jet prologations of various orders of fibred
manifolds. In the next two sections we present some examples.
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5. Applications to the higher order variational calculus. An r-th order Lagrangian
on a fibred manifold Y — X is a base-preserving morphism of fibred manifolds

AT Y= A"T*X, m=dimX,

see e.g. [4], [10]. Since A™T*X is a vector bundle, it has a canonical structure of an
affine bundle, i.e. of an affine 1-tower. Hence the affine tower morphisms A: J'Y —
— A"T*X determine a special geometric class of r-th order Lagrangians on Y. Thus,
our theory presents a contribution to the problem of the classification of all
Lagrangians up to the isomorphisms of fibred manifolds, see R. B. Gardner and W. F
Shadwick, [2]. For r = 1 we obtain the affine Lagrangians of the form

(12) (a“,f(x”, ,Vj) ye + b(Xp, Y‘i)) o, o=dx' A ... Adx"

In the first order, one can further characterize e.g. the quadratic affine Lagrangians
of the form

(13) (afyiyi + bIyi + ) w
where the coefficients are some smooth functions on Y. Especially these Lagrangians

seem to be interesting for various applications. In the second order, the affine tower
morphisms specify the following class of Lagrangians:

(14) (aai‘ﬂyaip + bff)’;)’ﬁ + C?J’i +do
where the coefficients are smooth {unctions on Y. But even here one can define the
bimorphisms or multimorphisms of the 2-graded affine type.

Further, it is very interesting that our ideas can characterize an important property
of the Euler morphism of an arbitrary Lagrangian. The Euler morphism of
a Lagrangian A:J"Y - A"T*X is a base-preserving morphism

E(2): J*Y = V*Y @ A"T*X
where VY denotes the vertical tangent bundle of Y, see e.g. [4]. The equation E(4) = 0

characterizes the critical sections of 1. The coordinate expression E; dy’ ® w of E(2)
Las the form

(15) E;= Y (—=1)"'Dy0!L)
4] sr

where Lw is the coordinate expression of 4, Al is the usual length of a multiindex A
of range m, 88 means the partial derivative with respect to y and D, denotes the

iterated formal (or total) derivative. For IAI = | we have
(16) D,L=20,L+ Y (0{L)yysy, a=1,....m.
[ATsr

The canonical inclusion J¥Y < J'(J'Y) defires a structure of an affine r-tower
bundle on J*Y — J"Y. Applying our ideas to (15 and (16), we deduce

Proposition 12. For every r-th order Lagrangian A:J'Y - A"T*X, its Euler
morphism E(%): J*'Y » V*Y @ A"T*X is a morphism of affine towers over J'Y.
In other words, the coordinate expression of E(2) is of weighted degree r in the
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derivatives of order r + 1,...,2r, provided the derivatives of order r + k are
considered with weight k.

There is a more geometrical approach to the proof of Proposition 12. In general,
for every base-preserving morphism

Wi J'Y > AFT*X

one defines its formal exterior differential Dy: J'*1Y — A¥*1T*X by setting, for
every local section s of Y,

(17) Dy(j*1s) = d(¥(i's))

where ¥/(j's) is an exterior k-form on X and d means the exterior differential, [4], [10].

Proposition 13. If y: J'Y » A*T*X is a morphism of affine towers over Y, then
Dy: J'*Y - AKYITEX is also a morphism of affine towers over Y.

Proof consists in a straightforward analysis of the defining formula (17).

If we now use a geometrical approach to the definition of the Euler morphism
explained in [4] and apply Proposition 13, we obtain a more conceptual proof of
Proposition 12.

6. Applications to higher order connections. Generalizing some investigations
by P. Libermann related with the vector bundle case, [6], the second author with
L. Mangiarotti defined an r-th order connection (in short: r-connection) on an ar-
bitrary fibred maniicld p: Y — X as a smooth section

(18) r:Jy-'y-Jy,

[8]. For r = 1 one obtains the general first order connections studied by several
authors. Our theory characterizes directly a special class of r-connections.

Definition 12. If (18) is a morphism of affine tower bundles over Y, then I is called
an r-connection of tower type, r = 2.

Since the bundles in question are over Y, we obtain no special type in the first
order case Y — J'Y. On the other hand, the coordinate expression of a second order
connection of tower type is

(19) Vap = AuVavi + Biuyi + Bjgyi + Coy
where the coefficients are some smooth functions on Y.

The r-connections of tower type are closely related with our theory of affine
r-towers. The restriction of such an r-connection on Yto J},~ 1Yis just a distinguished
section of the affine r-tower J}Y. Let us denote by CT;Y the set of all such sections.
Definition 6 implies that CT;Y is an affine space, whose derived vector space is the
space of all affine tower morphisms of J;™'Yinto V,Y ® S'TyX, x = p(y), where S"

denotes the r-th symmetric tensor power. Consider CT'Y:= U CT;Y with the
yeY

canonical structure of an affine bundle over Y. Then we can summarize by
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Proposition 14. The r-connections of tower type on Y coincide with the sections
of the affine bundle CT'Y » Y.

We conclude the paper with a concrete example illustrating that r-connections of
tower type have several specific properties. Consider first an arbitrary 2-connection
I:J'Y— J*Yon Y. The coordinate expression of I is yis = ['ig(x", y/, y§) with I'l,
symmetric in both subscripts. The corresponding horizontal distribution on J'Y is
(20) dy' = yhdx*, dyl=Ti;dx’.

Taking into account the well-known exact sequence
0- VY ®yT*X - VI'Y > VY- 0

we find that the values of the curvature of I' lie in the tensor product of the pullback
of VY ® T*X over J'Y with A>T*X. However, if I' is a 2-connection of tower type,
its curvature factorizes through a map

(21) JUY - VY ® T*X @ A’T*X .

Since we have affine bundles over Y on both sides of the arrow, Definition 1 gives
a well-defined concept of a morphism of degree k.

Proposition 15. The curvature (21) of a 2-connection of tower type is a bundle
morphism of the third degree.
Proof. This can be derived from (19) and (20) by a standard evaluation, QED.
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