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ON THE LATTICE REST OF A CONVEX BODY IN Rs, III 

WERNER GEORG NOWAK, Wien 

(Received April 2, 1990) 

1. INTRODUCTION 

Like in parts I and II of this work [10], [1.1], we consider a compact convex 
subset $ of Rs (s ^ 2) which contains the origin as an inner point and has a smooth 
boundary d$ with finite nonzero Gaussian curvature throughout. We assume that 
the correspondance which maps every point of the unit sphere in Rs to the point 
of d& where the outward normalhasthesamedirection,isone-oneandofclassC0 0 . 
For a large real variable T, we denote by ^l(T)the number oflattice points (ofthe stan
dard lattice Zs) in the "blown up" body Qr) @ = {x e Rs: ( l / V J ) x є J*} and define 
the "lattice rest" in the usual way by P(T) = A(T) - VTS/2 (F the volume of Я). 

For the special case that & is an (0-symmetric) ellipsoid, a wealth of deep and 
enlightening results is available. They usually either impose some "rationality" 
or "irrationality" condition on the coefficients of the quadratic form involved or 
are of a metric kind. The reader is in particular referred to the classic papers of the 
Czechoslovak school of lattice point theory, namely of Jarník, Diviš and B. Novák, 
listed in the textbooks of Fricker [4] and Krätzel [8]. 

For a quite general convex body ^ satisfying the conditions stated above, it was. 
shown by Hlawka [6] that 

(1.1) PyT) = 0 ( r ( s - 1 ) / 2 ( s + 1 ) ) , 
and 
(1.2) P(T) = Q(T ( S " 1 ) / 4 ) . 

(For s = 2, this was obtained much earlier by Jarník [7]. For the 0- and Q-notation> 
the reader may consult [4] or [8].) Later on, Krupička [9]refined(1.2)by 

(1.3) P(T) = a ± (T ( s " 1 ) / 4 ) 

and \ 

(1.4) i j j P W | d i > T * - w * . 

This paper is part of a research project supported by the Austrian "Fonds zur Förderung 
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In parts I and II ofthis article [10], [11], we established the improvements 

(1.5) P(T) = D(T ( s- I ) / 4(log T)1/4) 

for every dimension s ^ 2 and, for s incongruent to 1 modulo 4, 

(1.6) P{T) = Q*(T ( '-1) /4(log r ) ( 1 / 2 ) - ( 1 / 2 s ) ) , 

where * = — for s = 2, 3, 4 (mod 8) and * = 4- for s = 6, 7, 8 (mod 8). 
ïn this note we extend this last result to the case s = 1 (mod 4), making the 

П-estimate two-sided at the same time, for arbitrarv s ^ 4. 

Theorem 1. For the lattice rest P(T) of the convex body (y/T) J* in R5, where J* 
satisfies the conditions stated above, we have 

P(T) - Q± (T^- 1 ) / 4 ( log r / 1 / 2 ) -< 1 / 2 s ) ) , 

for every dimension s ^ 4. 
ft is worth noting that no sharper result than this one is known even for an ar

bitrary O-symmetric ellipsoid (without any restriction on the coefficients of the 
quadratic form involved). For this case the estimate is implicitly contained in a paper 
of Hafner [5], its proof being based on the functional equation of the Epstein zeta-
function. 

In our argument we will borrow some tools of Hafner's, along with the classic 
methods of Berndt [2] and of Szegö and Walfisz [13], [14]. In all of these papers, 
however, the arithmetic functions under consideration are coefficients of Dirichlet 
series which satisfy a certain functional equation; therefore, the analysis is usually 
based on a contour integration argument. In our problem we do not have such 
a "neat" functional equation. To overcome this difficulty, one has to replace complex 
integration by an application ofthe Poisson summation formula along with Hlawka's 
[6] asymptotic formula for the Fourier transform ofthe indicator function ofa gene
ral convex body 8Й (cf. [11]). 

