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(Received February 23, 1988) 

0. INTRODUCTION 

The purpose of this paper is to investigate orthogonality spaces and atomistic 
orthocomplemented lattices related to them. Especially we investigate conditions 
under which such an atomistic orthocomplemented lattice may be represented by 
the lattice of closed subspaces of a generalized inner product space. Some previously 
known conditions are compared with so called condition of minimal dependence 
or postulate of minimal superposition introduced by S. P. Gudder in [10] and used 
by S. Pulmannová in [22] and [23] to obtain representations of quantum logics 
and transitionprobability spaces. We show that it is possible to reduce the condition 
of minimal dependence t o a condition of 3-minimal dependence. Similar weakened 
forms of the minimal superposition postulate have been studied by W. Guz [14] 
in orthomodular structures. We show the possibility of reduction in an atomistic 
orthocomplemented lattice corresponding to an orthogonality space. If the latter 
lattice is orthomodular, even the 3-minimal dependence condition can be reduced 
to a condition of 2-minimal dependence, which is equivalent to an atomic exchange 
property. 

An important example of an orthogonality space is a generalized inner product 
space. The atomistic orthocomplemented lattice associated with this orthogonality 
space is just the lattice of closed subspaces. The orthomodularity of this lattice 
captivates a wide interest in the literature as it is equivalent to so called hilbertian 
property. In conclusion of our work, the orthomodularity of the atomistic ortho­
complemented lattice associated with a special orthogonality space is characterized 
by means of so called splitting sets (cf. [24], [21], [11], [9], [3], and [4]). 

1. DEFINITIONS AND PRELIMINARY RESULTS 

In this preparatory section we dehne an orthogonality space (S, _L), closed sets 
and linear sets in (S, ±) , and a reduction (S, 1) of (S, ±) . We prove some basic facts 
about them and carry out some necessary observation on the lattice L(S, _L) of 
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closed sets and on the lattice K(S, 1) of linear sets. Our general theory is supple­
mented by several concrete examples. 

Still a remark concerning notation used in this article: we identify a one-element 
set {x) with the element x. 

Let S be a nonempty set. Recall that a closure operation on S is a map A ь+ A 
on the subsets of S satisfying the following postulates: 

(i) A £ Я for every subset A of S (extensiveness), 
(ii) Ä = A for every subset A of S (idempotency), 

(iii) A c Б implies A c j§ for all subsets Л, B of 5 (isotony). 
A subset A of S is closed if Л = A The collection of all closed subsets of S forms 
a complete lattice under set-inclusion in which 

AA, = f)A, and V ^ i = ( U ^ i ) " 
/є/ іє/ г'є/ ієІ 

where n and u denote the set-theoretical intersection and union, respectively. 
In addition, 0 is the smallest element and S is the greatest element in the lattice 
(see [2]). 

Let S be a nonempty set. Let ± be a symmetric binary relation on S. For a subset 4̂ 
of 5 put 

A' = {y є S\ x _L j ; for all x є ^ ] and A = (A')' 

Then the map A v^ Ä is a closure operation on S and the set 

L(S, 1 ) = {A c S | Л = Л} 

of all closed subsets of S is a complete lattice with the smallest element S' and the 
greatest element S. Moreover, the map A к> A' is an involutive dual automorphism 
of L(S, 1 ) (see [2]). 

In what follows in this section we shall assume that S is a nonempty set equipped 
with a symmetric binary relation JL When is the unary operation Av^A' an 
oTthocomplementation on L(5, J_) is solved in our first lemma (see also [2]). 

1.1. Lemma. The lattice L(S, J_) is orthocomplemented if and only if JL has the 
following property: 

(l) For every x e 5, x J_ x implies x J_ y for all у є S. 
Proof. The lattice L(S, JL) is orthocomplemented if A л A' = S' (or dually, 

if A v A' = S) for all A e L(S, J_). To prove necessity, assume that L(S, J.) is 
orthocomplemented, x є S' and x X x. Since xf є L(S, J_), we get x e х'л x = S' 
and thus x JL y for all j ; є S. Conversely, if (!) holds and if A є L(S, J.) then every 
element x є Л л Л' satisfies x J_ x which means that x є SL Since from A, A' я S 
we obtain S' ^ A л A', this gives A л Л' = S'. • 

lt is easy to see that every atom in L(S, J_) is öf the form x for some x є S — S'. 
In general, not every x (x є S — S') is an atom in L^S, 1). Since 

A = V(3c | A- є 4 - S') 
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for every A є L(S, J_), the presumption that every x (x є S — S') is an atom in 
L(S, 1) guarantees that the lattice L(<S, 1 ) will be atomistic. Our second lemma brings 
several useful conditions each of them is equivalent to the statement: every x 
(x e S — S') is an atom in L(S, 1). 

