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~>Ek~1. Every distinguished section ak:Ek~1^>Ek determines a trivialization 
Ek = Ек~х x |£k | , which will also be said to be distinguished. Hence every sequence 
o2\ El -* E2, ..., ak: Ек~х ~> Ek of distinguished sections of the underlying affine 
towers determines a decomposition 

(4) Ek = \EX\ x . . . x \Ek\ 

called a distinguished total trivialization of Ek, provided we write E{ = |E'|. 
Let i7* be another affine /-tower, / ^ r — 1. 

III. A map / : Ek ~> Fl is an séČT^r — l)-morphism if and only if / : El x ... 
... x Ek ~» i7! x ... x Ft is a ^^-morphism in every distinguished total trivi­
alization. 

By III, the change of two distinguished total trivializations of the same affine 
fc-towei% k ^ r — 1. is represented by a ^^-isomorphism. 

Definition 5. Let Ek be an affine &-tower, k g r — 1, and let A be an affine space. 
A map / : Ek ~> A is said to be of weighted degree s, if / : E1 x ... x Ek ^ A is 
a map of weighted degree s in a distinguished total trivialization of Ek. 

Lsing III and Proposition 2 we deduce that this concept does not depend on the 
choice of a distinguished total trivialization. We denote by W\Ek, A) the set of all 
maps Ek ^y A of weighted degree 5. In particular, if we have a vector space V, the 
W\Ek, V) is a vector space as well. 

Definition 6. An affine r-tower is a pair (£ r , S), where Er ~* Er~l is an admissible 
affine bundle over an affine (r — i)-tower and S is a set of sections a: Er~l -^ Er 

such that o — д є W\Er~l, |£ r |) for every cr, č є S and сг + ô є S for every a e S 
and every SeWr(Er-\ \Er\). 

The sections of S will be called the distinguished sections and the corresponding 
trivializations Er « £ r _ 1 x |£ r | will also be said to be distinguished. Clearly, the 
set S is determined by a single distinguished section o\ Er~l -^ Er and the distin­
guished sections constitute an affine space. In every distinguished trivialization, the 
distinguished sections coincide with the maps of Wr(Er~l, |£ r |). 

Let (F*, R) beanother affine r-tower over an affine (r — l)-tower Fr~ r - l 

Definition 7. A morphism of affine r-towers (£ r , S) ~> (F r, R) is an admissible 
affine bundJe morphism / : Er ^ Fr over a morphism of affine (r — l)-towers 
f0: Er~l ^ Fr~l such that there are distinguished trivializations of Er and Fr with 
the property t ha t / : Er~l x \Er\ ~> Fr~l x |F r | is ofthe form 

(5) / = (/o, | / | + 9) with <p є W^F"1 , И ) ' -

Let Gr ~+ Gr~l be a third aifine r-tower with a distinguished trivialization G r l x 
G r . In general, if we have two maps of the form (5) (/0, | / | + q)): Er~i 

x 
Er\ -+ F r _ 1 x |F r | and (g0, \g\ + ф): Fr~l x \Fr\ ^ G r _ 1 x |Gr| with q> e 

є W(E r ~ l , \Fr\) and ^ r ( F r _ 1 , |Gr|), then we evaluate directly that their composition 
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one <9*-morphism g e &(A, B) satisfying ßg = / or none. In the first case it is usual 
to say that / is an <9*-morphism of A into B. 

Let p: E ^ X be a fibred manifold. 

Definition 10. An ^-bundle is a pair (£, cr), where a: X ~» Ob Sf is a map satisfying 
fia(x) = Ex and the following condition of local triviality: for every xeX there 
exists a neighbourhood U, a trivialization cp: p_1(Lf) « L7 x F^, and an ^-structure 
on F^ such that every map cpx\ Ex ~> F^ is an <94somorphism. 

Let q: D ^ X be another fibred manifold and (D, @) another 5^-bundle. 

Definition 11. A fibred manifold morphism / : E ^> D over f0:X -^ Z is said 
to be a morphism of ^-bundles, if every fx: Ex -^ Dfo(x) is an <9*-morphism from 
a(x) into g(fo(x)). 

We denote by c9̂ J* the category of all У-bundles and their morphisms. 
In particular, since séŽT is a category over manifolds in a canonical way, we obtain 

in this way the category $4CTM of affine tower bundles and its full subcategory 
г$#СПШ for every r. 

Consider the functor Jr from Section 1. We shall show that there is a canonical 
structure of r^^"-bundle on every JrY. By Definition 10 we have to determine a struc­
ture of an affine r-tower on every fibre Jr

yY, y e Y. Take a local fibre coordinates 
xa, yl on Y^ X. The induced coordinates yl

a9..., yl
ai...ar define a decomposition 

(10) Jr
yY= L(RW, R") x L2(Rm, R") x .. . x Lr(Rw

9 R") 

where m = dim X, m + n = dim Y and L'(Rm, Rn) means the set of all polynomial 
homogeneous maps ofdegree i from Rm into R". Thistrivialization defines a structure 
ofan affine r-tower on Jr

yY. Obviously, the condition oflocal triviality from Definition 
10 is fulfilled. Of course, we have to prove that the structure of an affine r-tower 
on JyYdoes not depend on the choice ofthe coordinate system. But this is a special 
consequence of a more general result we deduce below. 

Consider another fibred manifold W^>Z, d imZ = m, dim W= m + k, and 
J^#!-morphism/: Y-->W and some local fibre coordinates za, w p on a neighbour­
hood off(x). This defines a decomposition 

(11) Jr
f(x)W = L(RW, Rfc) x L2(Rm, R*) x .. . x Lr(Rm, Rfe). 

By Proposition 1 Jyf: Jr
yY^> Jr

f(x)Wis a graded affine map. In particular, if/ is the 
change of a coordinate system on Y, then both decompositions (10) and (11) are 
related by an r^j^-morphism, so that they determine the same structure of an 
affine r-tower. Hence we have proved 

Proposition 11. Jr is afunctor $FJ(X ~+ rséZTgiï. 
Since every J T i s an affine r-tower bundle, we have specified some geometrically 

interesting morphisms between the jet prologations of various orders of fibred 
manifolds. In the next two sections we present some examples. 

• 608 








		webmaster@dml.cz
	2020-07-03T07:48:33+0200
	CZ
	DML-CZ attests to the accuracy and integrity of this document