In section 3, we give a quantitative refinement of Theorem 1 which gives some 
information how quickly the "oscillations" of the lattice rest take place (Theorem 2). 

2. PROOF OF THEOREM 1 

For a large real parameter t, we put 

(2.1) X=X(t) = Kx(logt)-2" 
and 

(2.2) k = k{t) = ̂ ( a + tX{t)-*"y, 
4тг 

with a positive constant Kl and real a to be specified later. We consider the "Borel 
mean-value" 

(2.3) M(t) =™ - ^ - Г u * e - P(Xu) du . 
Щ + l)Jo 
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In [11], we already proved (with X and k defined slightly different which does not 
affect the argument) that 

M{t) = - (kXys~1)/4 £ <m) N ~ ( S + 1 ) / 2 cos (2Щт) ЛкХ) - ~(s + 1)) x 
71 0 < | m | ^ x 4 

meZ* 

(2.4) x exp í- — X H2(m)\ + 0 ( ^ " 3 / 2 ) / 4 ) . 

Here x = kEX~í/2, є > 0 a small constant, Я is the tac-function of the body LM 
("Stützfunktion", cf. Bonnesen and Fenchel [3]), hence a positiveC°°-function 
on Rs — {0] which is homogeneous ofdegree 1. Finally oe(*) is a positive C°°-function 
on Rs — {0] homogeneous of degree 0 (in fact, a(w) = l/V(^(^/|w|)) where K(x) 
is the Gaussian curvature at that point of d@l which corresponds to the point x of the 
unit sphere under the C°°-map mentioned at the very beginning; see Hlawka [6]). 
|*| denotes the Euclidean norm throughout. 

In order to extend the range of summation in (2.4) to m є Zs, m ф 0, we observe 
that1) 

£ a(m)\m\-(s+1)/2exp(--XH\m))< 
H>x V 2 / 
ieZ* 

< I rJin)n'^+1),4№p(-ctnX) < 

\m\ >x 
meZ 

n>x2 

neN 

< Qxp( — c2x2X) + j 2 e x p ( — c2Xu)du <̂  

< exp(-c3x2X)(\ + №{Xu)-2àu) < k-1 , 

where rs{n) denotes the number of ways to write n as a sum of 5 squares ofintegers, 
and the Cj are positive constants (depending at most on ^ ) , throughout the sequel. 
Consequently, 

(2.5) M( i )= - ( f cX) ( 5 ~ 1 ) / 4 X oL(m)\m\-(s+i)/2cos(2nH(m)J(kX)--(s + \))x 
K meZs 4 

тФО 

x exp (- — X H2(m)\ + 0 ( ^ " 3 / 2 ) / 4 ) . 

The next step is to approximate this infinite series by an expression of the form 
00 

(2.6) f(X, a) = £ ß(m) g(X, H(m), a) 
meZs 

тФО 
where, for short, 

ß(m) = a(w) 
\m\ v ( ^ D / 2 

H(m) 

1) By homogeneity o f# , c4 |m|^ #(m)5i <"s|w|. 
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(2.7) g(X, и, а) = d e f e x p / - — ХиЛ u" ( s+1) /2 cos (au JX - - (s + 1)\ . 

(Note that the function ß is again positive and homogeneous ofdegree 0 with conti
nuous partial derivatives on Rs - {0).) 

We now need some information about the asymptotic behaviour of the summatory 
function of ß. 

Lemma 1. For u ^> oo, 

S{u) =def X ßH = Ws + R{u) 
0<H(m)^u 

meZs 

with 

(2.8) c0 = f„(x)S , ß(x) dx , R(u) = 0(u*-1). 