1.2. Lemma. Thefollowingfour conditions are equivalent: 
(2) / / x, y e S and у ф S', then x' £ y' implies x' = y'. 
(2a) For every x e S, x = {y є S | x' = y'} u S'. 
(2b) The set {x | x e S — S'} is the set of atoms of L(S, J_). 
(2c) The set {x' | x є S — S'} is the set of coatoms of L(S, ±)„ 
Proof. (2) => (2a) If x є S then every element у є x — S' satisfies x' Ç y' which 

implies x' = y' by condition (2). Thus x ^ {y є S | x' = y'} u Sf and because the 
opposite inclusion is evident, we obtain the desired equality. 

(2a) => (2b) Let x є S - S' and let A є L(S, 1 ) be such that S' c A c x. Choose 
an element у є A — S'. According to condition (2a) it holds x' = y' which means 
that x = y = A. Thereforexis an atom in L(S, J_). This is enough for validity of(2b). 

(2b) => (2c) The implication follows by duality. 
(2c) => (2) Assume that x, у є S are such that у ф S' and x' £ y'. Then x does 

not belong to S' and hence by condition (2c), x' is a coatom in L(S, _L). Therefore 
x' = y'. D 

1.3. Definition. Let S be a nonempty set endowed with a symmetric binary rela­
tion ± . We shall call a couple (S, _L) satisfying conditions (1) and (2), an ortho­
gonality space (compare with [6], [16], [l8]). 

1.4. Proposition. Let (S, J_) be an orthogonality space. Then L(S, _L) is a complete, 
atomistic orthocomplemented lattice. 

Proof. The lattice L(S, ±) is orthocomplemented by Lemma 1.1 and atomistic 
by Lemma 1.2. • 

Let S be a nonempty set and let ± be a symmetric binary relation on S. A subset A 
of S will be called linear if {x, y}~ £ 1̂ for every x, j є A. Denote by K(S, ±) the 
set of linear subsets of S. For A я S we denote by the symbol kA the smallest linear 
subset of S containing A. Then the set of linear subsets of S can be expressed as 

K(S, 1) = {A £ S | 4 = kA} . 

It is evident that L(S, 1 ) c K(S, 1). For Л, BeK(S, 1 ) we shall use the following 
notation: A + Б = k(A u £). 

1.5. Proposition. The map A н̂ - kA is a closure operation on S. Consequently, 
the set K(S, J-) is a complete lattice with the meet Д At = П At and the join 

ІЄІ ІЄІ 

Y, Ai = k( U Ai). The empty set 0 is the smallest element and S is the greatest 
ieI ieT 
element of K(S, ±) . 

We continue perceiving thelinear subsets of S. Evidently, k{x, y} = {x, y}~ and 
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kA c Ä, where x, у є S and 4̂ я S. Let us observe that for every nonempty set 
A є K(S, JL) we have S' Ç A. In what follows we shall consider S' as the smallest 
element of K(S, 1). With this supposition, the set of atoms (and dually, the set of 
coatoms) in K(S, J_) is equal to the set of atoms (the set of coatoms) in L(S, ±). 
Note that if condition (2) is satisfied then K(S, J_) is an atomistic complete lattice 
with the atoms kx = x (x є S — S'). 

Recall that an atomistic lattice Lis compactly atomistic if for every atom x eL 
and any set of atoms A c L such that x ^ V(y | У є A) there is a finite set F £ Л 
such that x ^ V(j71 У є F). 

1.6. Proposition. For e^ery Л ^ S, 

Ы = (J(fcF | ^7 £ Л, F isfinite). 

Proof. Put Б = U(&F | F <= A, F is finite). Clearly, А я В ç Ы . We see that 
it is enough to prove that В = kB. If x, у є В then there exist finite sets F, G Ç А 
such that x є kF and j є kG. Hence {x, y} " я k{F и G) Я В and thus B = kB. • 

Corollary. If (S, 1 ) ftas řfte property (2) řfren ř^e lattice K(S, 1) is compactly 
atomistic. 

Before bringing into some examples, we introduce a procedure which, in a natural 
fashion, produces from a given orthogonality space (S, _L) a new orthogonality 
space (S, J_), called the reduction of (S, JL), having more powerful properties and 
possessing the same structure of closed and linear sets. 

1.7. Lemma. Thefollowing two conditions are equivalent: 
(3) If x, у є S and у ф S', then x' £= j ' implies x = y. 

(3a) For e^erj' x є S, x = x u S'. 
Proof. (3) => (3a) Having an element x e S, the inclusion x u S' £ # is clear. 

Conversely, every element у є x — S' satisfies x' £ y'5 hence x = j by (3). Thus 
x c x u S'. 

(3a) => (3) Let x, у є S be such that у ф S' and x' £ / . Then ý c x which by (3a) 
implies y u S' £ x u S', and thus y = x. • 

Looking at the conditions (2) and (3), we see that (3) implies (2). An interesting 
property, stronger than condition (1), and in the presence of which S' = 0, is the 
following one: 

(1°) x i . x for no x є S (anti-reflexivity). 
Let us observe that provided S' = 0, conditions (2) and (3) have the following forms, 
respectively: 

(2°) If x, y e S then x' ç y' implies x' = y'. 
(3°) If x, у є S then x' c y' implies x = v. 
Again, let S be a nonempty set with a symmetric binary relation J_. Assume that 

S' Ф S. We shall use the following notation. For any subset A of S, put 

Ä = {x | x є A - S'} . 
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Define x 1 y when x JL у (л% у є S — S'). It is easy to see that this rale defines 
a symmetric binary relation on S. For sé я S put 

sé1 = {B є S | A 1 B for all A e sé} . 

Our interest concentrates now upon the new system (<S, JL) which reliably reflects 
the original structure of (S, _L) as the following results show. 

1.8. Lemma. For every subset A of S it holds: 

(i)& = (A>r, 
(ii) (kA)~ = kÄ. 

P r o o f . ( i ) I f ^ <= Sthen 

A1 = {y | y e S - S' and x 1 y for all x є A - S'} 

= {y]yeA'-S'} =(A')~. 

(ii) It is easy to see that for A ç S, 

kA = U (An | n = 0, 1, 2, ...) where A0 = A and 

An=V({x,y}~~\x,yeAn-i) for n ^ l . 
Similarly, 

kÄ = U ( ^ i | и = 05 1? 2, ...) where sé0 = Ä and 

^ = U ( { 5 , C ) " | B , C e j / , , _ ! ) for n ^ ì . 

Evidently, ^ 0 = Ä0. Suppose that sén — An for some n ^ 0. Then, according to (i), 

< + 1 = U({B,C}-\B,Cesén) 

= U({x,y}' | х,уєАп - S') 

= V(({x,y}~)-\x,yeAn-S') 

= U ( ( { ^ j ) T | x j 6 ^ - S ' ) 

= (U({ .̂v}" |*,j>e4,, - S'))~ = An + 1 . 

So, the induction gives sén = Ä„ for all n ^ 0. The rest ofthe proof is now clear. • 

Using Lemma 1.8, it is easy to prove the following statement. 

1.9. Proposition. The maps L(S, 1 ) ^ L(S, 1 ) , A ^ A, and K(S, JL) ^ K(S, 1 ) , 
A^A, are lattice isomorphisms which carry the unary operation Av^-A! onto 
the unary operation sé ь^ sé1. 

1.10. Lemma. For all A, В є Š it holds: 

A1 c BL implies B c A . 

Proof. If>4, 5 є Sthen A = x and Б = J? for some x, у є S — S'. Then ^ 1 Ç B1 

means that x 1 Ç y1 which is the same as x1 £ j?1. By Lemma 1.8, this implies (x')~ £ 
£ (j>')~ from which, using Proposition 1.9, it follows x' £ y . Hence j> £ x and 
thus Б с Л. П 
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Corollary. For all A, B e Š thefollowing implication is true: 

AL = B1 implies A = B . 

1.11. Proposition. Property (l) is equivalent to the anti-reflexivity in Š: 

(la) A X A for no A є S. 
Property (2) is equivalent to thefollowing condition: 

(2d) If A, В є S then A1 Ç BL implies A = B. 

Proof. (1) => (la) If A є Š and A X A then there is x e S — S' such that A = x 
and x JL x, hence x e S' by (1), which i s a contradiction. 

(la) => (l) If x e S — S' and x X x then x є Š and x X x which is impossible 
by (la). 

(2) => (2d) If A, B e S then A = x and B = y for some x, у є S - S'. From 
A1 £ BL we obtain x' я y', as in the proof of Lemma 1.10. According to (2), 
x' = y' and therefore A = x = y = B. 

(2d) => (2) Let x, у є S be such that у ф S' and x' я y'. Then x ф S' and x 1 = 
= x 1 = (x ')" Я (>'')~ = У1 = ý1- By (2d), x = y which means that x' = y'. • 

Let (S, ±) be an orthogonality space. Using Proposition 1.11, we see that (<S, X) 
is also an orthogonality space, and satisfies (1°) and (3°). More precisely, we should 
say that (S, X) satisfies conditions (la) and (2d), which are S-analogous ofproperties 
(1°) and (3°), because (1°) and (3°) are expressed in terms of the set S, not S. We 
shall call the orthogonality space (S, _L), the reduction of the orthogonality space 
(S, ±). Let us note that adding S' to the elements of Š we obtain an orthogonality 
space satisfying (3). 

1.12. Examples, (i) Let (S, ^ , 0, 1, *) be a complete orthocomplemented lattice. 
For x, у є S define x X y when x S y*- Then X is a symmetric binary relation 
on S which satisfies (1). The lattice L(S, X) consists of the principal ideals of S and 
thus is ortho-isomorphic with S. 

(ii)Let ( L , r g , 0 , l , * ) be a complete, atomistic, orthocomplemented lattice. 
Let S be the set of atoms in Land for x, у є S define x X y when x ^ y*. Then X is 
a symmetric binary relation on S which satisfies (1°) and (3°). Moreover, the lattice 
L(S, X) is ortho-isomorphic with L(see the preceding example and [18], Theorem 
2.5). 

In the following two examples we assume that F i s a generalized inner product 
space. This means, V is a vector space over a division ring D with an -involutive 
anti-automorphism аь+ a*, and <•, •> is an Hermitian form (the generalized inner 
product). 