Proof. It is clear that 

t(u)=dciiHix)auß{x)dx = c0u\ 

For any m = (mb ..., ms) є Zs, define the unit cube 
E(m) = [ml5 mi + 1] x ... x [ms, ms + 1] , 

and denote by Jf(u) the body in Rs given by Я(лг) ^ u. Then we easily see that 
i(tt) - S(u) = X ÍE<») (fl*) - ßH) dx + 0{u*-1) , 

meZs 

E(m)c*r(u) 

because there are at most 0(u5'1) cubes E(m) which intersect the boundary of ď(u). 
(Note that there exists c6 so that theboundarics dJť(u + c6) and 3ĉ T(u — c6) both 
have a minimal distance exceeding Vs from дЖ(и), and the volumes of these bodies 
differ only by 0(u5"1).) For x є E(m) (and \m\ sufficiently large), 

\ß(x) - ß{m)\ й Z max 
j=\ і м а м а м 

W, ч ~ W 
dWj <i5' 

since dßldwj is homogeneous ofdegree —1. Thus 

/(w) - S(u) « X Л + "S_1 « X Ф ) "_1/2 + "*"1 « M'_1 • 
m4=0 W l ^ n ^ c 7 u 2 

H(m)^u ' ' 

as asserted in Lemma 1. 
We are now able to give an asymptotic formula for/(X, a), as X >̂ 0 + , a some 

real constant, in the spirit of Berndt [2], Lemma 3.1. 

Lemma 2. For X ^> 0 + , 
(2.9) f(X, a) = c8 F(a)X~ (s-1) /4 + Ofl(X-^"3)/4) 
W<'i/t 

(2.10) F(o) =Mtfv<s-3)l2e-«2cos№av - - ( s + l)Y 
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Proof. Writing (2.6) as a Stieltjes integral, we get 
ҐОО 

f(X,a) = g(X,u,a)dS(u) = 

Ґ00 - f00 дд 
= c0s I ws 1g(X, w, a) du — — (X, w, a) #(u) dw . 

Jo Jo ом 
By the substitution u = (Ѵ2/я)Х"1 / 2у, the first integral isjust c9 F(a)X~(s~í)/4ř, 

and the second integral is 

< 

< 

us l àu <š r\f(x,».°) 
Jo \Su 

Г u*-1 exp ( - — XiA (Xu^s+i ) /2 + W ( - s - 3 ) / 2 + 

+ (VX)tt (- '5"1 ) / 2)dtt < x - ( s " 3 ) / 4 . 

This proves Lemma 2. 
We now apply Dirichleťs approximation theorem (see e.g. [5]): Let Ai be a large 

positive integer and q є N a parameter to be fixed later (none of the Cj and order 
constants may depend on q in what follows). Then there exists2) a value of t in the 
interval 
(2.11) Ax й t й Aiq

CìoAlS 

so that 

(2.12) - Him) t 
2n v J 

1 

for all m e Zs with 0 < H(m) S Av (Here 
integer.) We infer from (2.11) that 

denotes the distance from the nearest 

- l / s 

and define 

Ax >{logty/s(logq)-1 

A = def C{q) (log 0 1 / s , C(q) = c n( log q)~1/s , 

with c n so small that Л ^ Лх. Furthermore, by (2.12), the mean- value theorem and 
the definition of fc(i), we conclude that, for 0 < H(m) ^ A, 

cos (lnH{m) y/(k) y/(X) - - (s + і Л - cos fa H{m) J(X) - - (s + 1) « 

« — Я ( т ) í 
2тг v ; 

2) Note the order in the choice of the parameters: First AY is picked arbitrarily large, then / 
is chosen according to Dirichleťs theorem (thus t^ co with AJ; thereby X(t), k{t) and A are 
defined. 
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Thus we can in fact approximate a finite portion of the series in (2.5) by 

fA(X, a) = dcf £ ß(m) g{X, H(m), a) . 
0<H(m)^A 

meZs 

We obtain 

(2.13) fA(X,a)- £ a ( « ) | 4 _ ( S + 1 ) / 2 -
0<H(m)^A 

meZs 

. cos (2nH(m) j{kX) - - (s + l)J exp ( - — X H2(m) 