(iii) Let S = V and for x, y e V let us define x X y when <x, y} = 0. Then X is 
a symmetric binary relation on V. If x є Fthen x X x implies x = 0 and therefore (1) 
is satisfied. As known, x = Dx = {ax | a є D} for every x є V. Hence, if x, y e V, 
у ф 0 and x' c y'9 then y £ x which implies x = y. Thus condition (2) is satisfied 
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and (S, J_) is therefore an orthogonality space. If 1 + 1 ф 0 then (3) is not satisfied 
as for example x' £ (2x)' for every x є V, but x Ф 2x ф 0 if x ф 0. 

The reduction of (S, 1 ) is (S, 1 ) where S = {Dx \ x e V, x ф 0}. 
(iv) Let S = {xe V\ <x,x> = 1} be nonempty and let x JL y if and only if 

<x, y> = 0 (x, j є 5). Then x J_ x for no x e S, hence (1°) is satisfied. Since x = 
= {ax | a є D, aa* = 1} for every x є S, also (2°) is satisfied, but (3°) is in general 
not satisfied. 

2. MINIMAL DEPENDENCE CONDITION AND REPRESENTABILITY 

Our attention in this section is aimed at orthogonality spaces (S, ±)satisfying 
conditions (1°) and (3°). We shall present a variety of properties of (<$, ±) , each of 
them is equivalent to the condition ofminimal dependence, which enable to represent 
the lattice L(<S, J_) as the lattice of closed subspaces of a vector space with an 
Hermitian form. 

At the beginning we recall some definitions. 
A set P whose elements are called points is called a projective space if there exists 

a family of subsets of P called lines satisfying the following two conditions: 
(Pl) Every line contains at least two points, and two different points x, y are 

contained in just one line, which is denoted by {x, y}~. 
(P2) Let x, y, z be points which are not contained in one line. If u, v are different 

points such that ue{x,y}~ and ve{y,z}" then there exists a point t in 
{x, z}~ n {u, v}~. 

(See [19], p. 67.) 
A lattice with a smallest element 0 has the covering property if for every atom x 

and every element y, x л y = 0 implies y is covered by x v y, in notation y < 
K x v y. (Cf. [19], p. 31.) Dually, a lattice with a greatest element 1 has the dual 
covering property if for every coatom x and every element y9 x v y = 1 implies 
x л y < y. 

A lattice L is modular if (x л y) v z = (x v z) л y for all x, y, z є L, z ^ y. 
Modularity implies both covering properties. 

Now let S be a nonempty set with a symmetric binary relation ± . When A £ S,. 
we say that x є S depends on A if x є A. We say that x depends minimally on A 
if x є A and x ф B for every proper subset B of A. 

By definition, (5, ± ) satisfies the condition of minimal dependence if for every 
finite subset F of S, and for every element x є S depending minimally on F, it is. 
true that 

(x u G)~ n H Ф 0 

for all nonempty subsets G, H of F such that G n H = 0 and G u H = F (see [10], 
where the minimal dependence condition is called the minimal superposition postu­
late). 
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We shall introduce a weakened form of the condition of minimal dependence. 
Let n g; 2 be a natural number. We say that (S, 1 ) satisfies the condition of n-
minimal dependence if for every elements x1? ..., xn of S and every element x є S 
depending minimally on {x l 5 . . . , x„}, it holds 

{ x , * i } " n {x2, . . . ,x„}~ Ф 0 . 

Evidently, if (S, 1) satisfies the л-minimal dependence condition, it satisfies also the 
m-minimal dependence condition for every m, 2 ^ m ^ ?i. 

Weakened forms of the condition of minimal dependence ("MSP reduced") 
in orthomodular posets have been studied in [14]. 

An element A of L(S, J_) is callçdfinite if there is a finite subset F of S such that 
A = F. Dually, an element A of L(S, _L) is called cofinite if ^ ' i s a finite element. 
The set of all finite elements in L(S, J_) will be denoted by the symbol F(S, JL), 
and G(S, JL) will denote the set of all finite and cofinite elements in L(5, JL). 

2.1. Lemma. T7ie following three conditions are equivalent in an atomistic 
lattice: 

(i) / / x, y are distinct atoms then x v y covers x and y (the atomic covering 
property). 

(ii) If x, y, z are atoms and x ф z then x ^ y v z implies y ^ x v z (ř&e 
atomic exchange property). 

(iii) / / x, j ; , z, ř яге atoms and x ф j řfren x, y ^ z v ř implies z, ř ^ x v y. 
The p r o o f ofthis lemma is a routine and therefore is omitted. 
In the sequel, we shall need the following observation. Let S be a nonempty set 

with a symmetric binary relation JL. Assume that S' = 0 and (2°) is satisfied. Then 
(S, JL) satisfies the condition of2-minimal dependence ifand only ifthe lattice L(S, JL) 
has the atomic exchange property. 

Let us also observe that if (S, JL) satisfies (3°) and S' = 0, then in view of Lemma 
1.7, x = x for every x є S. 

Now we are ready to prove the main theorem of this section. 

2.2. Theorem. Let (5, JL) be an orthogonality space satisfying (1°) and (3°). 
Thefollowing conditions are equivalent: 

(i) The covering property holds in L(S, X). 
(ii) IfA and B are in G(S, J_) and both cover A л B then A v J3 covers both A 

and B. 
(iii) F(S, _L) is a modular lattice. 
(iv) (S, _L) satisfies the condition of minimal dependence. 
(v) (S, ±) satisfies the condition of3-minimal dependence. 

(vi) The set S with lines {x, y}~, x, у є S, x ф y,forms a projective space. 
(vii) K(S, X) is modular. 
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(viii) (a) For every A e L(S, _L) and for every x є S, A + x = A v x, i.e. A + 
+ x є L(S, 1 ) . 

(b) For allx,y, z, teS, x + ({x, >'}" л {z, t}~) = {x, y}~ л (x + {z, í}~). 
(ix) (b) and (c) For euery xí9 ..., xn є S, k{xl9 ..., x;î} = { х ь ..., xn}~. 
(x) (b) aná (d) For every x, y, z є S, k{x, у, z} = {x, y, z}~. 

(xi) (e) For every A, B e K(S, 1 ) , A + B = (J ({x, y} ~ \ x є А, у є B). 
(f) (S, _L) satisfies the 2-minimal dependence condition. 

Proof. We shall prove the theorem in the following way. In the first place, we 
shall prove all successive implications from (i) up to (x), and then we shall show that 
(x) => (v) and that (vi) => (xi) => (vii) => (i). 

(i) => (ii) The implication is clear from [19], Theorem (7.10). 
(ii) => (iii) The implication follows by [18], Lemma 4.2. 

(iii) => (iv) Let us assume that an element x є S depends minimally on a finite 
subset F of S and that G, H are nonempty disjoint subsets of F such that G u H = F. 
Then, using modularity, we obtain: 

x є (x u G)~ n (G v H) = 5 v ((x u G)" n H) . 

Therefore (x u G)~ n Я must be nonempty. 
(iv) => (v) The implication is evident. 
(v) =>(vi) ThelatticeL(S, JL) satisfies the condition (iii) of Lemma 2.1, hence 

(P1), the first property ofaprojective space. To prove (P2), assume that x, y, z, щ v є 
€ S are such that и Ф v, u є {x, y}~~ and v e {y, z}~. We are to show that {x, z}~ n 
n{u,v}~ is nonempty. Suppose that x =t= u. Hence we get ye{x,u}~ and thus 
ve{x,z,u}~. We can assume that the element v depends minimally on the set 
{x,z,w} since otherwise, ve{x,u}~ implies xe{u,v}~ and ve{z,u}~ implies 
ze{u,v}~. An application of 3-minimal dependence condition gives the desired 
result. 

(vi) => (vii) The implication follows by [19], Theorem (16.3). 
(vii) => (viii) The part (b) follows immediately by modularity ofthe lattice K(S, J_). 

So, we shall prove condition (a). As K(S, ±) is modular, the covering property and 
the dual covering property hold in K(S, ±) . Therefore, if A є L(S, _L) and x e S — A, 
then A < A + x and A' л x' < A'. Since the lattice K(S, JL) is atomistic, A! = 
= (A' л x') + y for some y e 5, from which we obtain by the dual covering 
property, 

A = (A')' = ((A' A x') + y)' = (A v x) A y' < A v x . 

As A + x c A v x and A is covered by both A + x and Л v x, we get Л + x = 
= A v x. (The proof is similar to that used in [20], p. 55.) 

(viii) => (ix) Condition (b) is immediate and (c) follows from (a) by an easy 
induction. 

(ix) => (x) The implication is evident. 
(x) => (v) Let x, y, z, t e S be such that the element t depends minimally on the 
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set {x, y, z}. Then x + {y, z} = k{x, y, z] = {x, y, z} and hence 

x + ({t,x]-n{y,z}-) = { f , x ) " n ( x + {y,z}-) 

= {t,x}' n{x,y,z}-

= {t,x}-
from which it follows that 

{t,x}- n{y,z}- Ф 0 . 

(vi) => (xi) By an application of [19], Lemma (16.2) we obtain the part (e). The 
part (f) is implied by Lemma 2.1. 

(xi) => (vii) Let A9 J3, C be elements of K(S, 1) and let B c C. We have to prove 
that (A + B) n C ç (Л n C) + Б. If z є (Л + B) n C then z є {x, y}~ for some 
x є Л and у є B by condition (e). We can assume that у Ф z, hence by condition (f) 
we get x є {y, z) " ç C, and thus {x, y} " Ç (Л n C) + B which concludes the proof. 
(The proofis similar to that used in [19], Theorem (16.3), (II).) 

(vii) => (i) Modularity of the lattice K(S, 1) implies that the covering property 
holds in K(S, JL). We have already proved that A + x = A v x for every A є L(S, ±) 
and every element x є S. Therefore the covering property holds also in L(S, _L). 

The proof is complete. • 

Remark . If (S, 1 ) is an orthogonality space satisfying (1°) and (3°) then each of 
the conditions (i)-(xi) in Theorem 2.2 implies the following condition (MacLaren's 
condition): 

For every x, у є S, x ф y implies xř n {x, y} ~ is nonempty. 