< Ì X ^ H Я(«Г ( Я + 1 ) / 2 exp ( - — Х Я 2 ( т Л = 
ýf 0 < Н ( т ) ^ Л ' \ 2 / 

> Л + / 7I2 \ 
exp ( Xu2 \ dG(u) <š 

QXVf--A2x\A(s-l)/2 +X Г Ѵ + 1 

е х р ( - ^ С ( , ) 2 х Л ( С ( # К ^ -

<̂  

/2exp( ~~Xuz)áu) < 

< i r ( , " 1 ) / 4 

4 
) / 4 + l H - * " < * 

4 
where 

G(u) =def X £("») ( # H ) ~ ( s + 1 ) / 2 <š w(s~1)/2 , 
0<H(mi^u 

meZ* 

which in turn follows readily via integration by parts. 
Similarly, using the definitions of A and k, we get 

(2.14) \f(X,a)-fA(X,a)\u I ftm)(H{m))-<'+"'*exp(-ZxH*(m)) 
H(m)>A \ 2 J 

exp | - — Xu2\ dG(u) < 

< exp (- — A2x\ A^-{)12 + X Г u<*+1)/2 exp ( - - ХиЛ du < 

< X-^1^ fexp (- ~ C(q)2 K^(C(q)2 Ktf-1"* + 
,Js-l)/4-w e~wdw 

(nV2)C(q)iKi 

= e{C{qfK,)X-^^, 
where e(W) ^> 0 for W^> 00. in the very same way the infinite ,,taiP' of the series 
in (2.5) can be estimated. 

Collecting the results (2.5), (2.13), and (2.14), we thus arrive at 

M{t) = Ì fc<s"1)/4 (x*-Mf(X,a) + 0Í-\ + 0(s(C(qyK,))Y 
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and by Lemma 2 (for t ^ oo), 

(2.15) M(t) = c^fc<-*>/* ( f ( a ) + 0 ( ! ) + 0(c(C(q)2 Kt)) + o(i) 

We now make use of a deep result due to Steinig [12] which provides necessary 
and sufficient conditions for functions like F(a) to have a change of sign. 

Proposition (Steinig). For a\ В, у є R, y > — 1 , let 

Gy>B(a') - d e f j ^ e~MV cos (a'u + Ятг) du . 

Then GyB(ď) as afunction ofa' has a sign change ifand only if 

(2.16) y> - 2 | B - [ B + i ] | . 

Otherwise, GyB(a') Ф 0 /o r all real values ofa'. 
For s ^ 4, y = i(s — 3) > 0 (for our function F(a) defined in (2.10)), hence there 

exist real numbers ai and a2 and a positive constant c13 so that 

(2.17) F(a,)u -c13, F(a2)^cl3. 

We take once a = au then a — a2 in the definition (2.2), i.e. we put (for i = 1 or 2) 

(2.18) ^ = ^ ) = l ( a , + r 4 ) - " 2 ) 2 , 
4яГ 

define Mř(ř) by (2.3), with k replaced by kh and infer from (2.15) (choosing first q 
and then Ki sufficiently large) that there exists a sequence ofreal numbers t tending 
to + oo with 

(2.19) Mx(t)u-ciAk(ri)IA, 
and 
(2.20) M2(t)^c14k(rim-

To complete the proof, let us suppose that, for some small positive constant K3, 

±P(T) й X3T ( s-1 ) / 4( log r ) ( 1 / 2 ) - ( 1 / 2 v ) 

for all sufficiently large T. By the definition of M,(r), this would imply that, for every 
large real t, 

( - l ) ' ' M / i ) < КАЩУ~1У4 f " , , * , w + ( . - i ) / 4 ^ ) - , j + 
V ; , w " Г(Цг) + 1) Jo W 

where L(w) = (logw) ( 1 / 2 )~ ( 1 / 2 v ) for w ^ 2, L(w) = 0 else. Estimating this integral 
by Hafneťs Lemma 2.3.6 in [5], p. 51, we obtain 

( - l )< Mi(t) ї сІЬК3(Щ X(t)f-^ L{X{t) k{l)) й 

g c 1 7 X , ( f c ^ ) ) ( I _ 1 ) / 4 

after a short computation, using the definitions (2.1) and (2.18). Together with 
(2.19)and(2.20),thisyieldsapositivelower boundfor X 3(bothfor / = 1 and i = 2) 
and thus completes the proof of Theorem 1. 
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3. A QUANTITATIVE REFINEMENT 

Slightly stronger than Theorem 1, one can give some information how quickly the 
"oscillations" of the lattice rest P(T) take place, on the lines of Hafner's Theorem C 
in [5]. 

Theorem 2. There exist positive constants c, c' and a sequence of real numbers 
y tending to +oo such that both of the inequalities 

±P(T) ^ c'TCs-1)/4(log T) ( 1 / 2 ) - ( 1 / 2 s ) 

have a solution in each of the intervals 

y g Тйу + c j 1 / 2 ( l og j ) ( 1 / 2 ) - ( 1 / s ) . 

Proof. For і = 1 or 2, let ki = fc,(i) and M<(i) be defined like before. By (2.19), 
(2.20), there exists a sequence of real numbers t tending to + oo such that 

(3.i) (-i)'M,(Ofcc^fcT1"4. 
We define 

(3.2) Nf = d e f f c | ± K 4 ( M o g f c i ) 1 / 2 , 

(K4 a suitable constant at our disposition), and put 

it = 1 Г ;r = _ Л _ Г 
r (k i + l)Jw,* ' r(fci + l ) J 0 ' 

with the integrand ukie~"P(Xu) in both cases. 
Using (1.1) (with Ѳ = (s(s - l))/(2(s 4- 1)) for short), we conclude that 

'* < wuh^ Г "ti+9e~"dM < ^rr^(Ntf'+e+2^(-Nt) Г ^ « 
r (k i + l )J*i+ r ( fc ,+ l) Jjv,>" 

^ 7 7 7 ^ ( ^ ) ' " " ^ e x p ( - i V n 
r(k f + 1) 

(since Nf > kj + 0 + 2 for í sufficiently large). The same bound holds for lJ, 
with Nj1" replaced by Nf. By Stirling's formula (see e.g. [ l ] , p. 257), 

J , * ^ ( ^ K * ( ^ Y ' T f c t + ^ e x p ( T ^ ( f c , l o g f c , ) 1 ' 2 ) 

Taking logarithms and using the Taylor expansion 

w2 

log(l + w) = w + 0(|w|3) , 
z 

we get 
log B* = (Ѳ + 4 - iKl) log fc, + 0(kr 1 / 2( log kf)3/2) • 

If we choose K4 so large that K\ > 2Ѳ + 1, l o g ß f ^ —oo for ř -^ oo, hence 

.def o ± 
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lf = o(l). Together with (3.1) this implies that 

( - lV ' f ' u*'e-"P(Xu)du > i c 1 4 f c ( r 1 ) / 4 

m + i))*r " 
(again for an unbounded sequence of values t and i = 1, 2). Since, by the very same 
reasoning, 

1 CNi + 

ukiQ-udu = 1 + o ( l ) , 
^ jNi-

r ( fc ,+ i ) . 

there always exists a value u, in the interval [N,r, N,+] such that 

(3.3) ( - l ) ' ' P ( * M , ) 2 U c 1 4 f c r 1 ) / 4 -

We now put Tt = Xuh then it follows from the definitions given earlier that 

(3.4) Ті X Xki X t2 , kt X Ti(log T,.)2/s, 

consequently 

|Г, - Г2| < s X ( m a x ( M o g ^ . ) 1 7 2 + |*i - k2\) < 
i=l,2 

< tXl/2(log t)l/2 < r! /2(log Tt)W*W>. 

Taking y = min {Г1? Г2] , we complete the proof of Theorem 2, in view of (3.3) 
and (3.4). 
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