Proof. We prove that MacLaren's condition follows from (i). First observe that 
by duality, the lattice L(S, ±) has the dual covering property whenever it has the 
covering property. So, if we assume (i) and if x, y e S, x ф y, then by the dual 
covering property, x' n {x, y}~ < {x, y}~. As {x, y}~ is not an atom in L(S, _L), 
we have 

.x'n{x,y}- ф 0 . D 

To recognize representability of the lattice L(S, J_) of closed sets in an ortho­
gonality space (S, ±), we need still express irreducibility of L(S, ±) as a property 
of (S, 1). Such a property is provided by the following lemma. 

First recall that a lattice with 0 and 1 is irreducible when 0 and 1 are the only 
central elements in L. Further, recall that an element x of an orthocomplemented 
lattice (L, л , v , 0, 1, *) is central if and only if y = (x л у) л (x* л у) for all 
yeL(cf. [19], Lemma (29.9)). 

2.3. Lemma. Let (S, J_) be an orthogonality space. The lattice L(S1, _L) is ir­
reducible if and only if whenever A, B are subsets of S properly containing S' 
such that A u B = S, there exist elements x є A and у є B for which x JL y is not 
true. 
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Proof. Assume that A,B are subsets of S properly containing S' such that 
A u B = S and x i . y for all x є A and у є B. Using condition (1) we obtain A n B = 
= S' and then A = B' and B = Л'. Whence Л, Б є L(S, 1 ) . Let E be an arbitrary 
element of L(S, J-). Denote C = Л n £ and D = Л7 n £. Then 

£ = c u D = (A л E) v (A' л E) . 

This means that A is a central element in the lattice L(S, _L) and therefore L(5, J_) 
is not irreducible. 

Conversely, assume that L(S, JL) contains a central element A distinct from S' 
and S. To violate the above condition it is enough to prove that A u A' = S. 
Choose an element x є S — A. If у є x n A and у ф S' then x' £ y which implies 
x' — y' by condition (2). So, we have x є x = у с л , a contradiction. Therefore 
x n A = S'. Since Л is central, 

x = (x л Л) v (3č л Л') = x л A' . 

Thus x є A'. This gives A u Л' = S. • 

The following representability theorem holds (see [19], Theorem (34.5)). 

Theorem. Let L be an irreducible complete atomistic orthocomplemented lattice 
vjith the covering property and of length ^ 4 . There exists a division ring D with 
an involutive anti-automorphism and there exists a vector space Vover D with an 
Hermitian from such that L is ortho-isomorphic to the lattice of closed subspaces 
ofV. 

By [19], Theorem (34.2), a converse is also true: the lattice of closed subspaces 
of V, V as in the preceding theorem, is an irreducible complete atomistic ortho­
complemented lattice with the covering property. 

Lct (S, ±) be an orthogonality space satisfying (1°) and (3°). Assume that L(S, JL), 
the lattice ofclosed sets in (5, i-), is irreducible, i.e. that (S, ±) satisfies the condition 
of Lemma 2.3, and that L(5, ±) is of length ^ 4 . Theorem 2.2 yields a series ofequi-
valent sufficient conditions under which L(S, J_) can be represented by the lattice 
of closed subspaces of K Kas in the preceding theorem. These conditions are also 
necessary. 

3. ORTHOMODULARITY 

Our interest in this section is oriented to a study of orthogonality spaces (S, X) 
satisfying (1°), (3°) and the cor.dkions (i)-(xi) of Theorem 2.2, which is related 
to orthomcdularity occurring inside the lattice L(5, J_). 

First, we shall observe that Theorem 2.2 has a continuation concerning ortho-
modularity (see Theorem 3.2 below). We shall define splitting sets in(S,JL) and 
present several statements about them, especially that the poset of all splitting sets 
is orthomcdular and that LfS, JL) is its cut-completion. Finally, we shall formulate 
some conditions based on splitting sets under which L(S, 1) is ofthomodular. 
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Recall that an orthomodular lattice is an orthocomplemented lattice satisfying 
the orthomodular law, 

(i) x S У implies x v (x* л y) = y, 
or equivalently, satisfying the following condition, 

(ii) x šs У and x* л j ; = 0 implies x = y. 
An orthomodular poset is an orthocomplemented poset in which x v j ; exists 
whenever x ^ y* and in which (i) or (ii) is satisfied. Every interval [0, x~\ in an ortho­
modular lattice is also an orthomodular lattice with the relative orthocomplementa-
tion у и* у* л x (see [l7]). 

Let S be a nonempty set with a symmetric binary relation J_. A subset A of S 
is called orthogonal if x ± j ; for all x, y e A, x ф j . We say that elements x b ..., xn є 
є S are independent if 

X Í F | X 1 ? • • •? X i - l 9 X i + 1 ? ' ' ' J Xn) 

for every / є {l, ..., n). 

3.1. Lemma. If x, _y, z are atoms in an atomistic orthomodular lattice having 
the atomic covering property, then the elements (x v у) л y* and {x v y v z) л 
л (y v z)* are atoms or 0. 

Proof. In the first part of the proof assume that x,y are distinct atoms. By 
orthomodularity, 5 = (x v у) л у* ф 0. Let z be an atom under 5. Then у ф z 
and s < x v y from which, by the atomic covering property, it follows z ~< j v z = 
= x v y, hence s = z. This means that the element s is an atom. 

Secondly, let x, v, z be atoms. Using the fact that {y*, x v y, y v z} is a Greechie 
set (see [17]), we obtain 

w = (x v y v z) л (>> v z)* 

= Z* Л J * Л ( ( x V j ) V (3; V z ) ) 

= z* л ((y* л (x v y)) v (3;* л (j; v z))) 

= z* л (u v v) , 

where u = у* л (x v j') and i> = j ; * л (y v z). We can suppose that x ф у ф z, 
hence M and v are atoms by the preceding part of the proof. If w — u v t; then 
^ ^ z* which implies и = 0, a contradiction. Assume therefore that 0 ф w < u v t; 
and w ф v. Let í be an atom under w. As t Ф и, we get t < í v y = u v 0 and 
thus w = /, w is an atom. П 

Now we can prove the promised continuation of Theorem 2.2. 

3.2. Theorem. Let (S, J_) be an orthogonality space satisfying (1°) and (3°). 
The conditions (i)-(xi) of Theorem 2.2 are equivalent to thefollowing condition: 

(xii) (/) (S, J-) satisfies the 2-minimal dependence condition. 
(g) For Éwery independent elements x,y,zeS, the lattice [0, {x,>' ,z}"] 

endowed with the unary operation A н^ A' n {x, y, z}~ is orthomodular. 
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Proof. First assume that the conditions of Theorem 2.2 are satisfied. We prove 
that for every F e F(S, _L), the lattice L = [0, F] endowed with the unary operation 
A н+ A' n F is orthomodular. Since F(S, ±) is an ideal in the lattice L(S, J_) (see 
[18], Theorem 4.1), L ç F(S, 1 ) . Let us observe that A + B = Л v B for every 
Л є L(S, X) and В є F(S, 1) . Using modularity of the lattice K{S, _L), we obtain 
for every A є L, 

(A' n F) ' n F = (Л v F ) n F = (Л + F') n F = A + ( F n F) = A , 

which shows that L is orthocomplemented. Since L is modular, it is also ortho-
modular. 

Conversely, assume that (xii) is satisfied. We prove that (S, ±) satisfies the con­
dition of 3-minimal dependence. Suppose that an element t є S depends minimally 
on a set {x, y, z] c s. It is to show that G n H is nonempty, where G = {x, t} ~ 
and H = {y, z}~. With respect to (f), which is the2-minimaldependencecondition, 
we can assume that the elements x, y, z are independent. Let us denote A = 
= { x , j , z } " , B = {x,y,t}-, C = {x,y}~, D = AnC\ E = BnG' and F = 
= A n H'. It is clear that B ç Л. We consider the orthomodular lattice [0, Л]. 
By Lemmas 2.1 and 3.1, D, £ and F are atoms or 0. If D Ç ť then t e A n D' = C 
which contradicts the minimal dependence of t. Threfore 

A n B' = A n C n ť = D n t' = 0 , 

from which it follows B = A. Suppose to the contrary that G n H = 0. Then 

A = A n (G n H)' = (Л n G') v (A n Я') = E v F . 

By condition (iii) of Lemma 2.1, C = E v F — A which is impossible since x, y, z 
are independent. We conclude that G n H must be nonempty. • 

Corollary. In a complete, atomistic, orthomodular lattice, the atomic covering 
property is equivalent to the covering property. 

Proof. It suffices to use Examples 1.12, (ii). • 

It is interesting to study conditions, this means properties of an orthogonality 
space (S, ±) , under which the lattice L(S, ±) is orthomodular provided the conditions 
of Theorems 2.2 and 3.2 are satisfied. 

A general characterization of orthomodularity of L(S, ±) is given in [6] (see 
also [7]). It can be formulated as follows. Let S be a nonempty set with a symmetric 
binary relation _L Assume that (S, ± ) satisfies condition (1), i.e. that the lattice 
L(S, _L) is orthocomplemented. Then L(S, J_) is orthomodular if and only if for 
every A є L(S, ±) , A = B for each maximal orthogonal subset B of A. 

An important example of an orthogonality space is an inner product space (real 
or complex), where JL is defined by x 1 y if and only if <x, j> = 0, where <•, •> 
is the inner product (see Examples 1.12, (iii) and (iv)). 

The orthomodularity of the lattice L(S, J_) of an inner product-orthogonalitv 
space (S, ±) has been often studied in the literature. In [ l ] , it is shown that L(S, 1) 
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is orthomodular if and only if the inner product space is complete, i.e. a Hilbert 
space (see also [19], Theorem (34.9)). The problem is by no means easy, as R. 
Goldblatt [8] has shown, orthomodularity of L(S, J_) can not be expressed by any 
first-order properties of (S, 1). A series of other conditions (based prevailingly on 
states and splitting subspaces) characterizing the orthomodularity of the lattice 
L(S, J_) ofan inner product space is presented in works [11], [9], [15], [3], [4], [5]. 
We shall formulate orthomodularity conditions using splitting subspaces in a more 
general context. 

Let (S, J_) be an orthogonality space satisfying (1°) and (3°). A subset A of S 
is called splitting if A e K(S, ±) and A + A' = S. Let us denote by E(S, ±) the set 
of splitting subsets of S. Using Lemmas 1.2 and 1.7 we obtain that for every x є S, 
x is an atom in K(S, 1) and x' is a coatom in K(S, ±) , hence x e E(S, J_). We also 
see that A' e E(S, ±) for every A є E(S, ±). Tt is clear that 0 and S are splitting sets. 

More about £(S, _L) can be said when the lattice X(S, J_) is modular which is 
demonstrated by the next two results. As to the following proposition, see also [21] 
where splitting subspaces of a vector space with a linear orthogonality relation are 
dealt with. 

3 3 . Proposition. Let (S, i_) be an orthogonality space satisfying (1°) and (3°). 
IfK(S, _L) /5 modular then thefollowing conditions are satisfied: 

(i) / / A e E(S, 1 ) , В є K(S, JL), A <= B and A! n B = 0, then A = B. 
(ii) E(S, 1) £ L{S, 1) . 

(iii) A + B = A v В є E(S, 1 ) for all A, В є E(S, 1 ) , B c A'. 
(iv) £(5, _L) is an orthomodular poset. 
(v) A + x e E(S, 1 ) for every A e E(S, 1 ) and x є S. 
Proof, (i) By modularity we get B = B n (A + A') = A + (B n A') = A. 
(ii) If A e E(S, JL), it suffices to put B = Ä and to use (i). 

(iii) Let A, B e E(S, 1) and let В я A'. Modularity implies S = A + 
+ (A' n (B + B')) = A + B + (Л' n B') = A + B + (Л + Б ) \ Therefore A + Б 
belongs to E(S, 1) . By (ii), Л + В є L(5, 1 ) , hence Л + Б = A v Б. 

(iv) Using condition (ii), it is easy to check that A ^ A' is an orthocompementation 
on E(<S, _L). The rest follows by (i) and (iii). 

(v) Assume that A є E(S, _L) and x є S ~ A. By condition (e) of Theorem 2.2, 
x e y + z for some у є Л and z є Л', hence by condition (f) ofTheorem 2.2 we obtain 
z e x + y. Therefore A + x = A + z є E(S, 1) by (iii). • 

In general, E(S, 1) need not be a lattice. However, if E(S, 1) is a lattice then it is 
a sublattice of L(S, 1) . Namely, if A, В є £(5 , 1 ) and C is the meet of A, B in 
£(S, 1 ) , then C ç A n B and since x є E(S, 1 ) for every x є S, Л n Б c C, and 
thus С = Л n Б. Using the orthocomplementation we get that the join of A, B 
in £(S, 1 ) is A v Б. 

The standard method of embedding a partially ordered set into a complete lattice 
uses completion by cuts. If the poset is orthocomplemented, the completion can be 
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constructed by using the orthogonality relation (see [l8]). Since S is a join dense 
subset in £(S, ±) , a direct application of [18], Theorem 2.5 gives the following 
result. 

3.4. Theorem. Let (S, J_) be an orthogonality space satisfying (1°) and (3°). 
/ / K(S, X) is modular then the cut-completion of E(S, _L) is ortho-isomorphic 
to L(S, 1 ) . 

3.5. Theorem. Let (S, _L) be an orthogonality space satisfying (1°) and (3°) 
and let the lattice K(S, ± ) be modular. Thefollowing statements are equivalent: 

(i) The lattice L(S, i_) is orthomodular. 
(ii) E(S, 1 ) = L{S, 1). 

(iii) E(S, J_) is a complete lattice. 
(iv) A є E(S, J-) /or e^ery orthogonal subset A of S. 
Proof. Using Theorem 2.2 and [19], Lemma (30.7), it can be easily derived 

that L(S, J_) is orthomodular if and only if A + A' = S for every A є L(S, 1). 
This means that (i) and (ii) are equivalent. It is clear that (ii) implies (iii) and (iv). 

(iii) => (ii) Let A e L(S, 1 ) . Since E(S, 1) is complete, there is В є E(S, 1) 
smallest such that A Ç B. For every x є A' it holds x' є E(S, JL) and A £ x\ 
hence B ç x\ which means that x є B'. Thus Ä £ £ ' , i.e. Б ç Л. Therefore 
Л = В є E(S, 1 ) . 

(iv) => (ii) Let Л є L(5, _L) and let Б be a maximal orthogonal subset of A. 
Evidently, B Ç A. В є £(S, 1 ) means that B + B' = S. Hence if x e A - Б then 
by condition (e) of Theorem 2.2, x e y + z for some у є Б and z є Б'. Using the 
atomic exchange property we get z є x + y ç Л which is impossible since Б is 
maximal. Therefore A = В є E(S, 1). • 
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